EP1507071B2 - Abgasschalldämpfer - Google Patents

Abgasschalldämpfer Download PDF

Info

Publication number
EP1507071B2
EP1507071B2 EP04019054.8A EP04019054A EP1507071B2 EP 1507071 B2 EP1507071 B2 EP 1507071B2 EP 04019054 A EP04019054 A EP 04019054A EP 1507071 B2 EP1507071 B2 EP 1507071B2
Authority
EP
European Patent Office
Prior art keywords
housing
micro
perforated
exhaust silencer
silencer according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP04019054.8A
Other languages
English (en)
French (fr)
Other versions
EP1507071B1 (de
EP1507071A1 (de
EP1507071B8 (de
Inventor
Udo Fechtner
Helmut Venghaus
Klaus Spindler
Bernhard Bachner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Faurecia Emissions Control Technologies Germany GmbH
Original Assignee
Faurecia Emissions Control Technologies Germany GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=33566035&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1507071(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from DE2003137110 external-priority patent/DE10337110A1/de
Priority claimed from DE2003137111 external-priority patent/DE10337111A1/de
Application filed by Faurecia Emissions Control Technologies Germany GmbH filed Critical Faurecia Emissions Control Technologies Germany GmbH
Priority to EP14190957.2A priority Critical patent/EP2851526B1/de
Publication of EP1507071A1 publication Critical patent/EP1507071A1/de
Publication of EP1507071B1 publication Critical patent/EP1507071B1/de
Application granted granted Critical
Publication of EP1507071B8 publication Critical patent/EP1507071B8/de
Publication of EP1507071B2 publication Critical patent/EP1507071B2/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/161Methods or devices for protecting against, or for damping, noise or other acoustic waves in general in systems with fluid flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N1/00Silencing apparatus characterised by method of silencing
    • F01N1/003Silencing apparatus characterised by method of silencing by using dead chambers communicating with gas flow passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N1/00Silencing apparatus characterised by method of silencing
    • F01N1/08Silencing apparatus characterised by method of silencing by reducing exhaust energy by throttling or whirling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N1/00Silencing apparatus characterised by method of silencing
    • F01N1/08Silencing apparatus characterised by method of silencing by reducing exhaust energy by throttling or whirling
    • F01N1/082Silencing apparatus characterised by method of silencing by reducing exhaust energy by throttling or whirling the gases passing through porous members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N1/00Silencing apparatus characterised by method of silencing
    • F01N1/08Silencing apparatus characterised by method of silencing by reducing exhaust energy by throttling or whirling
    • F01N1/083Silencing apparatus characterised by method of silencing by reducing exhaust energy by throttling or whirling using transversal baffles defining a tortuous path for the gases or successively throttling gas flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2470/00Structure or shape of gas passages, pipes or tubes
    • F01N2470/02Tubes being perforated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2470/00Structure or shape of gas passages, pipes or tubes
    • F01N2470/02Tubes being perforated
    • F01N2470/04Tubes being perforated characterised by shape, disposition or dimensions of apertures

Definitions

  • the present invention relates to an exhaust silencer for the internal combustion engine of a motor vehicle having a gas inlet housing and an exhaust gas outlet having a gas-tight housing and at least one fgas choirtenschalldämpfenden function chamber, also called damping chamber, and inside the housing at least one Mikroperfor isten facing, the pulsating exhaust flow exposed wall, preferably made of flat material ,
  • absorption silencers in this case comprise at least one absorption chamber filled with a fibrous sound-absorbing material, the absorption chamber generally being coupled to the exhaust-gas flow via a perforated wall, in particular a perforated pipe.
  • the DE 297 10 491 U1 describes a silencer with an inner tube formed by a microperforated layer, but which is provided exclusively for use in a ventilation duct.
  • the present invention is directed to an exhaust muffler of the type specified, which, although it has the advantages of conventional absorption muffler in particular with regard to the damping characteristic, manages without fibrous Schallschluckstoff.
  • the exhaust muffler according to the invention has at least one two functional chambers defining intermediate bottom, which comprises microperforated sheet. It is particularly advantageous if the respective intermediate floor, with a total thickness of 10 to 20 mm comprises a corrugated or folded microperforated carrier film and two on both sides applied to them microperforated coating films. In this way, limited individual chambers are defined in the space between the two coating films by the corrugated or folded microperforated carrier film, which are coupled by the micro-perforations of the three films to the two adjacent functional chambers.
  • the silencer according to the invention is free from any fibrous sound-absorbing material.
  • the present invention takes advantage of the finding that microperforated material in the case of using a suitable material under the conditions prevailing in exhaust systems of internal combustion engines, which are characterized in particular by high flow velocities, strong pulsations and high temperatures for effective sound attenuation is suitable.
  • a micro-perforated flat material in the context of the present invention such a perforated sheet material is considered, the pore size is a maximum of 2.0 mm 2 .
  • Preferred pore sizes are between 0.15 mm 2 and 1.5 mm 2 .
  • the degree of perforation was found to be from 1 to 3% and the equivalent hole diameter from 0.4 to 1.5 mm.
  • micro-perforated flat material used in the context of the present invention apart from the material, essentially correspond to the microperforated flat materials known as such in connection with other applications, in particular so-called microperforated films.
  • the micro-perforated flat material used in the context of the present invention consists of a metallic material, aluminum in particular, namely AL99.5H24, and heat-resistant stainless steel, namely 1.4301 or 1.4828, being considered.
  • a microperforated flat material with a wall thickness between 0.4 mm and 0.8 mm is particularly preferably used.
  • the microperforated sheet namely such in the form of a microperforated film, to form a multi-layer microperforated wall rests flat against a stiff, perforated support wall and if necessary firmly connected to this.
  • a Swissbodein is provided with micro perforations.
  • At least one exhaust-carrying pipe of the exhaust silencer according to the invention has, at least in sections, a microperforated wall.
  • the tube may comprise a corrugated or folded microperforated carrier film and two microperforated coating films applied to both sides.
  • the tube with the at least partially perforated wall passes through the housing.
  • the tube should be microperforated essentially over the entire, passing through the housing track and thus sound-absorbing effect over the entire length. At least 90% of the length of the pipe section in the housing is microperforated.
  • the housing extends in accordance with the preferred embodiment substantially concentric with the tube, which has proven to be particularly advantageous.
  • the ratio of the outer diameter of the housing to the outer diameter of the tube, which passes through the housing, is in the range of 2.5 to 4 including, in this context, preferably pipe wall thicknesses between 0.4 to 1.5 mm are provided.
  • At least one radial intermediate space extending between the inside of the housing and the lateral surface of the tube should be arranged in the housing, the ratio of the distance of the end faces of the housing from the distance of the bottom from the end face of the housing closer to 1.8 to 2.2 or from 2.8 to 3.2.
  • the housing at least two spaced-apart radial, are provided between the inner sides of the housing and the lateral surface of the tube extending shelves.
  • the ratio of the distance of the end faces of the housing to the distance of the first intermediate bottom of the nearer end face is in the range of 1.8 to 2.2, and the ratio of the distance of the end faces of the housing to the distance of the second intermediate bottom of the closer him Front side is in the range of 2.8 to 3.2.
  • the ratio of the perforated surface to the total area of the microperforated section Very important for the sound attenuation is the so-called perforation, the ratio of the perforated surface to the total area of the microperforated section.
  • the pipe and / or the intermediate floor should have a degree of perforation of 1 to 3%. This ratio has proved to be advantageous.
  • the preferred wall thickness of the tube or shelves in this context should preferably be in the range of 0.4 to 1.5 mm and the equivalent hole diameter between 0.4 and 1.5 mm.
  • At least one functional chamber of the exhaust muffler is lined at least in regions with microperforated flat material.
  • the microperforated flat material can be arranged in particular with a greater or lesser distance from the gas-tight housing wall.
  • At least one functional chamber has a filling of microperforated flat material.
  • the inventive muffler in the frequency range below about 100 Hz compared to conventional absorption mufflers of the same dimensions improved damping behavior.
  • a particularly favorable damping behavior results when the filling of microperforated flat material comprises a plurality of mutually substantially parallel, spaced-apart layers. The distance between the two individual layers of the filling is on the order of between 12 times and 80 times, ideally between 15 times and 40 times the thickness of the microperforated sheet.
  • such a filling, depending on the installation conditions, of a continuous strip of microperforated sheet wound or folded in this case, particularly low production costs arise.
  • the tubes of microperforated sheet material can in particular surround an inner, exhaust-carrying, perforated tube.
  • the damping behavior of the exhaust muffler according to the invention can also be favorably influenced if the microperforated flat material has pores of different shapes and / or different sizes; this contributes to a particularly broadband damping, which makes the exhaust muffler according to the present invention particularly superior to such absorption mufflers according to the prior art.
  • Suitable pore forms include circles, segments, ovals, trapezoids, slits and the like. With regard to the pore sizes, widths of between 0.05 mm and 0.15 mm and lengths of between 0.5 mm and 1.5 mm have proven to be particularly favorable for non-round pores.
  • the in Fig. 1 illustrated muffler comprises a tube 1 and a cylindrical housing 2, which in turn consists of two end floors 3 and 4 and a jacket 5.
  • the concentric to the housing 2 tube 1 comprises an exhaust gas inlet nozzle 6, an exhaust outlet nozzle 7 and, arranged between the two end floors 3 and 4, a perforated, preferably microperforated middle section 8.
  • the exhaust pipe 1 is coupled to the functional chamber 10, which surrounds the central portion 8 of the exhaust gas pipe 1 and is limited by this, the two end floors 3 and 4 and the jacket 5 of the housing.
  • an insert 11 is arranged in the chamber 10. This consists of two concentric spaced-apart tubes 12 and 13 of a microperforated film.
  • the tube 1 in the area within the housing and the tubes 12, 13 may, for. B. be formed from a wound or folded strip of microperforated sheet.
  • the in Fig. 2 illustrated exhaust muffler comprises a housing 14, an exhaust gas inlet pipe 15 and an exhaust gas outlet pipe 16.
  • the interior of the housing 14 is divided by three intermediate floors 17, 18 and 19 in four chambers 20, 21, 22 and 23.
  • the exhaust gas inlet pipe 15 opens into the chamber 23 designed as a Helmholtz chamber. It is coupled to the chamber 23 via a perforation 24 or a microperforated section.
  • the exhaust gas outlet pipe 16 opens into the chamber 21; via the perforation 25 or the microperforated section, it is further acoustically coupled to the chamber 22.
  • the intermediate floors 17 and 18 are, as illustrated in the detail view, each assembled from three microperforated films by applying microperforated coating films 27 and 28 on both sides to a zigzag-folded, microperforated carrier film 26.
  • a unit comprising a zigzag-folded or corrugated carrier film and a coating film applied thereto can be, moreover, as can be deduced from the above explanations, also for lining the housing and / or for application to pipes, for.
  • FIG. 3 an exhaust muffler in the form of a concentric tube resonator.
  • the tube 1 is microperforated over almost the entire distance in the interior of the housing 2 on the entire outer circumference.
  • the microperforated portion of the tube 1 in the interior of the housing 2 is at least 90% of the distance 1 of the end faces 31, 32 of the housing 2.
  • Inside the housing 2 are two spaced apart, radially extending and between the inside of the housing 2 and the outside the lateral surface of the tube 1 extending shelves 33, 34 are provided. These shelves 33, 34 are fastened on the one hand to the housing 2 and on the other hand to the tube 1. If necessary, the tube 1 has no microperforations in the region of the connection of the intermediate floors 33, 34.
  • the ratio of the distance 1 of the two end faces 31, 32 to the distance 1 1 of the intermediate bottom 33 of the near end face 31 should be in the range of 1.8 to 2.2.
  • the distance 1 of the end faces 31, 32 in relation to the distance 1 2 of the intermediate wall 34 to the end face 32 should be in the range of 2.8 to 3.2.
  • the ratio of the outer diameter d a of the housing 2 to the outer diameter d i of the tube 1 in the region inside the housing 2 should be in the range of 2.5 to 4.
  • the wall thicknesses of the pipe and the shelves should be in the range of 0.4 to 1.5 mm, the degree of perforation in the range of 1 to 3%. These conditions are, as I said, particularly advantageous.
  • the equivalent hole diameter is in the range of 0.4 to 1.5 mm.
  • the microperforations usually do not give circular but slit or sickle-shaped holes in the wall. The cross-sectional area of these non-circular holes is converted to an equivalent hole diameter.
  • the intermediate floors 33, 34 may be made of microperforated sheet material, similar to FIG. 2 but you do not have to. Even intermediate floors without throughflow already achieve relatively good sound absorption values.
  • the tube 1 in the area inside the housing consists e.g. made of wound flat material, whereby a multiple winding is possible.
  • the microperforated part of the tube 1 may be welded to a non-perforated tube section which protrudes from the housing 2.
  • the shelves 33, 34 may e.g. be attached by crimping or other plastic deformation of the tube 1 and / or the housing 2.
  • a welding or radial clamping connection is of course conceivable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Exhaust Silencers (AREA)

Description

  • Die vorliegende Erfindung betrifft einen Abgasschalldämpfer für den Verbrennungsmotor eines Kraftfahrzeugs mit einem einen Abgaseintritt und einen Abgasaustritt aufweisenden, gasdichten Gehäuse und mindestens einefgasdurchströmtenschalldämpfenden Funktionskammer, auch Dämpfungsraum genannt, sowie im Inneren des Gehäuses mindestens einer Mikroperforierungen anfweisenden, dem pulsierenden Abgasstrom ausgesetzten wand, vorzugsweise aus Flachmaterial.
  • Derartige Abgasschalldämpfer sind in unterschiedlichen Ausführungen allgemein bekannt. In Abhängigkeit von dem zur Schalldämpfung eingesetzten Prinzip wird dabei zwischen Absorptionsschalldämpfern einerseits und Reflexionsschalldämpfern andererseits unterschieden, wobei häufig zur Erreichung einer breitbandigen Dämpfung beide Funktionsprinzipien in getrennten Kammern innerhalb eines einzigen Abgasschalldämpfers vereinigt sind. Herkömmliche Absorptionsschalldämpfer umfassen dabei mindestens eine mit einem faserförmigen Schallschluckstoff gefüllte Absorptionskammer, wobei die Absorptionskammer im allgemeinen über eine gelochte Wand, insbesondere ein gelochtes Rohr an den Abgasstrom angekoppelt ist.
  • Aus der WO 02/089110 A1 ist ein Abgasschalldämpfer bekannt, bei dem mehrere über gelochte Rohre an den Abgasstrom angekoppelte Hohlkammern mit vorgefertigten Paketen aus mikroperforierten Folien gefüllt sind.
  • Die DE 297 10 491 U1 beschreibt einen Schalldämpfer mit einem durch eine mikroperforierte Schicht gebildeten Innenrohr, der jedoch ausschließlich für den Einsatz in einer Lüftungsleitung vorgesehen ist.
  • Die vorliegende Erfindung ist gerichtet auf einen Abgasschalldämpfer der eingangs angegebenen Art, der, obwohl er die Vorteile herkömmlicher Absorptionsschalldämpfer insbesondere im Hinblick auf die Dämpfungscharakteristik aufweist, ohne faserförmigen Schallschluckstoff auskommt.
  • Gelöst wird diese Aufgabe gemäß der vorliegenden Erfindung bei einem Abgasschalldämpfer der eingangs genannten Art dadurch, daß der erfindungsgemäße Abgasschalldämpfer mindestens einen zwei Funktionskammern definierenden Zwischenboden auf weist, welcher mikroperforiertes Flachmaterial umfaßt. Besonders günstig ist dabei, wenn der betreffende Zwischenboden, bei einer gesamten Dicke von 10 bis 20 mm eine gewellte oder gefaltete mikroperforierte Trägerfolie und zwei beiderseits auf diese aufgebrachte mikroperforierte Beschichtungsfolien umfaßt. Auf diese Weise werden in dem Raum zwischen den beiden Beschichtungsfolien durch die gewellte oder gefaltete mikroperforierte Trägerfolie begrenzte einzelne Kammern definiert, welche durch die Mikroperforationen der drei Folien an die beiden benachbarten Funktionskammern angekoppelt sind. Der erfindungsgemäße Schalldämpfer ist frei von jeglichem faserförmigem Schallschluckstoff. Die vorliegende Erfindung macht sich die Erkenntnis zunutze, daß mikroperforiertes Material im Falle der Verwendung, eines geeigneten Werkstoffs unter den in Abgasanlagen von Verbrennungsmotoren herrschenden Bedingungen, die insbesondere gekennzeichnet sind durch hohe Strömungsgeschwindigkeiten, starke Pulsationen und hohe Temperaturen zur wirksamen Schalldämpfung geeignet ist. Als mikroperforiertes Flachmaterial im Sinne der vorliegenden Erfindung wird dabei ein solches perforiertes Flachmaterial angesehen, dessen Porengröße maximal 2,0 mm2 beträgt. Bevorzugte Porengrößen liegen zwischen 0,15 mm2 und 1,5 mm2. Der Perforationsgrad (Verhältnis gelochte Fläche/Gesamtfläche) sollte, wie sich ergeben hat, von 1 bis 3 % und der äquivalente Lochdurchmesser von 0,4 bis 1,5 mm betragen. Damit kann das im Rahmen der vorliegenden Erfindung eingesetzte mikroperforierte Flachmaterial, abgesehen von dem Werkstoff, im wesentlichen den als solches im Zusammenhang mit anderen Anwendungen bekannten mikroperforierten Flachmaterialien, insbesondere sogenannten mikroperforierten Folien, entsprechen. Allerdings besteht das im Rahmen der vorliegenden Erfindung eingesetzte mikroperforierte Flachmaterial aus einem metallischen Werkstoff, wobei insbesondere Aluminium, namentlich AL99.5H24, und hitzebeständiger Edelstahl, namentlich 1.4301 oder 1.4828, in Betracht kommen.
  • Besonders bevorzugt kommt im Rahmen der vorliegenden Erfindung als mikroperforiertes Flachmaterial eine mikroperforierte Folie mit einer Wandstärke zwischen 0,4 mm und 0,8 mm zum Einsatz. Je nach der Ausdehnung des mikroperforierten Flachmaterials und den Druckverhältnissen, denen dieses ausgesetzt ist, ist es dabei besonders zweckmäßig, wenn das mikroperforierte Flachmaterial, namentlich solches in Form einer mikroperforierten Folie, zur Bildung einer mehrlagig aufgebauten mikroperforierten Wand flächig an einer steifen, gelochten Stützwand anliegt und ggf. fest mit dieser verbunden ist.
  • Im Hinblick auf die spezifische Anordnung des mikroperforierten Flachmaterials innerhalb des Abgasschalldämpfers haben sich mehrere Möglichkeiten als besonders günstig herausgestellt, die innerhalb eines Abgasschalldämpfers auch, miteinander kombiniert werden können. Gemäß der ersten Weiterbildung ist ein zwischenbodein mit Mikroperforierungen vorgesehen.
  • Gemäß einer anderen bevorzugten Weiterbildung hat mindestens ein abgasführendes Rohr des erfindungsgemäßen Abgasschalldämpfers wenigstens abschnittsweise eine mikroperforierte Wand. Namentlich kann dabei, was sich wiederum als besonders günstig herausgestellt hat, das Rohr eine gewellte oder gefaltete mikroperforierte Trägerfolie und zwei beiderseits auf diese aufgebrachte mikroperforierte Beschichtungsfolien umfassen.
  • Gemäß der bevorzugten Ausführungsform läuft das Rohr mit der wenigstens abschnittsweisen perforierten Wand durch das Gehäuse hindurch.
  • Dabei sollte das Rohr im Wesentlichen über die gesamte, durch das Gehäuse hindurchlaufende Strecke mikroperforiert sein und damit auch über die gesamte Länge schalldämpfend wirken. Zumindest 90% der Länge des sich im Gehäuse befindlichen Rohrabschnitts ist mikroperforiert.
  • Das Gehäuse verläuft gemäß der bevorzugten Ausführungsform im wesentlichen konzentrisch zum Rohr, was sich als besonders vorteilhaft erwiesen hat.
  • Das Verhältnis des Außendurchmessers des Gehäuses zum Außendurchmesser des Rohres, welches durch das Gehäuse hindurchläuft, liegt im Bereich von 2,5 bis einschließlich 4, wobei in diesem Zusammenhang bevorzugt Rohrwandstärken zwischen 0,4 bis 1,5 mm vorgesehen sind.
  • Im Gehäuse sollte darüber hinaus wenigstens ein radialer, sich zwischen der Innenseite des Gehäuses und der Mantelfläche des Rohres erstreckender Zwischenboden angeordnet sein, wobei das Verhältnis des Abstandes der Stirnseiten des Gehäuses zu dem Abstand des Bodens von der ihm näheren Stirnseite des Gehäuses von 1,8 bis 2,2 oder von 2,8 bis 3,2 beträgt.
  • In der bevorzugten Ausführungsform ist jedoch vorgesehen, daß im Gehäuse wenigstens zwei voneinander beabstandete radiale, sich zwischen den Innenseiten des Gehäuses und der Mantelfläche des Rohres erstreckende Zwischenböden vorgesehen sind. Das Verhältnis des Abstandes der Stirnseiten des Gehäuses zu dem Abstand des ersten Zwischenbodens von der ihm näheren Stirnseite liegt im Bereich von 1,8 bis 2,2, und das Verhältnis des Abstandes der Stirnseiten des Gehäuses zu dem Abstand des zweiten Zwischenbodens von der ihm näheren Stirnseite liegt im Bereich von 2,8 bis 3,2. Diese Verhältnisse haben sich bei einem sogenannten konzentrischen Rohrresonator als besonders schalldämpfend und vorteilhaft erwiesen. Die Zwischenböden können mit oder ohne Mikroperforationen versehen sein.
  • Sehr wichtig für die Schalldämpfung ist der sogenannte Perforationsgrad, das Verhältnis der gelochten Fläche zur Gesamtfläche des mikroperforierten Abschnittes. Das Rohr und/oder der Zwischenboden sollten einen Perforationsgrad von 1 bis 3 % aufweisen. Auch dieses Verhältnis hat sich als vorteilhaft erwiesen.
  • Die bevorzugte Wandstärke des Rohres oder der Zwischenböden sollte in diesem Zusammenhang vorzugsweise im Bereich von 0,4 bis 1,5 mm und der äquivalente Lochdurchmesser zwischen 0,4 und 1,5 mm liegen.
  • Gemäß einer weiteren bevorzugten Weiterbildung der Erfindung ist mindestens eine Funktionskammer des Abgasschalldämpfers zumindest bereichsweise mit mikroperforiertem Flachmaterial ausgekleidet. Das mikroperforierte Flachmaterial kann dabei insbesondere mit einem mehr oder weniger großen Abstand zu der gasdichten Gehäusewand angeordnet sein.
  • Gemäß einer wiederum anderen bevorzugten Weiterbildung der Erfindung weist mindestens eine Funktionskammer eine Füllung aus mikroperforiertem Flachmaterial auf. Namentlich in diesem Falle läßt sich mit dem erfindungsgemäßen Schalldämpfer in dem Frequenzbereich unter etwa 100 Hz ein gegenüber herkömmlichen Absorptionsschalldämpfern gleicher Abmessungen verbessertes Dampfungsverhalten erreichen. Ein besonders günstiges Dämpfungsverhalten ergibt sich dabei, wenn die Füllung aus mikroperforiertem Flachmaterial mehrere zueinander im wesentlichen parallele, mit Abstand zueinander angeordnete Schichten umfaßt. Dabei beträgt der Abstand zwischen den beiden einzelnen Schichten der Füllung in der Größenordnung zwischen dem 12fachen und dem 80fachen, idealerweise zwischen dem 15fachen und dem 40fachen Wert der Dicke des mikroperforierten Flachmaterials.
  • Gemäß einem weiteren Aspekt der vorliegenden Erfindung kann eine solche Füllung, je nach den Einbauverhältnissen, aus einem durchgehenden Streifen aus mikroperforiertem Flachmaterial gewickelt oder aber gefaltet sein. In diesem Fall ergeben sich besonders geringe Herstellungskosten. Indessen ist auch denkbar, eine solche mehrere zueinander im wesentlichen parallele Schichten umfassende Füllung aus mehreren im wesentlichen zueinander konzentrischen, einen beliebigen Querschnitt aufweisenden Rohren aus mikroperforiertem Flachmaterial herzustellen, wobei die Rohre aus mikroperforiertem Flachmaterial insbesondere ein inneres, abgasführendes, gelochtes Rohr umgeben können.
  • Das Dämpfungsverhalten des erfindungsgemäßen Abgasschalldämpfers läßt sich weiterhin günstig beeinflussen, wenn das mikroperforierte Flachmaterial Poren unterschiedlicher Formen und/oder unterschiedlicher Größen aufweist; dies trägt zu einer besonders breitbandigen Dämpfung bei, die die Abgasschalldämpfer nach der vorliegenden Erfindung gegenüber solchen Absorptionsschalldämpfern nach dem Stand der Technik besonders überlegen macht.
  • Geeignete Porenformen umfassen dabei Kreise, Kreisabschnitte, Ovale, Trapeze, Schlitze und dergleichen. Im Hinblick auf die Porengrößen haben sich bei unrunden Poren Breiten zwischen 0,05 mm und 0,15 mm und Längen zwischen 0,5 mm und 1,5 mm als besonders günstig erwiesen.
  • Im folgenden wird die vorliegende Erfindung anhand dreier in der Zeichnung veranschaulichter bevorzugter Ausführungsbeispiele näher erläutert. Dabei zeigt
    • Fig. 1 einen Längsschnitt durch einen Prinzip-Abgasschalldämpfer, der zu Erläuterungszwecken dargestellt ist,
    • Fig. 2 einen Längsschnitt durch einen Vier-Kammer-Abgasschalldämpfer nach der vorliegenden Erfindung und
    • Fig. 3 einen Längsschnitt durch einen erfindungsgemäßen Abgasschalldämpfer in Form eines konzentrischen Rohrresonators.
  • Der in Fig. 1 veranschaulichte Schalldämpfer umfaßt ein Rohr 1 und ein zylindrisches Gehäuse 2, welches seinerseits aus zwei Endböden 3 und 4 sowie einem Mantel 5 besteht. Das zum Gehäuse 2 konzentrische Rohr 1 umfaßt einen Abgaseintrittsstutzen 6, einen Abgasaustrittsstutzen 7 sowie, zwischen den beiden Endböden 3 und 4 angeordnet, einen gelochten, vorzugsweise mikroperforierten Mittelabschnitt 8. Über die Lochung 9 ist das abgasführende Rohr 1 an die Funktionskammer 10 angekoppelt, welche den Mittelabschnitt 8 des abgasführenden Rohres 1 umgibt und durch dieses, die beiden Endböden 3 und 4 sowie den Mantel 5 des Gehäuses begrenzt wird.
  • In der Kammer 10 ist ein Einsatz 11 angeordnet. Dieser besteht aus zwei konzentrisch mit Abstand zueinander angeordneten Rohren 12 und 13 aus einer mikroperforierten Folie. Das Rohr 1 im Bereich innerhalb des Gehäuses und die Rohre 12, 13 können z. B. aus einem gewickelten oder gefalteten Streifen aus mikroperforiertem Flachmaterial gebildet sein.
  • Der in Fig. 2 veranschaulichte Abgasschalldämpfer umfaßt ein Gehäuse 14, ein Abgaseintrittsrohr 15 und ein Abgasaustrittsrohr 16. Das Innere des Gehäuses 14 ist durch drei Zwischenböden 17, 18 und 19 in vier Kammern 20, 21, 22 und 23 unterteilt. Das Abgaseintrittsrohr 15 mündet in die als Helmholtz-Kammer ausgeführte Kammer 23. Es ist über eine Lochung 24 oder einen mikroperforierten Abschnitt des weiteren an die Kammer 23 angekoppelt. Das Abgasaustrittsrohr 16 mündet in der Kammer 21; über die Lochung 25 oder den mikroperforierten Abschnitt ist es des weiteren an die Kammer 22 akustisch angekoppelt.
  • Die Zwischenböden 17 und 18 sind, wie in der Detailansicht veranschaulicht, jeweils aus drei mikroperforierten Folien zusammengefügt, indem beiderseits auf eine zickzackförmig gefaltete, mikroperforierte Trägerfolie 26 mikroperforierte Beschichtungsfolien 27 und 28 aufgebracht sind.
  • Während bei der veranschaulichten Ausführung durch eine gleichmäßige Gestaltung der Trägerfolie 26 übereinstimmend dimensionierte Kammern 29 innerhalb der Zwischenböden 17 und 18 entstehen, ergeben sich bei einer ungleichförmigen Fältung der Trägerfolie 26 Kammern 29 mit unterschiedlichem Volumen, was unter bestimmten Umständen günstig sein kann. Auch kann der in Fig. 2 veranschaulichte Abgasschalldämpfer beispielsweise dergestalt modifiziert werden, daß die Zwischenböden weitere mikroperforierte Folien umfassen, beispielsweise eine weitere gefaltete und eine weitere ebene Trägerfolie.
  • Eine Einheit umfassend eine zickzackförmig gefaltete oder aber gewellte Trägerfolie und eine hierauf aufgebrachte Beschichtungsfolie läßt sich im übrigen, wie sich aus den vorstehenden Erläuterungen ableiten läßt, auch zur Auskleidung des Gehäuses und/oder zur Aufbringung auf Rohre, z. B. die Rohre 1, 12, 13, 15, 16, und/oder gasundurchlässige Zwischenböden einsetzen.
  • In Figur 3 ist ein Abgasschalldämpfer in Form eines konzentrischen Rohrresonators dargestellt. Durch das zylindrische Gehäuse 2 läuft ein konzentrisch hierzu angeordnetes Rohr 1. Das Rohr 1 ist über fast die gesamte Strecke im Inneren des Gehäuses 2 auf dem gesamten Außenumfang mikroperforiert. Der mikroperforierte Abschnitt des Rohres 1 im Inneren des Gehäuses 2 beträgt wenigstens 90 % des Abstandes 1 der Stirnseiten 31, 32 des Gehäuses 2. Im Inneren des Gehäuses 2 sind zwei voneinander beabstandete, radial verlaufende und sich zwischen der Innenseite des Gehäuses 2 und der Außenseite der Mantelfläche des Rohres 1 erstreckende Zwischenböden 33, 34 vorgesehen. Diese Zwischenböden 33, 34 sind einerseits am Gehäuse 2 und andererseits am Rohr 1 befestigt. Das Rohr 1 hat gegebenenfalls im Bereich der Anbindung der Zwischenböden 33, 34 keine Mikroperforationen.
  • Wie sich heraus gestellt hat, gibt es bestimmte Verhältnisse der Abstände der Zwischenböden von den ihnen nahen Stirnseiten 31, 32, die für ein besonders gutes Schalldämpfungsverhalten sorgen. Das Verhältnis des Abstandes 1 der beiden Stirnseiten 31, 32 zum Abstand 11 des Zwischenbodens 33 von der ihm nahen Stirnseite 31 sollte im Bereich von 1,8 bis 2,2 liegen.
  • Der Abstand 1 der Stirnseiten 31, 32 im Verhältnis zum Abstand 12 von der Zwischenwand 34 zur Stirnseite 32 sollte im Bereich von 2,8 bis 3,2 liegen.
  • Das Verhältnis des Außendurchmessers da des Gehäuses 2 zum Außendurchmesser di des Rohres 1 im Bereich innerhalb des Gehäuses 2 sollte im Bereich von 2,5 bis 4 liegen.
  • Die Wandstärken des Rohres und der Zwischenböden sollten im Bereich von 0,4 bis 1,5 mm liegen, der Perforationsgrad im Bereich von 1 bis 3 %. Diese Verhältnisse sind, wie gesagt, besonders vorteilhaft.
  • Der äquivalente Lochdurchmesser liegt im Bereich von 0,4 bis 1,5 mm. Die Mikroperforationen ergeben üblicherweise keine kreisrunden, sondern schlitz- oder sichelförmige Löcher in der Wand. Die Querschnittsfläche dieser vom Kreis abweichenden Löcher wird auf einen äquivalenten Lochdurchmesser umgerechnet.
  • Die Zwischenböden 33, 34 können aus mikroperforiertem Flachmaterial sein, ähnlich wie in Figur 2 gezeigt, sie müssen es jedoch nicht. Auch Zwischenböden ohne Durchströmöffnungen erreichen schon relativ gute Schallabsorptionswerte.
  • Das Rohr 1 im Bereich innerhalb des Gehäuses besteht z.B. aus gewickeltem Flachmaterial, wobei auch eine Mehrfachwicklung möglich ist. Der mikroperforierte Teil des Rohres 1 kann an einen nichtperforierten Rohrabschnitt, der aus dem Gehäuse 2 herausragt, angeschweißt sein.
  • Die Zwischenböden 33, 34 können z.B. durch Crimpen oder eine andere plastische Umformung am Rohr 1 und/oder dem Gehäuse 2 befestigt sein. Auch eine Schweiß- oder radiale Klemmverbindung ist natürlich denkbar.

Claims (17)

  1. Abgasschalldämpfer für den Verbrennungsmotor eines Kraftfahrzeugs, umfassend ein einen Abgaseintritt und einen Abgasaustritt aufweisendes, gasdichtes Gehäuse (2.14) und mindestens eine gasdurchströmte schalldämpfende Funktionskammer (10; 20, 21, 22 23) und eine im Inneren des Gehäuses (2; 14) mindestens eine Mikroperforierungen aufweisende, dem pulsierenden Abgasstrom ausgesetzte Wand,
    dadurch gekennzeichnet,
    daß ein zwei Funktionskammern (20, 21, 22) definierender, mikroperforiertes Flachmaterial umfassender Zwischenboden (17,18) vorgesehen ist, dessen Porengröße maximal 2,0 mm2 beträgt
  2. Abgasschalldämpfer nach Anspruch 1,
    dadurch gekennzeichnet,
    daß er eine mehrlagig aufgebaute mikroperforierte Wand aufweist, die eine steife gelochte Stützwand und mindestens ein an dieser flächig anliegendes mikro-perforiertes Flachmaterial in Form einer mikroperforierten Folle umfaßt
  3. Abgasschalldämpfer nach Anspruch 1 oder Anspruch 2,
    dadurch gekennzeichnet,
    daß der Zwischenboden einegewellte odergefaltete mikroperforierte Trägerfolle (26) und zwei beiderseits auf diese aufgebrachte mikroperforterte Beschichtungsfollen (27,28) umfaßt
  4. Abgasschalldämpfer nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    daß mindestens ein gasführendes Rohr wenigstens abschnittsweise eine mikroperforierte Wand hat
  5. Abgasschalldämpfer nach Anspruch 4,
    dadurch gekennzeichnet,
    daß das Rohr wenigstens abschnittsweise aus einer gewellten oder gefalteten mikroperforierten Trägerfolie und zwei beiderseits auf diese aufgebrachte mikroperforierte Beschichtungsfolien besteht
  6. Abgasschalldämpfer nach Anspruch 4 oder 5,
    dadurch gekennzeichnet,
    daß das Rohr (1) durch das Gehäuse (2) hindurchläuft.
  7. Abgasschalldämpfer nach Anspruch 6,
    dadurch gekennzeichnet,
    daß das Rohr (1) im Wesentlichen über fast die gesamte, durch das Gehäuse (2) hindurchiaufende Strecke mikroperforiert ist.
  8. Abgasschalldämpfer nach Anspruch 6 oder 7,
    dadurch gekennzeichnet,
    daß das Gehäuse (2) im Wesentlichen konzentrisch zum Rohr (1) verläuft.
  9. Abgasschalldämpfer nach Anspruch 8,
    dadurch gekennzeichnet,
    daß das Verhältnis des Außendurchmessers (da) des Gehäuses (2) zum Außendurchmesser (di) des Rohres (1), das durch das Gehäuse (2) hindurchläuft, im Bereich von 2,5 bis 4 liegt
  10. Abgasschalldämpfer nach einem der Ansprüche 6 bis 9,
    dadurch gekennzeichnet,
    daß im Gehäuse (2) wenigstens ein radialer, sich zwischen der Innenseite des Gehäuses (2) und der Mantelfläche des Rohres (1) erstreckender Zwischenboden (33, 34) angeordnet ist, wobei das Verhältnis des Abstandes (I) der Stirnseiten (31, 32) des Gehäuses (2) zum Abstand (I1, I2) des Zwischenbodens (33, 34) von der ihm nahen Stirnseite (31, 32) im Bereich von 1,8 bis 2,2 oder im Bereich von 2,8 bis 3,2 liegt.
  11. Abgasschalldämpfer nach Anspruch 10,
    dadurch gekennzeichnet,
    daß im Gehäuse (2) wenigstens zwei voneinander beabstandete radiale, sich zwischen der Innenseite des Gehäuses (2) und der Mantelfläche des Rohres (1) erstreckende Zwischenböden (33, 34) angeordnet sind, wobei das Verhältnis des Abstandes (I) der Stirnseiten (31, 32) des Gehäuses (2) zu dem Abstand (I1) eines Zwischenbodens (33) zu seiner ihm nahen Stirnselte (31) im Bereich von 1,8 bis 2,2 und das Verhältnis des Abstandes (I) der Stirnseiten (31, 32) des Gehäuses (2) zum Abstand (I2) des weiteren Zwischenbodens (34) von der ihm nahen Sürnseite (32) im Bereich von 2.5 bis 3,2 liegt.
  12. Abgasschalldämpfer nach einem der Ansprüche 4 bis 11,
    dadurch gekennzeichnet,
    daß das Rohr (1) und/oder der Zwischenboden (33, 34) einen Perforationsgrad (Verhältnis gelochte Fläche/Gesamtfläche) im Bereich von 1 bis 3 % aufweist.
  13. Abgasschalldämpfer nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    daß mindestens eine Funktionskammer (10) zumindest bereichsweise mit mikroperforiertem Flachmaterial ausgekleidet ist oder eine Füllung (11) aus mikroperforiertem Flachmaterial aufweist
  14. Abgasschalldämpfer nach Anspruch 13,
    dadurch gekonnzeichnet,
    daß die Füllung (11) aus mikroperforiertem Flachmaterial mehrere zueinander im wesentlichen parallele Schichten umfaßt.
  15. Abgasschalldämpfer nach Anspruch 14,
    dadurch gekennzeichnet,
    daß der Abstand zwischen den einzelnen Schichten zwischen dem 12fachen und dem 80fechen, vorzugsweise dem 15 bis 40fachen Wert der Dicke des mikroperforierten Flachmaterials beträgt.
  16. Abgasschalldämpfer nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    daß die Wand durch einen gewickelten oder gefalteten Streifen aus mikropedadertem Flachmaterial gebildet ist.
  17. Abgasschalldämpfer nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
    daß mehrere im wesentlichen zueinander konzentrische Rohre (12, 13) aus mikroperforiertem Flachmaterial vorgesehen sind.
EP04019054.8A 2003-08-11 2004-08-11 Abgasschalldämpfer Active EP1507071B2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14190957.2A EP2851526B1 (de) 2003-08-11 2004-08-11 Abgasschalldämpfer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE2003137110 DE10337110A1 (de) 2003-08-11 2003-08-11 Abgasschalldämpfer
DE2003137111 DE10337111A1 (de) 2003-08-11 2003-08-11 Schalldämpfungsvorrichtung für pulsierendes Heißgas
DE10337110 2003-08-11
DE10337111 2003-08-11

Related Child Applications (4)

Application Number Title Priority Date Filing Date
EP14190957.2A Division EP2851526B1 (de) 2003-08-11 2004-08-11 Abgasschalldämpfer
EP14190957.2A Division-Into EP2851526B1 (de) 2003-08-11 2004-08-11 Abgasschalldämpfer
EP08000648A Division EP1953354A1 (de) 2003-08-11 2004-08-11 Abgasschalldämpfer
EP08000648A Division-Into EP1953354A1 (de) 2003-08-11 2004-08-11 Abgasschalldämpfer

Publications (4)

Publication Number Publication Date
EP1507071A1 EP1507071A1 (de) 2005-02-16
EP1507071B1 EP1507071B1 (de) 2016-07-13
EP1507071B8 EP1507071B8 (de) 2016-09-21
EP1507071B2 true EP1507071B2 (de) 2019-10-16

Family

ID=33566035

Family Applications (2)

Application Number Title Priority Date Filing Date
EP04019054.8A Active EP1507071B2 (de) 2003-08-11 2004-08-11 Abgasschalldämpfer
EP14190957.2A Not-in-force EP2851526B1 (de) 2003-08-11 2004-08-11 Abgasschalldämpfer

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP14190957.2A Not-in-force EP2851526B1 (de) 2003-08-11 2004-08-11 Abgasschalldämpfer

Country Status (1)

Country Link
EP (2) EP1507071B2 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005054397C5 (de) * 2005-11-15 2010-02-11 Westa-Holding Gmbh & Co. Kg Rohrschalldämpfer mit Mikroöffnungen
DE102006020155A1 (de) * 2005-12-15 2007-06-21 Friedrich Boysen Gmbh & Co. Kg Abgasanlage für Brennkraftmaschinen
DE102010061994A1 (de) 2010-11-25 2012-05-31 Gardner Denver Deutschland Gmbh Gebläse-Anordnung
WO2014126548A1 (en) * 2013-02-12 2014-08-21 Faurecia Emissions Control Technologies Vehicle exhaust system with resonance damping
EP3192068A1 (de) * 2014-09-09 2017-07-19 3M Innovative Properties Company Akustische vorrichtung
CN106368863A (zh) * 2015-07-23 2017-02-01 曼胡默尔有限责任公司 消音器以及包括该消音器的进气***
US11402123B2 (en) * 2017-06-28 2022-08-02 3M Innovative Properties Company Microperforated conduit
CN110847980A (zh) * 2019-11-19 2020-02-28 上海钟音环保设备有限公司 一种管道多层微穿孔板***及其加工方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1229434A (en) 1916-04-14 1917-06-12 James Flockhart Silencer.
DE1031055B (de) 1955-09-06 1958-05-29 Eberspaecher J Behaelter mit Schallschluckstoffuellung und Fuehrungskanal fuer pulsierende Gasstroemung, insbesondere Schalldaempfer fuer Brennkraftmaschinen
US3113635A (en) 1959-03-31 1963-12-10 Bolt Beranek & Newman Apparatus for silencing vibrational energy
US3734234A (en) 1971-11-08 1973-05-22 Lockheed Aircraft Corp Sound absorption structure
US4132286A (en) 1976-08-31 1979-01-02 Nihon Radiator Co., Ltd. Muffler
IT7853327V0 (it) 1978-05-17 1978-05-17 Fiat Spa Silenziatore di scarico per trattori agricoli
US4267899A (en) * 1979-08-31 1981-05-19 Donaldson Company, Inc. Muffler assembly
US5477014A (en) 1989-07-28 1995-12-19 Uop Muffler device for internal combustion engines
CN2096010U (zh) 1991-08-07 1992-02-12 成都钢铁厂 锅炉排污微真空***
CN2108179U (zh) 1991-12-08 1992-06-24 天津市拖拉机配件厂 一种内燃机排气***
WO1994024382A1 (de) * 1993-04-20 1994-10-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Unterdecke
DE9400428U1 (de) 1994-01-14 1994-04-07 Heinrich Gillet Gmbh & Co Kg, 67480 Edenkoben Vorrichtung zur Reduzierung von Resonanzeffekten in Rohrleitungen
SE506188C2 (sv) 1996-01-25 1997-11-17 Dale Edward Knipstein Ljudabsorberande element samt förfarande för framställning av detta element samt användning av elementet
CA2267628C (en) 1996-09-30 2007-05-15 Silentor Notox A/S Gas flow silencer
CN2299155Y (zh) 1996-10-30 1998-12-02 李戈夫 分流式阻抗降压***
DE29710491U1 (de) * 1997-02-14 1998-03-12 Westa-Holding GmbH & Co. KG, 33334 Gütersloh Schalldämpfer
DE19730355C1 (de) 1997-07-15 1999-03-18 Fraunhofer Ges Forschung Schallabsorber in Lüftungskanälen
DE19750102A1 (de) 1997-11-12 1999-06-02 Stankiewicz Gmbh Gasdurchströmte Leitung mit Schallabsorptionswirkung
DE19802624A1 (de) 1998-01-24 1999-07-29 Eberspaecher J Gmbh & Co Abgasschalldämpfer für Verbrennungsmotoren
DE10022902A1 (de) 1999-08-11 2001-03-08 Hp Chem Pelzer Res & Dev Ltd Bauteil mit hoher absorptiver Wirkung über einem breiten Frequenzbereich
GB2383091A (en) 2000-08-18 2003-06-18 Jefferson Liu Engine silencer for controlling back pressure and gas leakage
SE523018C2 (sv) 2001-02-09 2004-03-23 Enklaven Ab Ljuddämpare och användning av sagda ljuddämpare i ett avgassystem för en förbränningsmotor
WO2002089110A1 (de) 2001-04-27 2002-11-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Schalldämpfer
DE20120470U1 (de) 2001-12-18 2003-04-30 Boysen Friedrich Gmbh Co Kg Schalldämpfungseinrichtung
DE10303947A1 (de) 2003-01-31 2004-08-19 J. Eberspächer GmbH & Co. KG Schalldämpfer für ein Heizgerät, insbesondere Fahrzeugheizgerät

Also Published As

Publication number Publication date
EP2851526A1 (de) 2015-03-25
EP1507071B1 (de) 2016-07-13
EP1507071A1 (de) 2005-02-16
EP2851526B1 (de) 2018-05-23
EP1507071B8 (de) 2016-09-21

Similar Documents

Publication Publication Date Title
EP3030779B1 (de) Geräuschdämpfer
EP1715189A1 (de) Schalldämpfer ausgebildet und bestimmt für einen Kompressor
DE2713120A1 (de) Schalldaempfer
EP0506686B1 (de) Abgasleitung mit wendelförmig angeströmtem katalysator-trägerkörper
DE102012014620A1 (de) Abgasführendes Bauteil einer Abgasanlage
EP3707701B1 (de) Vorrichtung zur absenkung von luft- und körperschall
EP1507071B2 (de) Abgasschalldämpfer
DE10060522A1 (de) Abgas-Schalldämpfer für ein brennstoffbetriebenes Heizgerät
DE9015414U1 (de) Schalldämmendes Luft- oder Gasführungselement
DE1292667B (de) Schalldaempfer fuer stroemende Gase
DE102016112333B4 (de) Turbolader
DE19951941C1 (de) Wabenkörper mit mehrlagigem Mantel
DE1299647B (de) Schalldaempfendes Gasleitrohr
EP1953354A1 (de) Abgasschalldämpfer
DE102007042869A1 (de) Vorrichtung zur Reduzierung von Geräuschemissionen
DE19953307A1 (de) Auspuff-Schalldämpfer
DE3509033C2 (de) Schalldämpfer
EP2567076B1 (de) Breitbandig dämpfende vorrichtung zur schalldämpfung bei industrieeinrichtungen, grossanlagen oder maschinen
DE3319529A1 (de) Auspuffanlage
DE6608356U (de) Abgasanlage mit schalldaempfer.
EP1375848B1 (de) Vorrichtung zur Reduzierung von Schallemissionen und Verfahren zur Herstellung einer solchen Vorrichtung
DE10337110A1 (de) Abgasschalldämpfer
DE2738601C2 (de) Schalldämpfer
EP0794324B1 (de) Kombinierter Reflexions-Absorptions-Abgas-Schalldämpfer in Mehrkammer-bauweise
DE1426198A1 (de) Schalldaempfer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

AKX Designation fees paid
REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

17P Request for examination filed

Effective date: 20051108

RBV Designated contracting states (corrected)

Designated state(s): DE ES FR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ARVINMERITOR EMISSIONS TECHNOLOGIES GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EMCON TECHNOLOGIES GERMANY (AUGSBURG) GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160126

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: FAURECIA EMISSIONS CONTROL TECHNOLOGIES, GERMANY G

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502004015253

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502004015253

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: SONTECH INTERNATIONAL AB

Effective date: 20170410

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: SONTECH INTERNATIONAL AB

Effective date: 20170410

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20191016

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): DE ES FR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 502004015253

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220720

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20220721

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004015253

Country of ref document: DE