EP1577538B1 - Dispositif d'injection de combustible pour des moteurs à combustion interne avec amortissement de la levée de l'aiguille - Google Patents

Dispositif d'injection de combustible pour des moteurs à combustion interne avec amortissement de la levée de l'aiguille Download PDF

Info

Publication number
EP1577538B1
EP1577538B1 EP05100197A EP05100197A EP1577538B1 EP 1577538 B1 EP1577538 B1 EP 1577538B1 EP 05100197 A EP05100197 A EP 05100197A EP 05100197 A EP05100197 A EP 05100197A EP 1577538 B1 EP1577538 B1 EP 1577538B1
Authority
EP
European Patent Office
Prior art keywords
pressure
nozzle needle
damping
space
closing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP05100197A
Other languages
German (de)
English (en)
Other versions
EP1577538A1 (fr
Inventor
Achim Brenk
Martin Kropp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1577538A1 publication Critical patent/EP1577538A1/fr
Application granted granted Critical
Publication of EP1577538B1 publication Critical patent/EP1577538B1/fr
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M45/00Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship
    • F02M45/02Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts
    • F02M45/04Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts with a small initial part, e.g. initial part for partial load and initial and main part for full load
    • F02M45/08Injectors peculiar thereto
    • F02M45/086Having more than one injection-valve controlling discharge orifices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M57/00Fuel-injectors combined or associated with other devices
    • F02M57/02Injectors structurally combined with fuel-injection pumps
    • F02M57/022Injectors structurally combined with fuel-injection pumps characterised by the pump drive
    • F02M57/025Injectors structurally combined with fuel-injection pumps characterised by the pump drive hydraulic, e.g. with pressure amplification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M57/00Fuel-injectors combined or associated with other devices
    • F02M57/02Injectors structurally combined with fuel-injection pumps
    • F02M57/022Injectors structurally combined with fuel-injection pumps characterised by the pump drive
    • F02M57/025Injectors structurally combined with fuel-injection pumps characterised by the pump drive hydraulic, e.g. with pressure amplification
    • F02M57/026Construction details of pressure amplifiers, e.g. fuel passages or check valves arranged in the intensifier piston or head, particular diameter relationships, stop members, arrangement of ports or conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/20Closing valves mechanically, e.g. arrangements of springs or weights or permanent magnets; Damping of valve lift
    • F02M61/205Means specially adapted for varying the spring tension or assisting the spring force to close the injection-valve, e.g. with damping of valve lift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/30Fuel-injection apparatus having mechanical parts, the movement of which is damped
    • F02M2200/304Fuel-injection apparatus having mechanical parts, the movement of which is damped using hydraulic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/46Valves, e.g. injectors, with concentric valve bodies

Definitions

  • the invention relates to a fuel injection device for internal combustion engines according to the preamble of claim 1.
  • a fuel injector with two rows of holes of injection nozzles, which an inner and coaxial with an outer nozzle needle is assigned, is known for example from DE 102 05 970 A1.
  • Such injection nozzles, which release pressure-dependent activatable different injection cross-sections, are also referred to as Variodüsen.
  • the outer and inner nozzle needle is in each case assigned a control piston, which each act on a fuel-filled hydraulic space, so that the hydraulic chambers act as actively connected control rooms.
  • the two control chambers are hydraulically connected to one another via a connecting channel.
  • the control chamber of the outer nozzle needle can be connected via a discharge throttle with a low-pressure return system.
  • the connecting channel is dimensioned so that when opening the outlet throttle first the pressure in the control chamber of the outer nozzle needle drops and only with a time delay, the pressure in the control chamber of the inner nozzle needle.
  • a fuel injection device with pressure booster device in which in addition to improving the injection characteristics and to increase the efficiency also a Vario nozzle is used.
  • the Variodüse has two coaxially arranged nozzle needles. In this case, the opening pressure of the inner nozzle needle is adjusted by spring assistance to a constant level or with the aid of an additional assistance pressure to a specific ratio of rail pressure and opening pressure. This is an adaptation of the hydraulic flow through the fuel injector to the load point of the internal combustion engine possible.
  • the inner nozzle needle is adjusted so that it opens only at relatively high pressures, for example, greater than 1500 bar, so as to achieve good emissions in the partial load condition of the internal combustion engine.
  • the setting of the constant opening pressure for the inner nozzle needle is very sensitive to tolerances, since a jump in quantity in the injection quantity is associated with the opening of the inner nozzle needle. In this respect, specimen spreads are particularly unpleasant.
  • the inner nozzle needle opens even at partial load of the internal combustion engine.
  • the fuel injection device with the characterizing features of claim 1 has the advantage that the opening speed of the inner nozzle needle and thus the injection rate can be tuned.
  • the inner nozzle needle of the Variodüse is actively or passively switchable, so that the nozzle opening pressure of the inner nozzle needle can be adjusted so that it opens only when a request in the full load range.
  • an improved minimum quantity capability and a flat injection quantity map for fuel injectors with a Variodüse can be achieved so that a further improvement of the emission values and the noise behavior is achieved.
  • an adapted injection rate profile with the aim of noise reduction without pilot injection in wide load ranges is also possible with very high pressure injection systems with pressures above 2000 bar.
  • the outer nozzle needle is additionally exposed to a pressure surface to a closing space and connected to the damping chamber outlet throttle has a larger throttle effect, pressure conditions in the damping chamber and in the closing space are achieved, which cause first the pressure in the closing space drops and only with a time delay also the pressure in the damping chamber. This initially opens the outer nozzle needle and only after the action of the outer nozzle needle on the outer damping piston on the associated damping chamber lifts the inner nozzle needle.
  • An effective pressure-dependent control of the opening of the outer and the inner nozzle needle in response to the pressure prevailing in the damping chamber and in the closing space pressures is achieved when the closing direction acting pressure surface of the outer nozzle needle between the outer damping piston and the nozzle needle is formed and in between the damping piston and the outer nozzle needle formed parting line points. It is particularly useful if the damping chamber is connected via a hydraulic connection with the closing space, wherein the hydraulic connection formed by a between the outer nozzle needle associated outer damping piston and the inner nozzle needle associated inner damping piston connecting channel and between the nozzle needle side end faces of the outer Dämpfungskolbens and the damping piston side end face of the outer nozzle needle formed parting line is formed.
  • a separate damping chamber for the inner nozzle needle by means of a Control line and a throttle is filled.
  • an opening pressure of, for example, 1000 bar opens a check valve and the inner nozzle needle can open depending on the pressure in the damping chamber.
  • the throttle must be designed so that the discharge of the inner damping chamber during injection with rail pressure less than 1000 bar does not lead to an unwanted opening of the inner nozzle needle.
  • the inertia of the check valve is matched to the injection duration, so that the check valve remains open long enough to undershot the nominal opening pressure to activate the inner nozzle needle.
  • the damping chamber is controlled by means of a combination of two check valves.
  • the first check valve in this case has a much higher opening pressure than the second check valve.
  • the fuel injection device illustrated in FIGS. 1 to 6 comprises a fuel injector 1 and a high-pressure accumulator 2 (common rail), the fuel injector 1 being supplied with high-pressure fuel via the high-pressure accumulator 2.
  • the fuel injector 1 includes a pressure booster 5, a control valve 8 and an injection valve 6, via which fuel is injected into a combustion chamber, not shown, of an internal combustion engine at the combustion chamber end.
  • the control valve 8, which is designed for example as a 3/2-way valve is actuated in the present embodiments of an electromagnet. But it is also possible to actuate the control valve 8 by a piezo actuator.
  • the injection valve 6 has a coaxial nozzle needle with an outer nozzle needle 11 and an inner nozzle needle 12.
  • the nozzle needles 11, 12 are guided one inside the other and independently operable.
  • the injection valve 6 further has two rows of holes of injection nozzles, wherein outer injection nozzles 61 of the outer nozzle needle 11 and inner injection nozzles 62 of the inner nozzle needle 12 are assigned.
  • the outer nozzle needle 11 has a pressure shoulder 63 within a nozzle chamber 27.
  • the inner nozzle needle 12 is designed with a pressure surface 64, which is connected upstream of the inner injection nozzles 62.
  • a closing space 29 is arranged, in which the outer nozzle needle 11 is located with a damping piston-side end face 37 acting in the closing direction.
  • the coaxial nozzle needle is associated with a damping device 40, which is explained in more detail in connection with the individual embodiments.
  • the pressure booster 5 includes in addition to the mentioned pressure chamber 15, a rear space 16 and a high-pressure chamber 25.
  • an axially displaceable stepped piston 9 was added, the a first partial piston 18, which is formed in comparison to a second partial piston 19 with a guide enabling larger diameter.
  • the stepped piston 9 can consist of two separate components as well as be made of one component.
  • the stepped piston 9 also has a projecting into the pressure chamber 15 in the piston rod 17 with spring holder 20 for a return spring 21 which rests opposite to the spring holder 21 on a disc 22.
  • the second part piston 19 defines with its end face the high-pressure chamber 25, to which a high-pressure line 26 is connected, which acts on the nozzle chamber 27 of the injection valve 6 at very high pressure fuel.
  • a first line 23 and a second line 24 branches off, the first line 23 leading to a connection of the control valve 8 and the second line 24 via a closing space throttle 31 into the closing space 29 of the injection valve 6.
  • the closing space 29 is further connected via a check valve 32 to the high-pressure line 26.
  • the second connection of the control valve 8 is connected via a control line 33 to the pressure chamber 15 of the pressure booster 5.
  • the third port of the control valve 8 is connected to a return line 34, which leads into a low-pressure return system 35.
  • the damping device 40 has a first, outer damping piston 41, which is guided in a subsequent to the closing space 29 bore 42, and a second, inner damping piston 43, in the form of a piston rod through the first damping piston 41 is guided therethrough.
  • the outer damping piston 41 is biased by a compression spring 44 in the closing chamber 29 and has within the closing chamber 29 a nozzle needle-side end face 47, which bears against the damping piston-side end face 37 of the outer nozzle needle 11. Between the nozzle needle-side end face 47 and the damping piston-side end face 37, a parting line 45 is formed.
  • the outer damping piston 41 also has an annular end face 51.
  • the inner damping piston 43 has a circular end surface 52 and is operatively associated with the inner nozzle needle 12, wherein the inner damping piston 43 can be made in one piece or in two pieces with the inner nozzle needle 12.
  • the annular end face 51 of the outer damping piston 41 and the circular end face 52 of the inner damping piston 43 each have a damping chamber 50.
  • a flow channel 46 is designed in the form of a ring pair, which leads from the damping chamber 50 to the parting line 45.
  • the damping chamber 50 is connected via a line 53 with an outlet throttle 54 to the second line 24.
  • a further pressure surface 36 is formed on the inner damping piston 43, which acts, for example, within the flow channel 46 in the closing direction.
  • the opening of the inner nozzle needle 12 is dependent both on the pressure in the closing chamber 29 and the pressure within the common damping chamber 50.
  • the pressure in the nozzle chamber 27 must increase above the rail pressure, which is achieved by connecting the pressure booster 5.
  • This is, as shown in Figures 1 to 7, initiated by a pressure relief of the back space 16 of the booster 5, by the control valve 8 is brought into the illustrated switching position by activation of the electromagnet.
  • the rear space 16 is separated from the rail pressure or from the system pressure supply and connected to the return line 34 and thereby to the low-pressure return system 35.
  • the pressure in the rear chamber 16 drops, whereby the pressure booster 5 is activated, while the stepped piston 9 with the partial piston 19 the compressed in the high-pressure chamber 25 fuel.
  • the compressed fuel is passed via the high-pressure line 26 into the nozzle chamber 27.
  • the closing space 29 is relieved via the closing space throttle 31, so that the action of the high pressure on the pressure shoulder 63, the outer nozzle needle 11, as shown, is raised, whereby the injection via the outer injection nozzles 61 begins.
  • the outlet throttle 54 in this case has a greater throttling effect than the closing space throttle 31, so that it can come to the damping effect of the outer damping piston 41 in the damping chamber 50.
  • the opening speed of the outer nozzle needle 11 and thus the injection rate can be tuned.
  • the pressure in the pressure chamber 27 also acts on the pressure surface 64 of the inner nozzle needle 12. Due to the pressure acting on the end face 52 in the damping chamber 50 and the pressure surface 64 on the nozzle needle 12 acting pressure, a resulting closing force is effective, the inner nozzle needle 12 is opened.
  • the opening time of the inner nozzle needle 12 can be influenced by a vote of the pressure surface of the end face 52 on the diameter of the inner damping piston 43 and the flow of the outlet throttle 54.
  • the end face 52 of the inner damping piston 43 is expediently dimensioned such that the inner nozzle needle 12 opens when the maximum stroke of the outer nozzle needle 11 is reached.
  • the inner nozzle needle 12 opens for a wide rail pressure range, ie passively in partial load by reaching the stroke stop of the outer nozzle needle 11th
  • the closing operation of the Variodüse is initiated by a further switching operation of the control valve 8 by pressurizing the control line 33, which is applied via the lines 23, 24 of the rear chamber 16 and the closing chamber 29 back to the rail pressure or system pressure.
  • the closing of the outer injection nozzles 61 takes place by filling the closing chamber 29 and the pressure applied there, which acts on the separating gap 45 acting in the closing direction damping piston side end face 37 of the outer nozzle needle 11, and with the assistance of acting on the outer damping piston 41 compression spring 44th Because the throttling effect of Outflow throttle 54 is greater than the throttle effect of the closing space throttle 31 is formed between the closing chamber 29 and the damping chamber 50, a pressure difference.
  • the sequence of the movements of the nozzle needles 11 and 12 and the pressure profile at the pressure surfaces of the nozzle needles 11, 12 and in the damping chamber 50 and the resulting closing force for the inner nozzle needle 12 will be explained below with reference to the pressure and force curves shown in Figure 7, wherein the nozzle pressure at the pressure surfaces of the nozzle needles 11, 12 with p1, the damper pressure in the damping chamber 50 with p2 and the forces resulting from the pressure forces on the pressure surface 64 and the end surface 52 of the inner nozzle needle 12 pressure forces resulting closing force of the inner nozzle needle 12 are designated by Fs.
  • the nozzle pressure p1 and the damper pressure p2 have the value of the rail pressure pR of, for example, 1350 bar.
  • the closing force Fs is hitherto positive as a resultant force between the compressive forces on the pressure surface 64 and the end surface 52.
  • the time t1 represents the switching time of the control valve 8, with which the control valve 8 initiates a pressure relief of the back space 16 of the pressure booster 5 by the switching position shown in Figure 1. Due to the movement of the stepped piston 9, the compression of the fuel in the high-pressure chamber 25 starts somewhat later, so that the nozzle pressure p1 rises, whereby the outer nozzle needle 11 lifts off and injection takes place via the outer injection nozzles 61. At the same time the outer damping piston 41 is moved in the direction of damping chamber 50, which initially causes a slight increase in pressure of the damper pressure p2 up to a time t2.
  • the slight decrease in the closing force Fs on the inner nozzle needle 11 is due to the fact that due to the opening of the outer nozzle needle 11 and the pressure rise in the damping chamber 50, only a slight force shift at the inner nozzle needle 12 initially occurs.
  • the outer nozzle needle 11 and thus the outer damping piston 43 at the top End stop and the pressure p2 in the damping chamber 50 then drops sharply.
  • the closing force Fs acting on the inner nozzle needle 12 suddenly drops below zero, ie, the force acting on the pressure surface 64 exceeds the force acting on the end face 52. This causes the inner nozzle needle 12 to open shortly after t2.
  • the time t3 is the second switching time of the control valve 8, which closes the discharge of the line 23 via the return line 24, so that the construction of a pressure-balanced system begins.
  • rail or system pressure is again built up via the closing space throttle 31 in the closing space 29 and via the outlet throttle 54 and via the parting line 45 and the flow channel 46 in the damping space 50.
  • the stepped piston 9 is brought by the return spring 21 in its initial position.
  • the pressure p2 in the damping chamber 50 thus increases again and at the same time the force component on the end face 52 increases and the closing force Fs also increases, so that at the zero crossing again a positive closing force Fs acts on the inner nozzle needle 12 and the inner injection nozzles 62 at the time t4 be closed.
  • the outer nozzle needle 11 Due to the support of the compression spring 44, the outer nozzle needle 11 has closed the outer injection nozzles 61 at the same time.
  • the course of the nozzle pressure p1 has again reached the rail pressure pR of 1350 bar at the time t4.
  • the undershoot with respect to the nozzle pressure p1 which can be recognized in the course of the pressure, is triggered by the short-term decompression of the pressure chamber 25 by retraction of the stepped piston 9.
  • the system is pressure balanced and the injectors 61, 62 are closed. A renewed opening operation of the injection nozzles 61, 62 starts with renewed activation of the control valve 8.
  • FIG 2 shows a further developed embodiment of the embodiment in Figure 1, wherein in addition to the outlet throttle 54, a filling line 55 leads into the damping chamber 50 and a check valve 56 is interposed, which acts against an emptying of the damping chamber 50 in the conduit 24.
  • a filling line 55 leads into the damping chamber 50 and a check valve 56 is interposed, which acts against an emptying of the damping chamber 50 in the conduit 24.
  • a check valve 56 acts against an emptying of the damping chamber 50 in the conduit 24.
  • each damping piston 41, 43 is assigned a separate damping chamber.
  • the outer damping piston 41 has in this case in a first damping chamber 71.
  • the inner damping piston 43 is formed by a control piston 70 which is guided in a cylinder chamber 72, wherein the cylinder chamber 72 is located above the control piston 70 second damping chamber 73 and one below the control piston 70th has lying control room 74.
  • the second damping chamber 73 is connected to a line 75 via the line 24 to the rear space 16 of the booster 5.
  • the control chamber 74 is connected via a further line 76 to the pressure chamber 15 of the booster 5 and acted upon by rail pressure.
  • the control piston 70 has an end face 77 pointing into the second damping chamber 73.
  • the control piston 70 Pointing into the control chamber 74, the control piston 70 has an annular surface 78.
  • the control piston 74 which is acted upon by rail pressure, additionally relieves the control piston 70 in dependence on the rail pressure.
  • a return spring 79 By means of a return spring 79, the lifting of the control piston 70 is avoided by the damping piston 43. At the same time, the return spring 79 provides better tunability of the opening mechanism.
  • This embodiment requires acting in the closing direction on the inner nozzle needle 12 additional pressure surface 36 which is formed as a compression stage on the inner damping piston 43.
  • the closing force for the inner nozzle needle 12 thus results from an "AND" function of the force relationships on the control piston 70 and the pressure stage 36.
  • the opening of the inner nozzle needle is dependent both on the rail pressure and on the pressure conditions in the damping chamber 71 inner nozzle needle 12 thus follows only above an adjustable via the balance of power on the control piston 70 rail pressure.
  • the control valve 8 is first brought into the switching position shown, so that the rear chamber 16, the control chamber 29, the first damping chamber 71 and the second damping chamber 73 are duckentlastet.
  • An opening of the inner nozzle needle 12 begins when the force acting on the nozzle needle 12 in the closing direction closing force is smaller than the force acting on the pressure surface 64 opening force.
  • the closing force is composed of the force acting on the pressure stage 36 on the basis of the pressure in the first damping chamber 71 and the force on the control piston 70 resulting from the area ratio of the end face 77 and the annular surface 78. Since the force at the pressure stage 36 in the first damping chamber 71 is negligibly small, the force for opening the inner nozzle needle 12 is substantially dependent on the force resulting from the control piston 70, which is determined based on the rail pressure in the control chamber 74.
  • the control valve 8 is brought into the second switching position, so that the control chamber 29, the first damping chamber 71 and the second damping chamber 73 are again acted upon by rail pressure, wherein due to the different throttling effects of the closing space throttle 31 and the outlet throttle 54 of Closing chamber 29 is filled faster.
  • the reaching into the closing chamber 29 fuel flows via the parting line 45 and the flow channel 46 also in the first damping chamber 71, so that a corresponding pressure on the end face 51 of the outer damping piston 41 and the pressure stage 36 of the inner damping piston 43 acts.
  • a pressure-compensated state in the second damping chamber 73 and in the control chamber 74 is set via the connecting line 75 and the further line 76.
  • the resulting closing force for the inner nozzle needle 12 is achieved via the additional pressure surface 36, wherein the return spring 79 supports the closing action of the inner nozzle needle 12.
  • the return spring 79 is used in a two-part design of control piston 70 and the inner damping piston 43 also to ensure that there is no gap between them or a separation of the components is avoided.
  • a first damping chamber 81 and a second damping chamber 82 are likewise provided, the second damping chamber 82 acting only on the inner nozzle needle 12.
  • the second damping chamber 82 is connected via a line 83, to which a non-return valve 84 directed against the inlet to the damping chamber 82 is inserted, and via the line 24 to the rear chamber 16 of the pressure booster 5.
  • Parallel to the check valve 84 is another throttle 85th connected, via which a filling of the second damping chamber 82 takes place.
  • the opening pressure for the inner nozzle needle 12 is adjusted via the check valve 84, so that, for example, upon reaching an opening rail pressure of 1000 bar, the check valve 84 opens and the inner nozzle needle 12 opens in response to the pressure in the first damping chamber 81.
  • the throttle 85 must be designed so that the discharge of the second damping chamber 82 during the injection with rail pressure less than 1000 bar does not lead to an unwanted opening of the inner needle.
  • the inertia of the check valve 84 is matched to the injection duration of the injection valve 6, so that the check valve 84 remains open after falling below the nominal opening pressure long enough to activate the inner nozzle needle 12.
  • the second damping chamber 82 also requires no rail pressure support.
  • the second damping chamber 82 is connected instead of the throttle 85 in Figure 4 via a further check valve 86 to the line 24, wherein the further check valve 86 acts in the opposite direction to the check valve 84.
  • the check valve 84 in this case, for example, again has an opening pressure of about 1000 bar, while the other check valve 86 has an opening pressure of, for example, only about 100 bar.
  • the second damping chamber 82 is relieved only at a rail pressure of greater than 1000 bar, but refilled via the further check valve 86 already from about 100 bar.
  • the inertia of the check valves 84, 86 must be suitably matched, the further check valve 86 should have as fast as possible and the check valve 84 should have a rather sluggish switching behavior.
  • FIG. 6 shows an embodiment in which the second damping chamber 82 is connected via the check valve 84, as in the embodiments in Figure 4 and 5, with the rear space 16 of the damping device 5.
  • the second damping chamber 82 is connected via the check valve 84, as in the embodiments in Figure 4 and 5, with the rear space 16 of the damping device 5.
  • the second damping chamber 82 is coupled via the throttle 88 to rail pressure.
  • an additional control amount during the injection period via the inner injection nozzles 62 is necessary.
  • the nozzles 61, 62 and the damping chambers 50, 71, 81, 82 are pressurized.
  • known measures are to be selected, such as double nozzle needle seat on the outer nozzle needle 11 or there is an additional leakage removal between the nozzle needles 11, 12 provide ,
  • damping device 40 for the coaxial nozzle needle described in FIGS. 1 to 7 without a pressure amplifier 5.
  • the leading into the high-pressure chamber 25 line 26 is to be connected to rail pressure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fuel-Injection Apparatus (AREA)

Claims (13)

  1. Dispositif d'injection de carburant pour des moteurs à combustion interne, comprenant un injecteur de carburant alimenté à partir d'une source de carburant haute pression, et présentant une soupape d'injection munie de buses d'injection dirigées vers une chambre de combustion, dans lequel
    on associe aux buses d'injection une aiguille de buse intérieure et coaxialement à celle-ci une aiguille de buse extérieure qui ouvrent ou ferment des sections d'injection différentes en fonction de la pression au niveau des buses d'injection,
    on associe à chaque aiguille de buse un piston amortisseur, mobiles les uns par rapport aux autres et agissant sur au moins un volume rempli de carburant, et relié par un étranglement d'évacuation à un système de reflux basse pression,
    caractérisé en ce que
    le volume rempli de carburant forme un volume d'amortissement (50, 71, 81) pour les pistons amortisseurs (41, 43),
    un volume de fermeture (29) est exposé à une surface de pression (37) de l'aiguille de buse extérieure (11) agissant dans la direction de fermeture,
    on peut relier le volume de fermeture (29) par un étranglement de volume de fermeture (31) au système de reflux basse pression (35), et
    l'étranglement d'évacuation (54) présente un plus grand effet d'étranglement que l'étranglement de volume de fermeture (31).
  2. Dispositif d'injection de carburant selon la revendication 1,
    caractérisé en ce que
    la surface de pression (37) agissant dans la direction de fermeture est formée entre le piston amortisseur (41) de l'aiguille de buse extérieure (11) et l'aiguille de buse (11) et est dirigée vers un joint de séparation (45) situé entre le piston amortisseur (41) et l'aiguille de buse extérieure (11).
  3. Dispositif d'injection de carburant selon la revendication 1 ou 2,
    caractérisé en ce qu'
    on peut relier le volume d'amortissement (50, 71, 81) associé à l'aiguille de buse extérieure (11) au volume de fermeture (29) par une liaison hydraulique.
  4. Dispositif d'injection de carburant selon la revendication 3,
    caractérisé en ce que
    la liaison hydraulique est formée par une liaison (46) entre le piston amortisseur extérieur (41) associé à l'aiguille de buse extérieure (11) et le piston amortisseur intérieur (43) associé à l'aiguille de buse intérieure (12), ainsi que par le joint de séparation (45) formé entre une surface frontale (47) côté aiguille de buse du piston amortisseur extérieur (41) et la surface frontale (37) de l'aiguille de buse extérieure (11) agissant dans la direction de fermeture.
  5. Dispositif d'injection de carburant selon la revendication 1,
    caractérisé en ce que
    le piston amortisseur intérieur (43) associé à l'aiguille de buse intérieure (12) présente dans le volume de fermeture (29) une surface de pression (36) supplémentaire agissant dans la direction de fermeture.
  6. Dispositif d'injection de carburant selon l'une quelconque des revendications 1 à 5,
    caractérisé par
    un volume d'amortissement (50) commun pour les deux pistons amortisseurs (41, 43).
  7. Dispositif d'injection de carburant selon la revendication 6,
    caractérisé en ce que
    parallèlement à l'étranglement d'évacuation (54), on monte un clapet anti-retour (56) qui bloque un vidage du volume d'amortissement (50) et ne libère qu'une direction de remplissage.
  8. Dispositif d'injection de carburant selon l'une quelconque des revendications 1 à 5,
    caractérisé par
    un premier volume d'amortissement (71, 81) pour le piston amortisseur extérieur (41) agissant sur l'aiguille de buse extérieure (11) et un deuxième volume d'amortissement (71, 82) pour le piston amortisseur intérieur (43) agissant sur l'aiguille de buse intérieure (12).
  9. Dispositif d'injection de carburant selon la revendication 8,
    caractérisé en ce que
    le piston amortisseur intérieur (43) agit par l'intermédiaire d'un piston de commande (70) associé une chambre de commande (74) déchargée en fonction de la pression de rampe.
  10. Dispositif d'injection de carburant selon la revendication 8,
    caractérisé en ce que
    le deuxième volume d'amortissement (82) est relié au système de reflux basse pression (35), par un autre étranglement d'évacuation (85) et par un clapet anti-retour (84) monté parallèlement à celui-ci le clapet anti-retour (84) bloquant la direction de remplissage du deuxième volume d'amortissement (82) et étant réglé avec la pression d'ouverture sur la pression d'ouverture de l'aiguille de buse intérieure (11).
  11. Dispositif d'injection de carburant selon la revendication 8,
    caractérisé en ce que
    le deuxième volume d'amortissement (82) est relié au système de reflux basse pression (35) par deux clapets anti-retour (84, 86) montés en parallèle, et les deux clapets anti-retour (84, 86) ferment dans des directions opposées, le clapet anti-retour (84) bloquant le remplissage présentant pour vider le deuxième volume d'amortissement (82) une pression d'ouverture nettement supérieure à la pression d'ouverture du clapet anti-retour (86) bloquant le vidage, et réglée sur la pression d'ouverture de l'aiguille de buse intérieure (11).
  12. Dispositif d'injection de carburant selon la revendication 8,
    caractérisé en ce que
    le deuxième volume d'amortissement (82) est relié au système de reflux basse pression (35) par un clapet anti-retour (84) bloquant le remplissage, la pression d'ouverture du clapet anti-retour (84) étant réglée sur la pression d'ouverture de l'aiguille de buse intérieure (12), et le deuxième volume d'amortissement (82) peut être alimenté en pression de rampe par un autre étranglement (88).
  13. Dispositif d'injection de carburant selon l'une quelconque des revendications précédentes,
    caractérisé en ce qu'
    un dispositif amplificateur de pression (5) présente une chambre de retour (16) que l'on peut relier au système de reflux basse pression (35), et le volume d'amortissement (50, 71, 81, 82) est en communication avec la chambre de retour (16).
EP05100197A 2004-03-05 2005-01-14 Dispositif d'injection de combustible pour des moteurs à combustion interne avec amortissement de la levée de l'aiguille Expired - Fee Related EP1577538B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004010760A DE102004010760A1 (de) 2004-03-05 2004-03-05 Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen mit Nadelhubdämpfung
DE102004010760 2004-03-05

Publications (2)

Publication Number Publication Date
EP1577538A1 EP1577538A1 (fr) 2005-09-21
EP1577538B1 true EP1577538B1 (fr) 2007-05-30

Family

ID=34833101

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05100197A Expired - Fee Related EP1577538B1 (fr) 2004-03-05 2005-01-14 Dispositif d'injection de combustible pour des moteurs à combustion interne avec amortissement de la levée de l'aiguille

Country Status (3)

Country Link
US (1) US7066400B2 (fr)
EP (1) EP1577538B1 (fr)
DE (2) DE102004010760A1 (fr)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004028521A1 (de) * 2004-06-11 2005-12-29 Robert Bosch Gmbh Kraftstoffinjektor mit mehrteiligem Einspritzventilglied und mit Druckverstärker
JP3994990B2 (ja) * 2004-07-21 2007-10-24 株式会社豊田中央研究所 燃料噴射装置
JP4075894B2 (ja) * 2004-09-24 2008-04-16 トヨタ自動車株式会社 燃料噴射装置
DE102004053422A1 (de) * 2004-11-05 2006-05-11 Robert Bosch Gmbh Kraftstoffeinspritzeinrichtung
DE102005014180A1 (de) * 2005-03-29 2006-10-05 Robert Bosch Gmbh Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine
GB2433904A (en) * 2006-01-07 2007-07-11 Shane Richard Wootton Pressure controlled nozzle arrangement
ATE511014T1 (de) * 2006-03-20 2011-06-15 Delphi Tech Holding Sarl Dämpfungsanordnung für ein einspritzventil
EP1837515A1 (fr) * 2006-03-20 2007-09-26 Delphi Technologies, Inc. Dispositif d'amortissement pour un injecteur de carburant
DE102006026877A1 (de) * 2006-06-09 2007-12-13 Robert Bosch Gmbh Kraftstoff-Einspritzvorrichtung für eine Brennkraftmaschine
DE102006062491A1 (de) * 2006-12-28 2008-07-03 Robert Bosch Gmbh Vorrichtung zur Dosierung von Kraftstoff zum Abgassystem eines Verbrennungsmotors
JP4331225B2 (ja) * 2007-04-10 2009-09-16 トヨタ自動車株式会社 内燃機関の燃料噴射制御装置
JP4710892B2 (ja) * 2007-09-20 2011-06-29 トヨタ自動車株式会社 内燃機関の燃料噴射制御装置
KR101058713B1 (ko) * 2010-03-08 2011-08-22 현대중공업 주식회사 솔레노이드밸브와 셔틀밸브를 가진 디젤엔진용 2단 연료분사밸브
US20110297125A1 (en) * 2010-06-03 2011-12-08 Caterpillar Inc. Reverse Flow Check Valve For Common Rail Fuel System
US8870091B2 (en) * 2010-12-01 2014-10-28 McVan Aerospace Pressure compensated fuel injector
HUE027556T2 (en) * 2012-06-13 2016-10-28 Delphi Int Operations Luxembourg Sarl atomizer
GB201309122D0 (en) * 2013-05-21 2013-07-03 Delphi Tech Holding Sarl Fuel Injector
DE102013220794A1 (de) 2013-10-15 2015-06-03 Continental Automotive Gmbh Einspritzventil und Vorrichtung zum Betreiben eines Einspritzventils
US10570863B1 (en) 2018-09-18 2020-02-25 Caterpillar Inc. Fuel injector having cam-actuated plunger and plunger cavity metering edge for valvetrain noise suppression
US11988179B2 (en) * 2019-08-29 2024-05-21 Volvo Truck Corporation Fuel injection system
CN111608835B (zh) * 2020-05-29 2021-04-20 重庆红江机械有限责任公司 一种气液双控增压泵
CN114252195B (zh) * 2021-11-22 2023-12-15 潍柴动力股份有限公司 轨压可信性的检测方法、装置、存储介质和设备
US11698043B1 (en) 2022-03-09 2023-07-11 Caterpillar Inc. Fuel injector for fuel system having damping adjustment valve

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4340305C2 (de) * 1993-11-26 1998-02-19 Daimler Benz Ag Kraftstoffeinspritzdüse für eine Brennkraftmaschine
US5899389A (en) * 1997-06-02 1999-05-04 Cummins Engine Company, Inc. Two stage fuel injector nozzle assembly
DE19910970A1 (de) * 1999-03-12 2000-09-28 Bosch Gmbh Robert Kraftstoffeinspritzeinrichtung
DE19938169A1 (de) * 1999-08-16 2001-03-01 Bosch Gmbh Robert Kraftstoffeinspritzeinrichtung
DE19939428A1 (de) * 1999-08-20 2001-03-01 Bosch Gmbh Robert Verfahren und Vorrichtung zur Durchführung einer Kraftstoffeinspritzung
DE19939423A1 (de) * 1999-08-20 2001-03-01 Bosch Gmbh Robert Kraftstoffeinspritzsystem für eine Brennkraftmaschine
DE19939421A1 (de) * 1999-08-20 2001-03-01 Bosch Gmbh Robert Kombiniertes hub-/druckgesteuertes Kraftstoffeinspritzverfahren und -system für eine Brennkraftmaschine
DE19939418A1 (de) * 1999-08-20 2001-03-01 Bosch Gmbh Robert Kraftstoffeinspritzsystem für eine Brennkraftmaschine
DE19939422A1 (de) * 1999-08-20 2001-03-01 Bosch Gmbh Robert Kraftstoffeinspritzsystem für eine Brennkraftmaschine
DE19939424A1 (de) * 1999-08-20 2001-03-08 Bosch Gmbh Robert Kraftstoffeinspritzsystem für eine Brennkraftmaschine
DE19939429A1 (de) * 1999-08-20 2001-03-01 Bosch Gmbh Robert Kraftstoffeinspritzeinrichtung
US20030089802A1 (en) * 2000-01-20 2003-05-15 Bernd Mahr Injection device and method for injecting a fluid
DE10015268A1 (de) * 2000-03-28 2001-10-04 Siemens Ag Einspritzventil mit Bypaßdrossel
DE10033428C2 (de) * 2000-07-10 2002-07-11 Bosch Gmbh Robert Druckgesteuerter Injektor zum Einspritzen von Kraftstoff
DE10040526A1 (de) * 2000-08-18 2002-03-14 Bosch Gmbh Robert Kraftstoffeinspritzeinrichtung
DE10054526A1 (de) * 2000-11-03 2002-05-16 Bosch Gmbh Robert Einspritzdüse
DE10060089A1 (de) * 2000-12-02 2002-06-20 Bosch Gmbh Robert Kraftstoffeinspritzeinrichtung
DE10065103C1 (de) * 2000-12-28 2002-06-20 Bosch Gmbh Robert Kraftstoffeinspritzeinrichtung
DE10112154A1 (de) * 2001-03-14 2002-09-26 Bosch Gmbh Robert Kraftstoffeinspritzeinrichtung
DE10122241A1 (de) * 2001-05-08 2002-12-05 Bosch Gmbh Robert Kraftstoffeinspritzventil für Brennkraftmaschinen
DE10123911A1 (de) * 2001-05-17 2002-11-28 Bosch Gmbh Robert Kraftstoffeinspritzeinrichtung mit Druckübersetzungseinrichtung und Druckübersetzungseinrichtung
US6557776B2 (en) * 2001-07-19 2003-05-06 Cummins Inc. Fuel injector with injection rate control
US6725838B2 (en) * 2001-10-09 2004-04-27 Caterpillar Inc Fuel injector having dual mode capabilities and engine using same
DE10205970A1 (de) * 2002-02-14 2003-09-04 Bosch Gmbh Robert Kraftstoffeinspritzventil für Brennkraftmaschinen
DE10221384A1 (de) * 2002-05-14 2003-11-27 Bosch Gmbh Robert Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine
DE10229415A1 (de) * 2002-06-29 2004-01-29 Robert Bosch Gmbh Einrichtung zur Nadelhubdämpfung an druckgesteuerten Kraftstoffinjektoren
US6769635B2 (en) * 2002-09-25 2004-08-03 Caterpillar Inc Mixed mode fuel injector with individually moveable needle valve members
DE10304605A1 (de) * 2003-02-05 2004-08-19 Robert Bosch Gmbh Kraftstoffeinspritzventil mit zwei koaxialen Ventilnadeln
DE102004017305A1 (de) * 2004-04-08 2005-10-27 Robert Bosch Gmbh Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen mit direkt ansteuerbaren Düsennadeln

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102004010760A1 (de) 2005-09-22
DE502005000757D1 (de) 2007-07-12
US20050194468A1 (en) 2005-09-08
US7066400B2 (en) 2006-06-27
EP1577538A1 (fr) 2005-09-21

Similar Documents

Publication Publication Date Title
EP1577538B1 (fr) Dispositif d'injection de combustible pour des moteurs à combustion interne avec amortissement de la levée de l'aiguille
EP1654456B1 (fr) Dispositif d'injection de carburant pour moteur a combustion interne
EP1520096B1 (fr) Systeme a rampe commune comprenant une buse variable et un systeme multiplicateur de pression
EP1332282B1 (fr) Electrovanne pour piloter une soupape d'injection de moteur a combustion interne
EP1598551B1 (fr) Dispositif d'injection de carburant
EP1584813A2 (fr) Injecteur pour moteur à combustion avec une aiguille d'injection contrôlée directement
EP1657428B1 (fr) Dispositif d'injection de carburant
EP1399666B1 (fr) Systeme d'injection de carburant
EP1520100B1 (fr) Dispositif permettant d'amortir la course de l'aiguille sur des injecteurs de carburant commandes par pression
EP1363015A1 (fr) Système d'injection de carburant pour un moteur à combustion interne
WO2007000371A1 (fr) Injecteur equipe d'un multiplicateur de pression raccordable
WO2005015002A1 (fr) Soupape de commande conçue pour un injecteur de carburant comprenant un dispositif multiplicateur de pression
DE102004028521A1 (de) Kraftstoffinjektor mit mehrteiligem Einspritzventilglied und mit Druckverstärker
WO2012113582A2 (fr) Dispositif d'injection d'un carburant
DE102007034319A1 (de) Injektor
DE10132248A1 (de) Kraftstoffinjektor mit 2-Wege-Ventilsteuerung
DE102004038189A1 (de) Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen mit direkt ansteuerbaren Düsennadeln
EP1502023A1 (fr) Systeme d'injection de carburant pour moteurs a combustion interne
EP1809895A1 (fr) Dispositif d'injection de carburant
DE102005029805A1 (de) Kraftstoffinjektor mit Verzögerungseinrichtung zur Verlängerung der Druckverstärkungsphase
DE102007005574A1 (de) Injektor zum Einspritzen von Kraftstoff in Brennräume von Brennstoffmaschinen
DE102018200500A1 (de) Kraftstoffinjektor
EP1666719A1 (fr) Dispositif d'injection de carburant
EP1601870A1 (fr) Soupape d'injection de carburant pour un moteur a combustion interne
EP1666718A1 (fr) Dispositif d'injection de carburant

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

17P Request for examination filed

Effective date: 20060321

AKX Designation fees paid

Designated state(s): DE FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502005000757

Country of ref document: DE

Date of ref document: 20070712

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070904

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080303

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090123

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090327

Year of fee payment: 5

Ref country code: IT

Payment date: 20090126

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090120

Year of fee payment: 5

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100114

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100114