EP1561035B1 - Vorrichtung mit einem im gehäuse rotierenden bauteil - Google Patents

Vorrichtung mit einem im gehäuse rotierenden bauteil Download PDF

Info

Publication number
EP1561035B1
EP1561035B1 EP03809695.4A EP03809695A EP1561035B1 EP 1561035 B1 EP1561035 B1 EP 1561035B1 EP 03809695 A EP03809695 A EP 03809695A EP 1561035 B1 EP1561035 B1 EP 1561035B1
Authority
EP
European Patent Office
Prior art keywords
housing
coating
component
housing part
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03809695.4A
Other languages
English (en)
French (fr)
Other versions
EP1561035A1 (de
Inventor
Thomas Lettner
Walter Haberler
Erich Hirscher
Andreas Putzer
Friedrich Schiller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1561035A1 publication Critical patent/EP1561035A1/de
Application granted granted Critical
Publication of EP1561035B1 publication Critical patent/EP1561035B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/12Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C2/14Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/90Improving properties of machine parts
    • F04C2230/91Coating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/02Light metals
    • F05C2201/021Aluminium

Definitions

  • the invention is based on a device with a housing and with at least one rotating component arranged in the housing according to the preamble of claim 1.
  • This device is a gear pump for a fuel injection device of an internal combustion engine and has a housing in which a rotatably driven pair of gears is arranged.
  • the gears are mounted radially and axially in the housing.
  • the housing is made of light metal such as aluminum.
  • the housing has pivots on which the gears are radially mounted, and walls that form axial bearings for the gears. Due to the low hardness of the light metal of the housing, it comes during operation of the gear pump to a strong wear, so that it only reaches a short life.
  • the US 5,468,130 shows a scroll compressor.
  • a front housing is attached to a fixed aluminum aluminum scroll.
  • a rotating shaft is supported on the front housing with an eccentric shaft supported on the rotating shaft.
  • a balance weight and a bushing are mounted on the eccentric shaft.
  • a movable scroll spiral made of an aluminum alloy is mounted rotatably on the bushing with radial bearings.
  • a coating structure is applied on the movable scroll spiral.
  • An inner coating structure consists of a nickel-phosphorus alloy and an outer coating structure of a nickel-boron alloy. The outer coating structure is applied to the inner coating structure.
  • the scroll compressor As in air conditioning, known.
  • the scroll compressor includes a frame, a fixed and movable scroll spiral, and an aluminum alloy movable Oldham ring and crankshaft.
  • On the Oldham ring is a first coating based on a multiplexed zinc alloy with copper and nickel and then a nickel-phosphorus coating is applied.
  • the DE 39 20 184 A1 shows a vane compressor with a cylinder, which is formed by a cylinder block and front and rear side blocks which close opposite ends of the cylinder block, with a rotor which is rotatably disposed in the cylinder, wherein the rotor in an outer peripheral surface vane slots and corresponding having in the wing slots slidably received wings, wherein the
  • Cylinder block, the front and rear side blocks, the rotor and the blades are made of an aluminum-based alloy and at least one of the elements, such as cylinder block, front and rear side block, rotor and wing with an electrolessly applied, Ni-containing composite coating layer having dispersed therein polytetrafluoroethylene (PTFE) is coated.
  • PTFE polytetrafluoroethylene
  • JP S64 32087 A is a vane compressor with a cylinder, a cylinder block and front and rear side blocks and a rotor and wings known. On a sliding surface, a Ni-P plating is formed.
  • the device according to the invention with the features according to claim 1 has the advantage that by the coating of a nickel alloy lesser wear of the storage of at least one rotating
  • FIG. 1 a gear pump in an exploded view
  • FIG. 2 the gear pump in a longitudinal section along line II-II in FIG. 3
  • FIG. 3 the gear pump in a cross section along line III-III in FIG. 2
  • FIGS. 1 to 3 Device shown in the form of a gear pump is arranged for example in a delivery line, not shown, from a storage tank to a high-pressure fuel pump or a fuel injection pump of a fuel injection device of an internal combustion engine, for example a motor vehicle.
  • the internal combustion engine is a self-igniting internal combustion engine and the fuel conveyed by the gear pump is diesel fuel.
  • the gear pump has a multi-part housing, which has a housing part 10 and a cover part 12. Between the housing part 10 and the cover part 12, a pumping chamber 14 is formed, in which a pair of gears 16,18 meshing with each other at their outer periphery is arranged.
  • the housing part 10 has to form the pumping chamber 14 has two recesses 20,22, one of whose base in each case Journal pin 24,26 protrudes.
  • the bearing pins 24,26 are integrally formed with the housing part 10 and extend at least approximately parallel to each other.
  • the bearing pin 24,26 may be at least partially hollow to reduce the weight of the housing part 10.
  • the gear 16 has a bore 17, via which it is rotatably mounted on the bearing pin 24.
  • the gear 18 has a bore 19, via which it is rotatably mounted on the bearing pin 26.
  • the bearing pins 24,26 each have a rotation axis 25,27 for the gears 16,18.
  • the pumping chamber 14 is limited in the direction of the axes of rotation 25,27 of the gears 16,18 on the one hand by walls 21,23 of the recesses 20,22 of the housing part 10 and on the other hand by a wall 13 of the cover part 12.
  • the cover part 12 is fixedly connected to the housing part 10, for example by means of several screws.
  • the housing part 10 and the lid part 12 are made of light metal, preferably aluminum or an aluminum alloy.
  • the gears 16,18 are preferably made of steel, such as sintered steel.
  • the gear pump has a drive shaft 30 which is rotatably mounted in the housing part 10.
  • the drive shaft 30 is at least approximately coaxial with the bearing pin 24, wherein the housing part 10 has a bore which continues in the bearing pin 24 and through which the end of the drive shaft 30 passes. Between the bore and the drive shaft 30, a shaft seal is installed to seal the housing part 10.
  • the drive shaft 30 is coupled to the gear 16, for example via a arranged between the front end of the journal 24 and the cover member 12 coupling member 36.
  • the gear 16 is rotationally driven during operation of the gear pump via the drive shaft 30 and transmits this rotational movement via a spur gear teeth on the also provided with a spur gear, meshing with the gear 16 on its outer circumference gear 18.
  • the gears 16,18 share while the pumping chamber 14 by their tooth engagement in two sub-areas, of which a first portion of a suction chamber 40 and a second portion of a pressure chamber 42 form.
  • the suction chamber 40 is connected to the pressure chamber 42 via one each between the tooth grooves on the peripheral surfaces of the gears 16,18 and the upper and lower peripheral wall of the pumping chamber 14 formed conveying channel.
  • the suction chamber 40 and the pressure chamber 42 each have a connection opening in the wall of the housing part 10 or the cover part 12, via which the suction chamber 40 with a suction line, not shown from the storage tank and the pressure chamber 42 via a likewise not shown delivery line to the suction chamber of the high-pressure fuel pump or the fuel injection pump is connected.
  • the connection opening in the suction space 40 forms an inlet opening 46 and the connection opening in the pressure space 42 forms an outlet opening 48.
  • the bearing pins 24,26 of the housing part 10 form a radial bearing for the gears 16,18 and are provided to increase the wear resistance of the bearing of the gears 16,18 with a coating 50 which consists of a nickel alloy.
  • the coating 50 consists in particular of a nickel-phosphorus alloy.
  • the nickel-phosphorus alloy contains at least 94%, preferably about 95% nickel and at most 6%, preferably about 5% phosphorus.
  • the walls 21,23 of the housing part 10 and the wall 13 of the cover part 12 form axial bearings for the gears 16,18.
  • the walls 21, 23 of the housing part 10 and the wall 13 of the cover part 12 are provided with the coating 50 in order to increase the wear resistance of the mounting.
  • the coating 50 has an at least substantially planar microstructure on its surface.
  • a particularly high wear resistance of the coating 50 is also at Lubrication only by the pumped fuel and mixed friction, which means in sliding friction between the gears 16,18 and the coating 50 achieved.
  • the surface of the coating 50 thus differs substantially from the surface of known coatings of a nickel alloy having an uneven microstructure, a so-called Coliflower structure, with bud-like, irregularly distributed and spherical elevations. Deviating from this, due to its planar microstructure, the coating 50 has a uniform layer thickness distribution and no or only a few imperfections on the surface.
  • the reproducibility of a microhardness measurement of the coating 50 is thereby improved since the microhardness measurement can be carried out at arbitrary locations of the coating and gives correct results.
  • the coating 50 has a uniform glossy surface coloration without detectable heavy metal addition. Due to the lack of heavy metal addition, the gear pump is recyclable according to existing legislation.
  • the housing part 10 and the cover part 12 are pretreated in a special way prior to the application of the coating 50, and the coating 50 is applied to the abovementioned areas of the housing part 10 and the cover part 12 by a chemical coating method. Subsequently, the pretreatment and the application of the coating 50 will be explained in more detail.
  • the housing part 10 and the lid part 12 are cleaned or pretreated, which takes place in an acid bath, for example a Premalbad, at room temperature for a period of about 20 to 60 seconds for the activation of the surface. Subsequently, the parts 10, 12 are rinsed with ultrapure water in one or more rinsing operations.
  • the parts are placed in a persulfate solution at room temperature for a period of about 45 to 90 seconds in which the surface of the parts is at least partially oxidized to form alumina. This is followed by at least one rinse with ultrapure water.
  • the pieces are then placed in a zincate solution at 20 ° to 28 ° C for a period of about 20 to 60 seconds.
  • zincate solution zinc is in ionic form, from which elemental zinc is deposited on the surface of the parts.
  • the parts are again placed in a persulfate solution at room temperature for a period of about 45 to 90 seconds, as indicated above, in which the surface of the parts is at least partially oxidized.
  • At least one flushing process with ultrapure water takes place again.
  • the parts are again placed in a zincate solution at 20 ° to 28 ° C for a period of about 20 to 60 seconds, so that elemental zinc is deposited on the surface of the parts.
  • at least one rinsing process with ultrapure water is then placed in a solution at 28 ° to 36 ° C for a period of about 3 to 10 minutes, in which nickel is contained in ionic form and orthophosphite, from which the nickel-phosphorus alloy on the surface of the parts separates.
  • the parts are placed in a solution containing nickel in ionic form and orthophosphite, from which the nickel-phosphorous alloy deposits on the surface of the parts, at about 80 ° to 90 ° C, for a period until the required layer thickness is achieved.
  • at least one rinse with ultrapure water are applied to the parts.
  • the parts are dried in a first stage at a temperature of about 55 ° to 65 ° C for a period of about 1.5 to 3 minutes by pulse blowing and in a second stage at a temperature of about 55 ° to 65 ° C for a period of about 6 to 15 minutes by means of hot air.
  • the parts are heated to a temperature of about 200 ° to 220 ° C for a period of about 1 to 2 hours, whereby the hardness of the coating 50 is increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)

Description

    Stand der Technik
  • Die Erfindung geht aus von einer Vorrichtung mit einem Gehäuse und mit wenigstens einem im Gehäuse angeordneten rotierenden Bauteil nach der Gattung des Anspruchs 1.
  • Eine solche Vorrichtung ist durch die DE 196 25 564 A1 bekannt. Diese Vorrichtung ist eine Zahnradförderpumpe für eine Kraftstoffeinspritzeinrichtung einer Brennkraftmaschine und weist ein Gehäuse auf, in dem ein rotierend angetriebenes Paar von Zahnrädern angeordnet ist. Die Zahnräder sind im Gehäuse radial und axial gelagert. Das Gehäuse besteht aus Leichtmetall wie beispielsweise Aluminium. Das Gehäuse weist Zapfen auf, auf denen die Zahnräder radial gelagert sind, und Wände, die axiale Lager für die Zahnräder bilden. Aufgrund der geringen Härte des Leichtmetalls des Gehäuses kommt es während des Betriebs der Zahnradförderpumpe zu einem starken Verschleiß, so dass diese nur eine geringe Lebensdauer erreicht.
  • Aus der DE 88 11 252 U1 ist eine Außenzahnradpumpe, die zwei nach Art eines Zahnradgetriebes ineinander greifende Zahnräder in einer Radkammer aufweist, bekannt. Dabei ist die Radkammer in einem Gehäuse vorgesehen und von einem Flanschdeckel verschlossen und bei dem Gehäuse und dem Flanschdeckel sind Lagerbuchsen zur Aufnahme je eines Lagerzapfens der Zahnräder vorgesehen, wobei auf dem
  • Zahnradgetriebe, den Lagerzapfen sowie den Laufflächen der Lagerbuchsen gleichartige Verschleißschutzschichten vorgesehen sind.
  • Die US 5 468 130 zeigt einen Scrollverdichter. Ein Vordergehäuse ist an einer festen Scrollspriale aus einer Aluminiumlegierung befestigt. Eine rotierende Welle ist an dem Vordergehäuse gelagert mit einer exzentrischen Welle, die an der rotierenden Welle gelagert ist. Ein Ausgleichsgewicht und eine Buchse sind an der exzentrischen Welle gelagert. Eine bewegliche Scrollspirale aus einer Aluminiumlegierung ist rotierend an der Buchse mit Radiallagern gelagert. Auf die bewegliche Scrollspirale ist eine Beschichtungsstruktur aufgebracht. Eine innere Beschichtungsstruktur besteht aus einer Nickel-Phosphor-Legierung und eine äußere Beschichtungsstruktur aus einer Nickel-Bor-Legierung. Die äußere Beschichtungsstruktur ist auf die innere Beschichtungstruktur aufgebracht.
  • Aus der US 5 382 144 ist ein Scrollkompressor als Verdichter für einen Kältekreis, z. B. in Klimaanlagen, bekannt. Der Scrollkompressor umfasst einen Rahmen, eine feste und bewegliche Scrollspirale sowie einen beweglichen Oldham-Ring aus einer Aluminiumlegierung und eine Kurbelwelle. Auf dem Oldham-Ring ist eine erste Beschichtung auf Basis einer multiplexen Zinklegierung mit Kupfer und Nickel und hierauf ist eine Nickel-Phosphor-Beschichtung aufgebracht.
  • Die DE 39 20 184 A1 zeigt einen Flügelzellenverdichter mit einem Zylinder, der durch einen Zylinderblock und vordere und hintere Seitenblöcke, die einander gegenüberliegende Enden des Zylinderblockes verschließen, gebildet wird, mit einem Rotor, der drehbar in dem Zylinder angeordnet ist, wobei der Rotor in einer äußeren Umfangsfläche Flügelschlitze und entsprechend in den Flügelschlitzen gleitend aufgenommene Flügel aufweist, wobei der
  • Zylinderblock, die vorderen und hinteren Seitenblöcke, der Rotor und die Flügel aus einer Legierung auf Aluminiumbasis bestehen und wenigstens eines der Elemente, wie Zylinderblock, vorderer und hinterer Seitenblock, Rotor und Flügel mit einer stromlos aufgebrachten, Ni enthaltenden zusammengesetzten Überzugsschicht mit darin dispergierten Polytetrafluorethylen (PTFE) überzogen ist.
  • Aus der JP S64 32087 A ist ein Flügelzellenverdichter mit einem Zylinder, einem Zylinderblock und vorderen und hinteren Seitenblöcken sowie mit einem Rotor und Flügel bekannt. An einer Gleitfläche ist eine Ni-P-Plattierung ausgebildet.
  • Vorteile der Erfindung
  • Die erfindungsgemäße Vorrichtung mit den Merkmalen gemäß Anspruch 1 hat demgegenüber den Vorteil, daß durch die Beschichtung aus einer Nickellegierung ein geringerer Verschleiß der Lagerung des wenigstens einen rotierenden
  • Bauteils und damit eine längere Lebensdauer der Vorrichtung erreicht ist.
  • In den abhängigen Ansprüchen sind vorteilhafte Ausgestaltungen und Weiterbildungen der erfindungsgemäßen Vorrichtung angegeben. Durch die Ausbildung gemäß Anspruch 3 wird der Verschleiß der Lagerung weiter verringert.
  • Zeichnung
  • Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen Figur 1 eine Zahnradförderpumpe in einer Explosionsdarstellung, Figur 2 die Zahnradförderpumpe in einem Längsschnitt entlang Linie II-II in Figur 3 und Figur 3 die Zahnradförderpumpe in einem Querschnitt entlang Linie III-III in Figur 2.
  • Beschreibung des Ausführungsbeispiels
  • Eine in den Figuren 1 bis 3 dargestellte Vorrichtung in Form einer Zahnradförderpumpe ist beispielsweise in einer nicht dargestellten Förderleitung von einem Vorratstank zu einer Kraftstoffhochdruckpumpe oder einer Kraftstoffeinspritzpumpe einer Kraftstoffeinspritzeinrichtung einer Brennkraftmaschine beispielsweise eines Kraftfahrzeugs angeordnet. Die Brennkraftmaschine ist eine selbstzündende Brennkraftmaschine und der Kraftstoff, der durch die Zahnradförderpumpe gefördert wird, ist Dieselkraftstoff. Die Zahnradförderpumpe weist ein mehrteiliges Gehäuse auf, das ein Gehäuseteil 10 und ein Deckelteil 12 aufweist. Zwischen dem Gehäuseteil 10 und dem Deckelteil 12 ist eine Pumpkammer 14 gebildet, in der ein Paar an ihrem Außenumfang miteinander kämmender Zahnräder 16,18 angeordnet ist. Das Gehäuseteil 10 weist zur Bildung der Pumpkammer 14 zwei Vertiefungen 20,22 auf, von deren Grund jeweils ein Lagerzapfen 24,26 absteht. Die Lagerzapfen 24,26 sind einstückig mit dem Gehäuseteil 10 ausgebildet und verlaufen zumindest annähernd parallel zueinander. Die Lagerzapfen 24,26 können zur Gewichtsreduzierung des Gehäuseteils 10 zumindest teilweise hohl ausgebildet sein. Das Zahnrad 16 weist eine Bohrung 17 auf, über die es auf dem Lagerzapfen 24 drehbar gelagert ist. Das Zahnrad 18 weist eine Bohrung 19 auf, über die es auf dem Lagerzapfen 26 drehbar gelagert ist. Die Lagerzapfen 24,26 bestimmten jeweils eine Drehachse 25,27 für die Zahnräder 16,18. Die Pumpkammer 14 ist in Richtung der Drehachsen 25,27 der Zahnräder 16,18 einerseits durch Wände 21,23 der Vertiefungen 20,22 des Gehäuseteils 10 und andererseits durch eine Wand 13 des Deckelteils 12 begrenzt. Das Deckelteil 12 ist mit dem Gehäuseteil 10 fest verbunden, beispielsweise mittels mehrerer Schrauben. Das Gehäuseteil 10 und das Deckelteil 12 bestehen aus Leichtmetall, vorzugsweise Aluminium oder einer Aluminiumlegierung. Die Zahnräder 16,18 bestehen vorzugsweise aus Stahl, beispielsweise aus Sinterstahl.
  • Die Zahnradförderpumpe weist eine Antriebswelle 30 auf, die im Gehäuseteil 10 drehbar gelagert ist. Die Antriebswelle 30 ist zumindest annähernd koaxial zum Lagerzapfen 24 angeordnet, wobei das Gehäuseteil 10 eine Bohrung aufweist, die sich im Lagerzapfen 24 fortsetzt und durch die das Ende der Antriebswelle 30 hindurchtritt. Zwischen der Bohrung und der Antriebswelle 30 ist ein Wellendichtring eingebaut, um das Gehäuseteil 10 abzudichten. Die Antriebswelle 30 ist mit dem Zahnrad 16 gekoppelt, beispielsweise über ein zwischen dem Stirnende des Lagerzapfens 24 und dem Deckelteil 12 angeordnetes Koppelglied 36. Das Zahnrad 16 wird beim Betrieb der Zahnradförderpumpe über die Antriebswelle 30 rotierend angetrieben und überträgt diese Drehbewegung über eine Stirnverzahnung auf das ebenfalls mit einer Stirnverzahnung versehene, mit dem Zahnrad 16 an seinem Außenumfang kämmende Zahnrad 18. Die Zahnräder 16,18 teilen dabei die Pumpkammer 14 durch ihren Zahneingriff in zwei Teilbereiche, von denen ein erster Teilbereich einen Ansaugraum 40 und ein zweiter Teilbereich einen Druckraum 42 bilden. Der Ansaugraum 40 ist dabei über je einen zwischen den Zahnnuten an den Umfangsflächen der Zahnräder 16,18 und der oberen und unteren Umfangswand der Pumpkammer 14 gebildeten Förderkanal 44 mit dem Druckraum 42 verbunden. Der Ansaugraum 40 und der Druckraum 42 weisen jeweils eine Anschlussöffnung in der Wand des Gehäuseteils 10 oder des Deckelteils 12 auf, über die der Ansaugraum 40 mit einer nicht dargestellten Ansaugleitung vom Vorratstank und der Druckraum 42 über eine ebenfalls nicht dargestellte Förderleitung mit dem Saugraum des Kraftstoffhochdruckpumpe oder der Kraftstoffeinspritzpumpe verbunden ist. Die Anschlussöffnung in den Ansaugraum 40 bildet eine Einlassöffnung 46 und die Anschlussöffnung in den Druckraum 42 bildet eine Auslassöffnung 48.
  • Die Lagerzapfen 24,26 des Gehäuseteils 10 bilden eine radiale Lagerung für die Zahnräder 16,18 und sind zur Erhöhung der Verschleißbeständigkeit der Lagerung der Zahnräder 16,18 mit einer Beschichtung 50 versehen, die aus einer Nickellegierung besteht. Die Beschichtung 50 besteht insbesondere aus einer Nickel-Phosphor-Legierung. Die Nickel-Phosphor-Legierung enthält zu wenigstens 94%, vorzugsweise zu etwa 95% Nickel und zu maximal 6%, vorzugsweise etwa 5% Phosphor. Die Wände 21,23 des Gehäuseteils 10 sowie die Wand 13 des Deckelteils 12 bilden axiale Lagerstellen für die Zahnräder 16,18. Alternativ oder zusätzlich zu den Lagerzapfen 24,26 sind die Wände 21,23 des Gehäuseteils 10 und die Wand 13 des Deckelteils 12 zur Erhöhung der Verschleißbeständigkeit der Lagerung mit der Beschichtung 50 versehen. Die Beschichtung 50 weist an ihrer Oberfläche eine zumindest im wesentlichen ebene Mikrostruktur auf. Hierdurch wird eine besonders hohe Verschleißbeständigkeit der Beschichtung 50 auch bei Schmierung nur durch den geförderten Kraftstoff und bei Mischreibung, das bedeutet bei Gleitreibung zwischen den Zahnrädern 16,18 und der Beschichtung 50 erreicht. Die Oberfläche der Beschichtung 50 unterscheidet sich damit wesentlich von der Oberfläche bekannter Beschichtungen aus eine Nickel-Legierung, die eine unebene Mikrostruktur, eine sogenannte Coliflower-Struktur, mit knospenartigen, unregelmäßig verteilten und kugelförmigen Erhebungen aufweist. Die Beschichtung 50 weist abweichend hiervon infolge ihrer ebenen Mikrostruktur eine gleichmäßige Schichtdickenverteilung und keine oder nur wenige Fehlstellen an der Oberfläche auf. Die Reproduzierbarkeit einer Mikrohärtemessung der Beschichtung 50 ist dadurch verbessert, da die Mikrohärtemessung an beliebigen Stellen der Beschichtung durchgeführt werden kann und korrekte Ergebnisse liefert. Die Beschichtung 50 weist eine gleichmäßige glänzende Oberflächenfärbung ohne nachweisbare Schwermetallzugabe auf. Aufgrund der fehlenden Schwermetallzugabe ist die Zahnradförderpumpe gemäß bestehender gesetzlicher Vorschriften recyclingfähig.
  • Das Gehäuseteil 10 und das Deckelteil 12 werden vor dem Aufbringen der Beschichtung 50 in spezieller Weise vorbehandelt und die Beschichtung 50 wird mit einem chemischen Beschichtungsverfahren auf die vorstehend angegebenen Bereiche des Gehäuseteils 10 und des Deckelteils 12 aufgebracht. Nachfolgend wird die Vorbehandlung und das Aufbringen der Beschichtung 50 näher erläutert. Zunächst werden das Gehäuseteil 10 und das Deckelteil 12 gereinigt oder vorbehandelt, was in einem Säurebad, beispielsweise einem Premalbad, bei Raumtemperatur für eine Dauer von etwa 20 bis 60 Sekunden erfolgt, für die Aktivierung der Oberfläche. Anschließend werden die Teile 10,12 in einem oder mehreren Spülvorgängen mit Reinstwasser gespült. Anschließend werden die Teile in eine Persulfatlösung bei Raumtemperatur für eine Dauer von etwa 45 bis 90 Sekunden gegeben, in der die Oberfläche der Teile zumindest teilweise oxidiert wird, so dass sich Aluminiumoxid bildet. Anschließend erfolgt wenigstens ein Spülvorgang mit Reinstwasser. Anschließend werden die Teile in eine Zinkatlösung bei 20° bis 28°C für eine Dauer von etwa 20 bis 60 Sekunden gegeben. In der Zinkatlösung liegt Zink in ionischer Form vor, aus der sich elementares Zink auf der Oberfläche der Teile abscheidet. Anschließend erfolgt wenigstens ein Spülvorgang mit Reinstwasser. Anschließend werden die Teile wieder wie vorstehend angegeben in eine Persulfatlösung bei Raumtemperatur für eine Dauer von etwa 45 bis 90 Sekunden gegeben, in der die Oberfläche der Teile zumindest teilweise oxidiert wird. Nachfolgend erfolgt wieder wenigstens ein Spülvorgang mit Reinstwasser. Anschließend werden die Teile nochmals in eine Zinkatlösung bei 20° bis 28°C für eine Dauer von etwa 20 bis 60 Sekunden gegeben, so dass sich elementares Zink auf der Oberfläche der Teile abscheidet. Nachfolgend erfolgt wenigstens ein Spülvorgang mit Reinstwasser. Das sich auf der Oberfläche der Teile ablagernde Zink bildet eine Verbindungsschicht für die nachfolgend aufgebrachte Nickel-Phosphor-Legierung. Die Teile werden hierbei in eine Lösung bei 28° bis 36°C für eine Dauer von etwa 3 bis 10 Minuten gegeben, in der Nickel in ionischer Form und Orthophosphit enthalten ist, aus der sich die Nickel-Phosphor-Legierung auf der Oberfläche der Teile abscheidet. Nachfolgend erfolgt wenigstens ein Spülvorgang mit Reinstwasser. Anschließend werden die Teile in eine Lösung gegeben, in der Nickel in ionischer Form und Orthophosphit enthalten ist, aus der sich die Nickel-Phosphor-Legierung auf der Oberfläche der Teile abscheidet, bei etwa 80° bis 90°C, für eine Dauer, bis die geforderte Schichtdicke erreicht wird. Nachfolgend erfolgt wenigstens ein Spülgang mit Reinstwasser. Nachfolgend erfolgt eine Trocknung der Teile in einer ersten Stufe bei einer Temperatur von etwa 55° bis 65°C für eine Dauer von etwa 1,5 bis 3 Minuten durch Pulsblasen und in einer zweiten Stufe bei einer Temperatur von etwa 55° bis 65°C für eine Dauer von etwa 6 bis 15 Minuten mittels Heißluft. Abschließend erfolgt noch eine Erwärmung der Teile auf eine Temperatur von etwa 200° bis 220°C für eine Dauer von etwa 1 bis 2 Stunden, wodurch die Härte der Beschichtung 50 erhöht wird.

Claims (7)

  1. Vorrichtung mit einem Gehäuse (10,12) und mit wenigstens einem im Gehäuse (10,12) angeordneten rotierenden Bauteil (16,18), das radial und/oder axial im Gehäuse (10,12) gelagert ist, wobei das Gehäuse (10,12) aus Leichtmetall, insbesondere aus Aluminium oder einer Aluminium-Legierung besteht, wobei wenigstens ein Teil (10,12) des Gehäuses zumindest teilweise die Lagerung des wenigstens einen Bauteils (16,18) bildet, dadurch gekennzeichnet, dass das wenigstens eine Gehäuseteil (10,12) zumindest im Bereich der Lagerung für das wenigstens eine Bauteil (16,18) mit einer Beschichtung (50) aus einer Nickel-Legierung versehen ist, die an ihrer Oberfläche eine zumindest im wesentlichen ebene Mikrostruktur aufweist.
  2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Beschichtung (50) aus einer Nickel-Phosphor-Legierung besteht.
  3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Beschichtung (50) durch Tempern härtegesteigert ist.
  4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Gehäuseteil (10) wenigstens einen Lagerzapfen (24,26) aufweist, auf dem das wenigstens eine Bauteil (16,18) radial gelagert ist und dass zumindest der wenigstens eine Zapfen (24,26) an seiner Oberfläche mit der Beschichtung (50) versehen ist.
  5. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Gehäuseteil (10,12) eine zumindest annähernd senkrecht zur Drehachse (25,27) des wenigstens einen Bauteils (16,18) angeordnete Wand (21,23;15) aufweist, die ein axiales Lager des wenigstens einen Bauteils (16,18) bildet und dass zumindest die Wand (21,23;15) des Gehäuseteils (10,12) mit der Beschichtung (50) versehen ist.
  6. Vorrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass diese eine Pumpe ist und das wenigstens eine Bauteil (16,18) ein Förderelement der Pumpe ist.
  7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass die Pumpe eine Zahnradpumpe ist und das wenigstens eine Förderelement (16,18) ein Zahnrad ist.
EP03809695.4A 2002-10-30 2003-07-04 Vorrichtung mit einem im gehäuse rotierenden bauteil Expired - Lifetime EP1561035B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10250554A DE10250554A1 (de) 2002-10-30 2002-10-30 Vorrichtung mit einem Gehäuse und mit wenigstens einem im Gehäuse angeordneten rotierenden Bauteil
DE10250554 2002-10-30
PCT/DE2003/002241 WO2004040139A1 (de) 2002-10-30 2003-07-04 Vorrichtung mit einem im gehäuse rotierenden bauteil

Publications (2)

Publication Number Publication Date
EP1561035A1 EP1561035A1 (de) 2005-08-10
EP1561035B1 true EP1561035B1 (de) 2016-11-02

Family

ID=32114963

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03809695.4A Expired - Lifetime EP1561035B1 (de) 2002-10-30 2003-07-04 Vorrichtung mit einem im gehäuse rotierenden bauteil

Country Status (5)

Country Link
US (1) US20060165544A1 (de)
EP (1) EP1561035B1 (de)
JP (1) JP2006504892A (de)
DE (1) DE10250554A1 (de)
WO (1) WO2004040139A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006025182A1 (de) * 2006-05-30 2007-12-06 Trw Automotive Gmbh Zahnradpumpe, insbesondere für eine Servolenkung
DE102007044499A1 (de) * 2007-09-18 2009-03-19 Robert Bosch Gmbh Kraftstoffpumpe, insbesondere für ein Kraftstoffsystem einer Kolben-Brennkraftmaschine
DE102008042066A1 (de) 2008-09-12 2010-03-18 Robert Bosch Gmbh Zahnradpumpe
KR101205379B1 (ko) 2010-04-28 2012-11-28 삼성중공업 주식회사 정량 펌프
CN102808765B (zh) * 2011-06-01 2017-04-05 德昌电机(深圳)有限公司 流体泵送装置
DE102017125096B4 (de) 2017-10-26 2022-05-19 Hanon Systems Verfahren zum Herstellen eines Scrollverdichters und mit dem Verfahren hergestellter Scrollverdichter
US20200025195A1 (en) * 2018-07-17 2020-01-23 Hamilton Sundstrand Corporation Cavitation resistant gear driven fuel pump

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6432087A (en) * 1987-07-27 1989-02-02 Diesel Kiki Co Vane-type compressor
DE3920184A1 (de) * 1989-06-21 1991-01-10 Diesel Kiki Co Fluegelzellenverdichter mit reduziertem gewicht und ausgezeichnetem antifressverhalten und hohem verschleisswiderstand

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH350877A (fr) * 1957-09-11 1960-12-15 Turolla Marco Pompe à deux pignons
US3077840A (en) * 1960-08-02 1963-02-19 Plessey Co Ltd Rotary displacement pumps
GB1236935A (en) * 1967-09-02 1971-06-23 Plessey Co Ltd Improvements in or relating to gear pumps more particularly for use with hot hydrocarbon liquid fuels
DE1810314A1 (de) * 1968-11-22 1970-06-11 Bosch Gmbh Robert Zahnradpumpe oder -motor
US4266915A (en) * 1978-07-10 1981-05-12 Tyrone Hydraulics Inc. Gear pumps and motors
JPS62199982A (ja) * 1986-02-27 1987-09-03 Matsushita Refrig Co スクロ−ル型圧縮機
DE8811252U1 (de) 1988-09-06 1988-10-27 Kracht Pumpen- Und Motorenfabrik Gmbh & Co Kg, 5980 Werdohl Außenzahnradpumpe
JPH0392590A (ja) * 1989-09-05 1991-04-17 Toyota Autom Loom Works Ltd スクロール型圧縮機
JP3254457B2 (ja) * 1992-09-18 2002-02-04 株式会社日立製作所 無給油式スクリュー圧縮機のロータ形成方法およびそのロータを用いた無給油式スクリュー圧縮機
JP2682784B2 (ja) 1993-02-23 1997-11-26 大同メタル工業株式会社 スクロール型圧縮機のオルダムリング
JP3561929B2 (ja) 1993-08-23 2004-09-08 株式会社豊田自動織機 スクロール型圧縮機
DE19625564C2 (de) 1996-06-26 2000-06-08 Bosch Gmbh Robert Kraftstoff-Förderpumpe für eine Kraftstoff-Einspritzpumpe für Brennkraftmaschinen
US5993183A (en) * 1997-09-11 1999-11-30 Hale Fire Pump Co. Gear coatings for rotary gear pumps

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6432087A (en) * 1987-07-27 1989-02-02 Diesel Kiki Co Vane-type compressor
DE3920184A1 (de) * 1989-06-21 1991-01-10 Diesel Kiki Co Fluegelzellenverdichter mit reduziertem gewicht und ausgezeichnetem antifressverhalten und hohem verschleisswiderstand

Also Published As

Publication number Publication date
US20060165544A1 (en) 2006-07-27
EP1561035A1 (de) 2005-08-10
JP2006504892A (ja) 2006-02-09
WO2004040139A1 (de) 2004-05-13
DE10250554A1 (de) 2004-05-19

Similar Documents

Publication Publication Date Title
EP1781835B1 (de) Verschleissfeste beschichtung und verfahren zur herstellung derselben
DE4429911A1 (de) Beschichtungsaufbau für ein bewegliches Element eines Kompressors
EP1658433B1 (de) Hochdruckpumpe für eine kraftstoffeinspritzeinrichtung einer brennkraftmaschine
EP1561035B1 (de) Vorrichtung mit einem im gehäuse rotierenden bauteil
DE3522020A1 (de) Mehrteile steuerwelle fuer waermekraftmaschinen
DE102008001960A1 (de) Pumpe, insbesondere Kraftstoffhochdruckpumpe
DE3425954A1 (de) Drehkolbenpumpe
EP2655887A2 (de) Axialscheibe und zahnradpumpe mit axialscheibe
EP1245821A1 (de) Aggregat zum Fördern von Kraftstoff
DE2049452A1 (de) Ölpumpe, insbesondere fur Verbrennungs kraftmaschinen von Kraftfahrzeugen
EP1989448B1 (de) Ölpumpen- und vakuumpumpenmodul
DE19725853C2 (de) Heizgerät in Viskofluidbauweise
WO2006069868A1 (de) Flüssigkeitspumpe
DE102008050401A1 (de) Lageranordnung
WO2004109110A1 (de) Zahnradpumpe
DE102014210361A1 (de) Nockenwellenversteller
DE10012892B4 (de) Ölpumpenantrieb für eine Brennkraftmaschine
DE102019002949B4 (de) Innenzahnradpumpe
EP1002945B1 (de) Stirnrad-Nockenwellenantrieb für eine Brennkraftmaschine
DE102021105814A1 (de) Gerotorpumpe mit verbesserter Lagerung
DE2556176A1 (de) Kolben fuer kreiskolben-brennkraftmaschinen
DE19924834A1 (de) Hydrostatische Axialkolbenmaschine
DE19628785C2 (de) Rotationskolben-Motor
DE10037541A1 (de) Druckmittelfördereinrichtung
EP1906020B1 (de) Flüssigkeitspumpe mit regelbarem Fördervolumen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050530

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20100715

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160714

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50315571

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50315571

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170803

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20170720

Year of fee payment: 15

Ref country code: IT

Payment date: 20170721

Year of fee payment: 15

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180704

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190924

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50315571

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210202