EP1486666A1 - Hilfsvorrichtung zur Unterstützung des Startvorgangs - Google Patents

Hilfsvorrichtung zur Unterstützung des Startvorgangs Download PDF

Info

Publication number
EP1486666A1
EP1486666A1 EP03101684A EP03101684A EP1486666A1 EP 1486666 A1 EP1486666 A1 EP 1486666A1 EP 03101684 A EP03101684 A EP 03101684A EP 03101684 A EP03101684 A EP 03101684A EP 1486666 A1 EP1486666 A1 EP 1486666A1
Authority
EP
European Patent Office
Prior art keywords
crankshaft
internal combustion
combustion engine
auxiliary device
starter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03101684A
Other languages
English (en)
French (fr)
Inventor
Erik Surewaard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ford Global Technologies LLC
Original Assignee
Ford Global Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ford Global Technologies LLC filed Critical Ford Global Technologies LLC
Priority to EP03101684A priority Critical patent/EP1486666A1/de
Publication of EP1486666A1 publication Critical patent/EP1486666A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N5/00Starting apparatus having mechanical power storage
    • F02N5/04Starting apparatus having mechanical power storage of inertia type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N15/00Other power-operated starting apparatus; Component parts, details, or accessories, not provided for in, or of interest apart from groups F02N5/00 - F02N13/00
    • F02N15/02Gearing between starting-engines and started engines; Engagement or disengagement thereof
    • F02N15/022Gearing between starting-engines and started engines; Engagement or disengagement thereof the starter comprising an intermediate clutch
    • F02N15/023Gearing between starting-engines and started engines; Engagement or disengagement thereof the starter comprising an intermediate clutch of the overrunning type

Definitions

  • the invention relates to an auxiliary device to support the starting process an internal combustion engine, one equipped with such an auxiliary device Internal combustion engine, as well as a method to support starting a Internal combustion engine.
  • starters To start or start an internal combustion engine are usually active Auxiliary units are used which drive the crankshaft of the internal combustion engine, until it has reached a certain speed and by burning of fuel in the cylinders themselves can maintain their rotation. At the Electric starter motors (“starters”) are most widespread as auxiliary units.
  • ISG integrated starter generators
  • ISG integrated starter generators
  • a starter motor which converts electrical energy into rotational energy of the crankshaft
  • a generator which rotates the crankshaft into electrical Energy can be converted, operated.
  • ISG integrated starter generators
  • At low ambient or Engine temperatures require starting an internal combustion engine due to the high friction especially high torques.
  • integrated starter generators must either be very powerful designed or supplemented by conventional starter motors. Both involve a great deal of design effort, which is not least reflected in corresponding system costs.
  • an object of the present invention was to provide means to provide support for the starting process of an internal combustion engine, which should relieve the auxiliary units used for starting.
  • the auxiliary device to support the starting process Internal combustion engine includes a memory in which rotational energy is temporarily stored can be. That is, in the form of mechanical rotation Kinetic energy present in the crankshaft is absorbed by the memory and temporarily stored and later (except for thermodynamically unavoidable Energy losses) can be returned to the crankshaft. In the simplest case, the energy can remain unchanged as rotational energy be cached. Alternatively, however, it can also be used for storage a conversion of the rotational energy into any other suitable form of energy take place (e.g. potential energy of elasticity, electrical energy, chemical energy etc.).
  • the auxiliary device further contains a coupling device, via which the said memory during a startup process Internal combustion engine selectively coupled to the crankshaft of the internal combustion engine can be. That is, the coupling device is designed to (at most) an active connection between the memory during the starting process and the crankshaft and manufacture the memory during normal operation to decouple from the internal combustion engine, so that this has no influence on their Movement takes.
  • auxiliary device With the auxiliary device, it is possible during the starting process of an internal combustion engine use existing drive energy as efficiently as possible by this by temporarily storing phases with a lower power requirement is shifted to phases with high power requirements. In particular the available energy can be shifted into the phases in this way which a compression process takes place in a cylinder of the internal combustion engine and therefore a particularly large crankshaft torque is required.
  • the auxiliary device it is thus possible to use the actual active one Starter motor for the internal combustion engine is smaller and therefore less expensive to be interpreted as its performance no longer depends on the maximum power requirement must be determined.
  • the memory contains a rotatably mounted one inert mass such as B. a flywheel.
  • the Rotational energy dissipated crankshaft directly as rotational energy of the inert Mass of the memory can be stored, the memory being a special one simple, fail-safe and inexpensive construction.
  • the use of inert masses has the advantage that the need-based removal and delivery of rotational energy can regulate itself. In particular rotational energy is transferred from the crankshaft to the memory when the Crankshaft is accelerated, and vice versa rotational energy from the storage the crankshaft is released when the rotation of the crankshaft due to a high resistance delayed.
  • the clutch device is preferably considered to be above a limit speed effective overrunning clutch trained.
  • Such an overrunning clutch connects two rotating parts such as B. Waves as long as the speed below the limit speed or the first part does not rotate faster than the second. Overtakes Speed of the first part but that of the second part and the limit speed, the active connection through the overrunning clutch ends.
  • such an overrunning clutch is used in such a way that this Memory from the crankshaft of the internal combustion engine disconnects when the speed the crankshaft, the limit speed of the overrunning clutch and the speed of the Memory output exceeds, the limit speed typically at approx. 200 rpm. This ensures that the auxiliary device during the starting process from the standstill of the crankshaft to the specified speed limit is effective.
  • the crankshaft speed is generally higher than the limit speed, so that the auxiliary device has no influence in this state.
  • the internal combustion engine therefore does not have to be slow in normal operation Carry masses or carry similar loads.
  • the invention further relates to an internal combustion engine with at least one starter motor for starting the internal combustion engine, which is by an auxiliary device of the type described above. That is, the auxiliary device a memory for the temporary storage of rotational energy and a Coupling device for the selective coupling of the accumulator to the crankshaft having.
  • the at least one starter motor can Internal combustion engine can be designed lighter and therefore cheaper, because the Auxiliary device for a needs-based distribution of the available Drive energy ensures.
  • the starter motor of the internal combustion engine can in particular be a Act integrated starter generator (ISG).
  • ISG Act integrated starter generator
  • Such starter generators are increasingly used, as they are particularly suitable for a fuel-saving, short-term shutdown and restart of an internal combustion engine are suitable.
  • Some vehicles have an internal combustion engine with two or more different ones Starter motors, which depend on the situation from a control unit used or activated.
  • the internal combustion engine with an integrated starter generator for normal operation and above with a conventional starter motor for starting under unfavorable Conditions.
  • the starter motors in its inactive State i.e., without external energy supply
  • this starter motor can be started without active energy supply the crankshaft be coupled and therefore run as a pure inert mass, whereby the inertia the desired temporary storage of rotational energy and their need-based delivery.
  • the auxiliary device coupled to the crankshaft via a reduction gear.
  • the reduction gear ensures that the speed of the crankshaft in a higher Speed of the auxiliary device is transformed, which is a corresponding increase the effective inertia of the auxiliary device.
  • the absolute The dimensions and the weight of the auxiliary device can be adjusted accordingly be kept smaller.
  • the invention further relates to a method for starting an internal combustion engine by actively driving the crankshaft of the internal combustion engine.
  • the procedure is characterized in that (only) rotational energy during the starting process the crankshaft temporarily stored in a passive system and this temporarily stored energy in phases of high power consumption during the starting process is returned to the crankshaft.
  • For the active drive of the Crankshaft which can be done in particular with the help of a starter motor, is sufficient therefore a power designed for normal operation, because of power peaks the temporal shift of rotational energy with the help of the passive system to be dealt with.
  • the method can in particular with an auxiliary device or carried out in an internal combustion engine of the type explained above become.
  • the removal takes place or delivery of rotational energy depending on the (speed or angular) acceleration of the crankshaft.
  • a positive Acceleration of the crankshaft Takes rotational energy from the crankshaft and temporarily stored in the passive system, while a negative one Acceleration (deceleration) of the crankshaft rotational energy in the passive System is cached, is returned to the crankshaft.
  • the passive system has the available rotational energy Distributed to the starting process as needed, as with a positive Acceleration of the crankshaft tends to provide excess rotational energy stands while decelerating the crankshaft to a high rotational resistance the internal combustion engine and insufficient performance of the starter motor can be closed. It makes sense in the latter Phase stored rotational energy delivered to the crankshaft.
  • the described removal and dispensing behavior is quasi automatically by a passive system, if this rotating masses to Has intermediate storage of rotational energy.
  • crankshaft up to the passive system is accelerated beyond a predetermined speed preferably decoupled from the crankshaft. If the above is exceeded Speed, the starting process of the internal combustion engine has advanced so far that this rotation itself due to the incipient combustion maintain and accelerate further. Therefore there is no need more to temporarily store rotational energy in the passive system.
  • FIG Starter system An internal combustion engine with a conventional one will be shown in FIG Starter system are explained.
  • the internal combustion engine 3 drives in a crankshaft 2 in the usual way.
  • At one end of the crankshaft is one Flywheel 4 is arranged, with which a gear wheel 5 is coupled to rotate is.
  • the proportions of flywheel 4 and gear wheel 5 are selected so that a reduction in the rotation of the gear wheel 5 to the crankshaft 2nd there takes place, the reduction ratio can be up to 60: 1.
  • a starter motor 9 (starter) is coupled to the gear wheel 5 via an overrunning clutch 6.
  • the starter motor 9 is supplied with electrical energy so that it drives the crankshaft 2 via the clutch 6, the gear wheel 5 and the flywheel 4. This causes the internal combustion engine 3 to rotate, so that the combustion processes in the cylinders can start. Due to the relatively high reduction ratio between gear wheel 5 and flywheel 4, the contribution of starter motor 9 to the effective inertial mass of the entire system hanging on crankshaft 2 is relatively high.
  • the inertia of the crankshaft 2 including the flywheel 4 is approximately 0.2 kg ⁇ m 2 when the starter motor 9 is uncoupled.
  • the total inertia on the crankshaft can reach the order of magnitude of 1.0 kg ⁇ m 2 .
  • the internal combustion engine 3 has reached a correspondingly high speed of typically 200 rpm at the end of the starting process, it rotates faster than the starter motor 9, so that the overrunning clutch 6 separates the starter motor 9 from the crankshaft 2.
  • the effective inertia on the crankshaft 2 then drops back to the value 0.2 kg ⁇ m 2 .
  • Starter motor essentially overcome three resistances: (a) first, the tightening torque, (b) second, the instantaneous friction of the overall system, and (c) third, the compression pressure in cylinders of the engine 3, the are currently in a compression phase.
  • the contributions (b) and (c) are a function of the crankshaft angle.
  • the most critical situation for the starter system is the first compression stroke in the internal combustion engine 3 since at this point, no oil films have built up between the moving parts have and thus the friction is high, and since none of the cylinders of the Internal combustion engine 3 works in an expansion stroke.
  • the inertia of the crankshaft system supports the passage of the first Compression.
  • the relatively large effective inertia of a conventional one Starter motor therefore affects in this phase of starting when running the first compression.
  • FIG. B shows z. B. schematically a so-called Integrated Starter Generator 1 (ISG), which - how shown - be coupled directly or via a belt to the crankshaft 2 can.
  • ISG Integrated Starter Generator 1
  • an ISG can be used as a (starter) motor or as a generator Act.
  • ISG Integrated Starter Generator 1
  • the crankshaft 2 carries the ISG 1, however, only relatively little to the total inertia on the crankshaft 2 at.
  • the positive effects of inertia described above are therefore eliminated, and it is much more difficult for the starter system to do the critical first compression to overcome the internal combustion engine 3. Because of this, you can unsuccessful or suboptimal (i.e., long time) start-ups occur. such Problems increase with the increasing displacement of the internal combustion engine to.
  • FIG. 1 shows a first embodiment an internal combustion engine with such an auxiliary device.
  • the Internal combustion engine 3 is basically an integrated starter generator 1 started on crankshaft 2.
  • the auxiliary device 7 is similar to the starter motor 9 in Figure 2 via a (overrunning) clutch 6 and a (small) Gear wheel 5 coupled to the flywheel 4 on the crankshaft 2.
  • she consists in the simplest case from an inert mass, which corresponds to the high Reduction ratio between the flywheel 4 and the gear wheel 5 rotates with the crankshaft 2.
  • the auxiliary device therefore exercises due to its inertia the same positive effect during the starting process as a conventional one Starter motor 9, the effect of which is described above with reference to FIG. 2 has been.
  • the inert masses in the auxiliary device 7 help the critical ones to overcome the first compression of the internal combustion engine 3.
  • the ISG 1 can therefore be designed more easily for normal performance are and also a starting of internal combustion engines 3 with a large displacement perform successfully.
  • FIG 2 shows an embodiment of the invention, which is for an internal combustion engine 3 with two starter motors, namely an ISG 1 and a conventional one Starter motor 9 is suitable.
  • a constellation can, for example be provided for starting a diesel engine 3, the starter motor 9 for starting the engine in cold temperatures and the ISG 1 for starting serves at higher temperatures.
  • a control unit 8 is both with the ISG 1 and the starter motor 9 connected to them according to the ambient conditions optional use, d. H. during the starting process to activate exactly one of them at a time.
  • Constellation now the starter motor 9 via the clutch 6 during the Starting process also coupled to the crankshaft 2 when it is not active is, but the engine 3 is started by the ISG 1.
  • the starter motor 9 unlike conventional vehicles of this type, even at high engine temperatures is coupled to the crankshaft 2.
  • the inertia of the passively moving Starter motor 9 then fulfills the desired function of an auxiliary device to support the starting process, d. H. it contributes in particular to successful Overcoming the critical first compression phase of the internal combustion engine 3 at.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

Die Erfindung betrifft eine Hilfsvorrichtung zur Unterstützung des Startvorganges einer Brennkraftmaschine (3). Die Hilfsvorrichtung (7) kann dabei insbesondere eine träge Masse enthalten, welche über eine Überholkupplung (6) und ein Untersetzungsgetriebe (5, 4) an die Kurbelwelle (2) der Brennkraftmaschine (3) gekoppelt ist. In der Hilfsvorrichtung (7) wird während des Startvorganges Rotationsenergie zwischengespeichert, um in kritischen Phasen des Startvorgangs - wie insbesondere der ersten Kompressionsphase der Brennkraftmaschine (3) - zur Verfügung zu stehen. Die Hilfsvorrichtung kann durch einen passiv mitlaufenden Startermotor gebildet werden, welcher einen Integrierten Starter-Generator (1) unterstützt. <IMAGE>

Description

Die Erfindung betrifft eine Hilfsvorrichtung zur Unterstützung des Startvorganges einer Brennkraftmaschine, eine mit einer derartigen Hilfsvorrichtung ausgestattete Brennkraftmaschine, sowie ein Verfahren zur Unterstützung des Startens einer Brennkraftmaschine.
Zum Starten oder Anlassen einer Brennkraftmaschine werden in der Regel aktive Hilfsaggregate eingesetzt, welche die Kurbelwelle der Brennkraftmaschine antreiben, bis diese eine bestimmte Drehzahl erreicht hat und durch das Verbrennen von Kraftstoff in den Zylindern selbst ihre Drehung aufrecht erhalten kann. Am weitesten verbreitet als Hilfsaggregat sind dabei elektrische Startermotoren ("Anlasser").
Darüber hinaus sind in zunehmendem Maße sogenannte Integrierte Starter-Generatoren (ISG) im Einsatz, welche - je nach Betriebsmodus - sowohl als Startermotor, der elektrische Energie in Rotationsenergie der Kurbelwelle umwandelt, als auch als Generator, welcher Rotationsenergie der Kurbelwelle in elektrische Energie umwandelt, betrieben werden können. Bei niedrigen Umgebungs- bzw. Motortemperaturen erfordert das Anlassen einer Brennkraftmaschine aufgrund der hohen Reibung besonders große Drehmomente. Um diese hohen Anforderungen erfüllen zu können, müssen Integrierte Starter-Generatoren entweder sehr leistungsstark ausgelegt oder durch herkömmliche Startermotoren ergänzt werden. Beides bringt einen hohen konstruktiven Aufwand mit sich, der sich nicht zuletzt in entsprechenden Kosten des Systems niederschlägt.
Vor diesem Hintergrund war es eine Aufgabe der vorliegenden Erfindung, Mittel zur Unterstützung des Startvorganges einer Brennkraftmaschine bereitzustellen, welche die für das Anlassen verwendeten Hilfsaggregate entlasten sollen.
Diese Aufgabe wird durch ein Hilfsvorrichtung mit den Merkmalen des Anspruchs 1, durch eine Brennkraftmaschine mit den Merkmalen des Anspruchs 4 sowie durch ein Verfahren mit den Merkmalen des Anspruchs 8 gelöst. Vorteilhafte Ausgestaltungen sind in den Unteransprüchen enthalten.
Die erfindungsgemäße Hilfsvorrichtung zur Unterstützung des Startvorganges einer Brennkraftmaschine umfaßt einen Speicher, in welchem Rotationsenergie zwischengespeichert werden kann. D. h., daß in Form von mechanischer Rotation an der Kurbelwelle vorliegende kinetische Energie vom Speicher aufgenommen, zwischengespeichert und zu einem späteren Zeitpunkt (bis auf thermodynamisch unvermeidliche Energieverluste) wieder an die Kurbelwelle abgegeben werden kann. Die Energie kann dabei im einfachsten Falle unverändert als Rotationsenergie zwischengespeichert werden. Alternativ kann jedoch auch für die Speicherung eine Umwandlung der Rotationsenergie in irgendeine andere geeignete Energieform stattfinden (z. B. potentielle Energie von Elastizitäten, elektrische Energie, chemische Energie etc.). Die Hilfsvorrichtung enthält weiterhin eine Kupplungsvorrichtung, über welche der genannte Speicher während eines Startvorganges der Brennkraftmaschine selektiv an die Kurbelwelle der Brennkraftmaschine gekoppelt werden kann. D. h., daß die Kupplungsvorrichtung dahingehend ausgebildet ist, (allenfalls) während des Startvorganges eine Wirkverbindung zwischen dem Speicher und der Kurbelwelle herzustellen und den Speicher beim normalen Betrieb von der Brennkraftmaschine abzukoppeln, so daß dieser keinen Einfluß auf deren Bewegung nimmt.
Mit der Hilfsvorrichtung ist es möglich, während des Startvorganges einer Brennkraftmaschine vorhandene Antriebsenergie möglichst effizient einzusetzen, indem diese über eine Zwischenspeicherung von Phasen mit einem geringeren Leistungsbedarf zu Phasen mit hohem Leistungsbedarf verlagert wird. Insbesondere kann die verfügbare Energie auf diese Weise in die Phasen verlagert werden, in denen in einem Zylinder der Brennkraftmaschine ein Kompressionsvorgang stattfindet und daher ein besonders großes Kurbelwellendrehmoment erforderlich ist. Durch den Einsatz der Hilfsvorrichtung ist es somit möglich, den eigentlichen aktiven Startermotor für die Brennkraftmaschine kleiner und damit kostengünstiger auszulegen, da seine Leistung nicht mehr nach dem maximal auftretenden Leistungsbedarf festgelegt werden muß.
Gemäß einer bevorzugten Ausgestaltung enthält der Speicher eine drehbar gelagerte träge Masse wie z. B. ein Schwungrad. In diesem Falle kann die von der Kurbelwelle abgeführte Rotationsenergie unmittelbar als Rotationsenergie der trägen Masse des Speichers gespeichert werden, wobei der Speicher einen besonders einfachen, störungssicheren und kostengünstigen Aufbau hat. Des Weiteren hat die Verwendung träger Massen den Vorteil, daß die bedarfsgerechte Entnahme und Abgabe von Rotationsenergie sich von selbst regeln kann. Insbesondere wird Rotationsenergie von der Kurbelwelle in den Speicher überführt, wenn die Kurbelwelle beschleunigt wird, und umgekehrt Rotationsenergie vom Speicher an die Kurbelwelle abgegeben, wenn sich die Drehung der Kurbelwelle aufgrund eines hohen Widerstandes verzögert.
Die Kupplungsvorrichtung ist vorzugsweise als eine oberhalb einer Grenzdrehzahl wirksame Überholkupplung ausgebildet. Eine solche Überholkupplung verbindet zwei rotierende Teile wie z. B. Wellen so lange, wie die Drehzahl unter der Grenzdrehzahl liegt oder das erste Teil nicht schneller rotiert als das zweite. Überholt die Drehzahl des ersten Teils jedoch diejenige des zweiten Teils und die Grenzdrehzahl, so endet die Wirkverbindung durch die Überholkupplung. In der Hilfsvorrichtung wird eine solche Überholkupplung in der Weise eingesetzt, daß diese den Speicher von der Kurbelwelle der Brennkraftmaschine trennt, wenn die Drehzahl der Kurbelwelle die Grenzdrehzahl der Überholkupplung und die Drehzahl des Speicherausgangs überschreitet, wobei die Grenzdrehzahl typischerweise bei ca. 200 U/min liegt. Auf diese Weise wird sichergestellt, daß die Hilfsvorrichtung während des Startvorganges vom Stillstand der Kurbelwelle bis zur genannten Grenzdrehzahl wirksam ist. Während des Normalbetriebs der Brennkraftmaschine liegt die Drehzahl der Kurbelwelle indes im Allgemeinen höher als die Grenzdrehzahl, so daß die Hilfsvorrichtung in diesem Zustand keinen Einfluß mehr hat. Die Brennkraftmaschine muß daher im Normalbetrieb keine zusätzlichen trägen Massen mitschleppen oder ähnliche Belastungen tragen.
Die Erfindung betrifft ferner eine Brennkraftmaschine mit mindestens einem Startermotor zum Anlassen der Brennkraftmaschine, welche durch eine Hilfsvorrichtung der vorstehend beschriebenen Art gekennzeichnet ist. D. h., daß die Hilfsvorrichtung einen Speicher zur Zwischenspeicherung von Rotationsenergie und eine Kupplungsvorrichtung zur selektiven Ankopplung des Speichers an die Kurbelwelle aufweist. Wie bereits erläutert, kann der mindestens eine Startermotor der Brennkraftmaschine leichter und daher kostengünstiger ausgelegt werden, da die Hilfsvorrichtung für eine bedarfsgerechte Verteilung der zur Verfügung stehenden Antriebsenergie sorgt.
Bei dem Startermotor der Brennkraftmaschine kann es sich insbesondere um einen Integrierten Starter-Generator (ISG) handeln. Derartige Starter-Generatoren finden zunehmend Verwendung, da diese besonders für ein kraftstoffsparendes, kurzfristiges Abstellen und Neustarten einer Brennkraftmaschine geeignet sind. Um mit einem Integrierten Starter-Generator eine Brennkraftmaschine nicht nur bei kurzzeitigem Stillstand und damit bei noch warmem Motor anlassen zu können, sondern auch bei kaltem Motor, müssen entsprechende Spitzenleistungen vom Anlassersystem erbracht werden können. Die Gewährleistung dieser Spitzenleistungen geschieht vorliegend durch die Hilfsvorrichtung, so daß der Starter-Generator selbst für die normalen Anforderungen ausgelegt werden kann.
Manche Fahrzeuge weisen eine Brennkraftmaschine mit zwei oder mehr verschiedenen Startermotoren auf, welche situationsabhängig von einer Kontrolleinheit eingesetzt beziehungsweise aktiviert werden. Z. B. kann die Brennkraftmaschine mit einem Integrierten Starter-Generator für den Normalbetrieb und darüber hinaus mit einem herkömmlichen Startermotor für das Anlassen unter ungünstigen Bedingungen gekoppelt sein. Bei einem derartigen Fahrzeug kann gemäß einer Weiterbildung der Erfindung einer der Startermotoren in seinem inaktiven Zustand (d. h. ohne Zufuhr externer Energie) den Speicher der Hilfsvorrichtung darstellen. Insbesondere kann dieser Startermotor ohne aktive Energiezufuhr an die Kurbelwelle gekoppelt sein und daher als reine träge Masse mitlaufen, wobei die Massenträgheit die gewünschte Zwischenspeicherung von Rotationsenergie und deren bedarfsgerechte Abgabe bewirkt.
Gemäß einer bevorzugten Ausgestaltung der Brennkraftmaschine ist die Hilfsvorrichtung über ein Untersetzungsgetriebe an die Kurbelwelle gekoppelt. Das Untersetzungsgetriebe sorgt dafür, daß die Drehzahl der Kurbelwelle in eine höhere Drehzahl der Hilfsvorrichtung transformiert wird, was eine entsprechende Vergrößerung der effektiven Massenträgheit der Hilfsvorrichtung bewirkt. Die absoluten Ausmaße und das Gewicht der Hilfsvorrichtung können auf diese Weise entsprechend kleiner gehalten werden.
Die Erfindung betrifft ferner ein Verfahren zum Starten einer Brennkraftmaschine durch aktives Antreiben der Kurbelwelle der Brennkraftmaschine. Das Verfahren ist dadurch gekennzeichnet, daß (nur) während des Startvorganges Rotationsenergie der Kurbelwelle in einem passiven System zwischengespeichert und diese zwischengespeicherte Energie in Phasen hohen Kraftbedarfs während des Startvorganges wieder an die Kurbelwelle abgegeben wird. Für den aktiven Antrieb der Kurbelwelle, der insbesondere mit Hilfe eines Startermotors erfolgen kann, reicht daher eine für den Normalbetrieb ausgelegte Leistung, da Leistungsspitzen durch die zeitliche Verlagerung von Rotationsenergie mit Hilfe des passiven Systems bewältigt werden. Das Verfahren kann insbesondere mit einer Hilfsvorrichtung beziehungsweise in einer Brennkraftmaschine der oben erläuterten Art durchgeführt werden.
Gemäß einer bevorzugten Ausgestaltung des Verfahrens erfolgt die Entnahme beziehungsweise Abgabe von Rotationsenergie in Abhängigkeit von der (Drehzahl- oder Winkel-)Beschleunigung der Kurbelwelle. Dabei wird bei einer positiven Beschleunigung der Kurbelwelle Rotationsenergie von der Kurbelwelle entnommen und im passiven System zwischengespeichert, während bei einer negativen Beschleunigung (Verzögerung) der Kurbelwelle Rotationsenergie, die im passiven System zwischengespeichert ist, wieder an die Kurbelwelle abgegeben wird. Auf diese Weise wird sichergestellt, daß das passive System die verfügbare Rotationsenergie bedarfsgerecht auf den Startvorgang verteilt, da bei einer positiven Beschleunigung der Kurbelwelle eher überschüssige Rotationsenergie zur Verfügung steht, während eine Verzögerung der Kurbelwelle auf einen hohen Rotationswiderstand der Brennkraftmaschine und eine hierfür unzureichende Leistungsfähigkeit des Startermotors schließen läßt. Sinnvollerweise wird daher in der letztgenannten Phase gespeicherte Rotationsenergie an die Kurbelwelle abgegeben. Das beschriebene Entnahme- und Abgabeverhalten wird quasi automatisch von einem passiven System ausgeführt, wenn dieses rotierende Schwungmassen zur Zwischenspeicherung von Rotationsenergie aufweist.
Wenn nach einer gewissen Dauer des Startvorganges die Kurbelwelle bis über eine vorgegebene Drehzahl hinaus beschleunigt worden ist, wird das passive System vorzugsweise von der Kurbelwelle abgekoppelt. Bei Überschreiten der genannten Drehzahl ist der Startvorgang der Brennkraftmaschine so weit vorangeschritten, daß diese aufgrund der einsetzenden Verbrennung ihre Rotation selbst aufrecht erhalten und weiter beschleunigen kann. Daher besteht keine Notwendigkeit mehr, Rotationsenergie in dem passiven System zwischenzuspeichern.
Im Folgenden wird die Erfindung mit Hilfe der Figuren beispielhaft näher erläutert.
Es zeigen:
Fig. 1
schematisch eine erfindungsgemäße Brennkraftmaschine mit einem Integrierten Starter-Generator und einer Hilfsvorrichtung mit trägen Rotationsmassen, und
Fig. 2
eine erfindungsgemäße Brennkraftmaschine mit einem Integrierten Starter-Generator und einem zweiten Startermotor, welcher im inaktiven Zustand als Hilfsvorrichtung für den Startvorgang wirkt.
Zunächst soll anhand von Figur 2 eine Brennkraftmaschine mit einem herkömmlichen Anlassersystem erläutert werden. Die Brennkraftmaschine 3 treibt dabei in üblicher Weise eine Kurbelwelle 2 an. An einem Ende der Kurbelwelle ist eine Schwungmasse 4 angeordnet, mit welcher ein Getrieberad 5 drehwirksam gekoppelt ist. Die Größenverhältnisse von Schwungrad 4 und Getrieberad 5 sind so gewählt, daß eine Untersetzung der Drehung des Getrieberades 5 zur Kurbelwelle 2 hin stattfindet, wobei das Untersetzungsverhältnis bis zu 60:1 betragen kann. Das heißt, daß 60 Umdrehungen des Getrieberades 5 einer Umdrehung der Schwungmasse 4 (und damit der Kurbelwelle 2) entsprechen.
An das Getrieberad 5 ist über eine Überholkupplung 6 ein Startermotor 9 (Anlasser) gekoppelt. Während des Anlassens einer herkömmlichen Brennkraftmaschine 3 wird dem Startermotor 9 elektrische Energie zugeführt, so daß dieser über die Kupplung 6, das Getrieberad 5 und das Schwungrad 4 die Kurbelwelle 2 antreibt. Die Brennkraftmaschine 3 wird hierdurch in Rotation versetzt, so daß die Verbrennungsvorgänge in den Zylindern in Gang kommen können. Aufgrund des verhältnismäßig hohen Untersetzungsverhältnisses zwischen Getrieberad 5 und Schwungrad 4 ist der Beitrag des Startermotors 9 zur effektiven trägen Masse des gesamten an der Kurbelwelle 2 hängenden Systems verhältnismäßig hoch. Bei einem typischen Zahlenbeispiel beträgt die Trägheit der Kurbelwelle 2 einschließlich der Schwungmasse 4 etwa 0,2 kg·m2, wenn der Startermotor 9 abgekoppelt ist. Ist der Startermotor 9 dagegen über die Kupplung 6 und ein Untersetzungsverhältnis von 60:1 an die Kurbelwelle 2 angekoppelt, so kommt seine Trägheit mit einem Faktor 602 = 3600 zur Trägheit der Kurbelwelle 2 hinzu. Die Gesamtträgheit an der Kurbelwelle kann auf diese Weise die Größenordnung von 1,0 kg·m2 erreichen. Wenn am Ende des Startvorganges die Brennkraftmaschine 3 eine entsprechend hohe Drehzahl von typischerweise 200 U/min erreicht hat, rotiert sie schneller als der Startermotor 9, so daß die Überholkupplung 6 den Startermotor 9 von der Kurbelwelle 2 trennt. Die effektive Trägheit an der Kurbelwelle 2 fällt dann auf den Wert 0,2 kg·m2 zurück.
Während des Anlassens der Brennkraftmaschine 3 muß ein hierfür vorgesehener Startermotor im Wesentlichen drei Widerstände überwinden: (a) erstens das Anzugsmoment, (b) zweitens die momentane Reibung des Gesamtsystems, und (c) drittens den Kompressionsdruck in Zylindern der Brennkraftmaschine 3, die sich gerade in einer Kompressionsphase befinden. Die Beiträge (b) und (c) sind dabei eine Funktion des Kurbelwellenwinkels. Die kritischste Situation für das Anlassersystem ist der erste Kompressionstakt in der Brennkraftmaschine 3, da sich zu diesem Zeitpunkt noch keine Ölfilme zwischen den beweglichen Teilen aufgebaut haben und somit die Reibung hoch ist, und da noch keiner der Zylinder der Brennkraftmaschine 3 in einem Expansionstakt arbeitet. In dieser kritischen Phase unterstützt die Trägheit des Kurbelwellensystems das Durchlaufen der ersten Kompression. Die verhältnismäßig große effektive Trägheit eines herkömmlichen Startermotors wirkt sich daher in dieser Phase des Anlassens beim Durchlaufen der ersten Kompression positiv aus.
Bei modernen Brennkraftmaschinen geht man zunehmend dazu über, andere Systeme als den herkömmlichen Startermotor einzusetzen. So zeigt Figur 2 z. B. schematisch einen sogenannten Integrierten Starter-Generator 1 (ISG), der - wie dargestellt - direkt oder über einen Riemen an die Kurbelwelle 2 angekoppelt sein kann. Ein ISG kann je nach Betriebsmodus als (Starter-)Motor oder als Generator wirken. Aufgrund seiner Konstruktion und Ankopplung an die Kurbelwelle 2 trägt der ISG 1 jedoch nur verhältnismäßig wenig zur Gesamtträgheit an der Kurbelwelle 2 bei. Die oben geschilderten positiven Effekte der Trägheit entfallen daher, und es ist für das Anlassersystem sehr viel schwieriger, die kritische erste Kompression der Brennkraftmaschine 3 zu überwinden. Aus diesem Grunde können erfolglose oder suboptimale (d. h. zeitlich lange) Startvorgänge auftreten. Derartige Probleme nehmen mit zunehmendem Hubraum der Brennkraftmaschine noch zu.
Um die geschilderten Schwierigkeiten zu überwinden, wird erfindungsgemäß der Einsatz einer Hilfsvorrichtung vorgeschlagen, welche im Drehzahlbereich eines Startvorganges, d.h. typischerweise zwischen 0 und 200 U/min, die effektive Trägheit der Kurbelwelle 2 erhöht. Figur 1 zeigt diesbezüglich eine erste Ausführungsform einer Brennkraftmaschine mit einer derartigen Hilfsvorrichtung. Die Brennkraftmaschine 3 wird dabei grundsätzlich von einem Integrierten Starter-Generator 1 an der Kurbelwelle 2 gestartet. Die Hilfsvorrichtung 7 ist ähnlich wie der Startermotor 9 bei Figur 2 über eine (Überhol-)Kupplung 6 und ein (kleines) Getrieberad 5 an das Schwungrad 4 auf der Kurbelwelle 2 gekoppelt. Sie besteht im einfachsten Falle aus einer trägen Masse, welche entsprechend dem hohen Untersetzungsverhältnis zwischen der Schwungmasse 4 und dem Getrieberad 5 mit der Kurbelwelle 2 rotiert. Die Hilfsvorrichtung übt daher aufgrund ihrer Trägheit denselben positiven Effekt während des Startvorganges aus wie ein herkömmlicher Startermotor 9, dessen Wirkung oben mit Bezug auf Figur 2 beschrieben wurde. Insbesondere helfen die trägen Massen in der Hilfsvorrichtung 7, die kritische erste Kompression der Brennkraftmaschine 3 zu überwinden. Der ISG 1 kann daher entsprechend leichter für den normalen Leistungsanfall ausgelegt werden und auch ein Anlassen von Brennkraftmaschinen 3 mit großem Hubraum erfolgreich durchführen.
Figur 2 zeigt eine Ausführungsform der Erfindung, welche für eine Brennkraftmaschine 3 mit zwei Anlassermotoren, nämlich einem ISG 1 und einem herkömmlichen Startermotor 9, geeignet ist. Eine derartige Konstellation kann beispielsweise für das Anlassen eines Dieselmotors 3 vorgesehen sein, wobei der Startermotor 9 zum Anlassen des Motors bei kalten Temperaturen und der ISG 1 zum Anlassen bei höheren Temperaturen dient. Eine Kontrolleinheit 8 ist sowohl mit dem ISG 1 als auch dem Startermotor 9 verbunden, um diese entsprechend den Umgebungsbedingungen wahlweise einzusetzen, d. h. während des Startvorganges jeweils genau einen von ihnen zu aktivieren. Erfindungsgemäß wird bei einer solchen Konstellation nun der Startermotor 9 über die Kupplung 6 während des Startvorganges auch dann an die Kurbelwelle 2 angekoppelt, wenn er nicht aktiv ist, sondern der Motor 3 durch den ISG 1 gestartet wird. D. h., daß der Startermotor 9 anders als bei herkömmlichen Fahrzeugen dieser Art auch bei hohen Motortemperaturen an die Kurbelwelle 2 gekoppelt ist. Die Trägheit des passiv mitlaufenden Startermotors 9 erfüllt dann die gewünschte Funktion einer Hilfsvorrichtung zur Unterstützung des Startvorganges, d. h. sie trägt insbesondere zur erfolgreichen Überwindung der kritischen ersten Kompressionsphase der Brennkraftmaschine 3 bei.

Claims (10)

  1. Hilfsvorrichtung zur Unterstützung des Startvorganges einer Brennkraftmaschine (3), gekennzeichnet durch einen Speicher (7, 9) zur Zwischenspeicherung von Rotationsenergie und durch eine Kupplungsvorrichtung (6), über welche der Speicher selektiv während des Startvorganges an die Kurbelwelle (2) der Brennkraftmaschine (3) gekoppelt werden kann.
  2. Hilfsvorrichtung nach Anspruch 1,
    dadurch gekennzeichnet, daß der Speicher (7, 9) eine drehbar gelagerte träge Masse enthält.
  3. Hilfsvorrichtung nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, daß die Kupplungsvorrichtung als eine oberhalb einer Grenzdrehzahl wirksame Überholkupplung (6) ausgebildet ist.
  4. Brennkraftmaschine mit mindestens einem Startermotor (1, 9),
    gekennzeichnet durch eine Hilfsvorrichtung nach mindestens einem der Ansprüche 1 bis 3.
  5. Brennkraftmaschine nach Anspruch 4,
    dadurch gekennzeichnet, daß diese als Startermotor mindestens einen Integrierten Starter-Generator (1) aufweist.
  6. Brennkraftmaschine nach Anspruch 4 oder 5,
    dadurch gekennzeichnet, daß diese verschiedene Startermotoren (1, 9) enthält, die von einer Kontrolleinheit (8) gesteuert situationsabhängig separat aktiviert werden, wobei einer der Startermotoren (9) im inaktiven Zustand den Speicher der Hilfsvorrichtung bildet.
  7. Brennkraftmaschine nach mindestens einem der Ansprüche 4 bis 6,
    dadurch gekennzeichnet, daß die Hilfsvorrichtung (7, 9) über ein Untersetzungsgetriebe (4, 5) an die Kurbelwelle (2) gekoppelt ist.
  8. Verfahren zum Starten einer Brennkraftmaschine (3) durch aktiven Antrieb der Kurbelwelle (2),
    dadurch gekennzeichnet, daß während des Startvorganges Rotationsenergie der Kurbelwelle (2) in einem passiven System (7, 9) zwischengespeichert und in Phasen hohen Drehmomentbedarfs wieder an die Kurbelwelle (2) abgegeben wird.
  9. Verfahren nach Anspruch 8,
    dadurch gekennzeichnet, daß bei positiver Beschleunigung der Kurbelwelle (2) Rotationsenergie im passiven System (7, 9) zwischengespeichert wird, und daß bei negativer Beschleunigung der Kurbelwelle (2) zwischengespeicherte Rotationsenergie vom passiven System (7, 9) an die Kurbelwelle (2) abgegeben wird.
  10. Verfahren nach Anspruch 8 oder 9,
    dadurch gekennzeichnet, daß das passive System (7, 9) bei Überschreiten einer vorgegebenen Drehzahl der Kurbelwelle (2) von dieser entkoppelt wird.
EP03101684A 2003-06-10 2003-06-10 Hilfsvorrichtung zur Unterstützung des Startvorgangs Withdrawn EP1486666A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP03101684A EP1486666A1 (de) 2003-06-10 2003-06-10 Hilfsvorrichtung zur Unterstützung des Startvorgangs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP03101684A EP1486666A1 (de) 2003-06-10 2003-06-10 Hilfsvorrichtung zur Unterstützung des Startvorgangs

Publications (1)

Publication Number Publication Date
EP1486666A1 true EP1486666A1 (de) 2004-12-15

Family

ID=33185958

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03101684A Withdrawn EP1486666A1 (de) 2003-06-10 2003-06-10 Hilfsvorrichtung zur Unterstützung des Startvorgangs

Country Status (1)

Country Link
EP (1) EP1486666A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011136652A1 (en) 2010-04-28 2011-11-03 Dti Group B.V. Starting device for starting a combustion engine, as well as a drive mechanism provided with the starting device
NL2005652C2 (nl) * 2010-06-08 2011-12-12 Dti Group Bv Inrichting voor het starten van een verbrandingsmotor, alsmede aandrijving voorzien van de inrichting.
NL2005651C2 (nl) * 2010-06-08 2011-12-12 Dti Group Bv Inrichting voor het starten van een verbrandingsmotor.
CN111645868A (zh) * 2020-06-15 2020-09-11 四川省天域航通科技有限公司 一种大型货运无人机起动***

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US653264A (en) * 1896-07-01 1900-07-10 Robert P Scott Road-cart.
US745441A (en) * 1902-03-31 1903-12-01 Edouard Hospitalier Motor-car.
US2656733A (en) * 1947-06-07 1953-10-27 Allen A Dicke Power transmission
US3882950A (en) * 1972-07-11 1975-05-13 James Neil Strohlein Vehicle power system for limited vehicle movement without use of fuel
US20020125861A1 (en) * 2000-09-27 2002-09-12 Peter Ebel Starter-generator device for internal combustion engines and method for operating the device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US653264A (en) * 1896-07-01 1900-07-10 Robert P Scott Road-cart.
US745441A (en) * 1902-03-31 1903-12-01 Edouard Hospitalier Motor-car.
US2656733A (en) * 1947-06-07 1953-10-27 Allen A Dicke Power transmission
US3882950A (en) * 1972-07-11 1975-05-13 James Neil Strohlein Vehicle power system for limited vehicle movement without use of fuel
US20020125861A1 (en) * 2000-09-27 2002-09-12 Peter Ebel Starter-generator device for internal combustion engines and method for operating the device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011136652A1 (en) 2010-04-28 2011-11-03 Dti Group B.V. Starting device for starting a combustion engine, as well as a drive mechanism provided with the starting device
NL2005652C2 (nl) * 2010-06-08 2011-12-12 Dti Group Bv Inrichting voor het starten van een verbrandingsmotor, alsmede aandrijving voorzien van de inrichting.
NL2005651C2 (nl) * 2010-06-08 2011-12-12 Dti Group Bv Inrichting voor het starten van een verbrandingsmotor.
WO2011155836A1 (en) * 2010-06-08 2011-12-15 Dti Group B.V. Device for starting a combustion engine
US8813587B2 (en) 2010-06-08 2014-08-26 Dti Group B.V. Device for starting a combustion engine
RU2546382C2 (ru) * 2010-06-08 2015-04-10 ДТИ Гроуп Б.В. Устройство для запуска двигателя внутреннего сгорания
CN111645868A (zh) * 2020-06-15 2020-09-11 四川省天域航通科技有限公司 一种大型货运无人机起动***

Similar Documents

Publication Publication Date Title
DE102010021796B4 (de) Federstart für eine Fahrzeugmaschine
EP1807278B1 (de) Verfahren zur steuerung eines schubbetriebs eines hybridfahrzeugs sowie hybridfahrzeug
EP2150697B1 (de) Verfahren zum positionieren einer kurbelwelle einer abgeschalteten brennkraftmaschine eines kraftfahrzeugs
DE102014209737B4 (de) Starten einer kraftmaschine eines hybridelektrofahrzeugs mit einer vorgespannten dämpferfeder
DE102011006288A1 (de) Verfahren und Vorrichtung zum anlasserlosen Starten eines Verbrennungsmotors, insbesondere in einem Hybridfahrzeug
WO1998020252A1 (de) Startereinheit für eine brennkraftmaschine
DE102006013502A1 (de) Antriebsvorrichtung mit einem mechanisch angetriebenen Zusatzaggregat, Verfahren zum Betreiben der Antriebsvorrichtung und Mittel zur Durchführung des Verfahrens
DE10232312A1 (de) Antriebssystem für ein Kraftfahrzeug mit wenigstens einem elektrischen Motor/Generator und mit wenigstens einer Kolbenbrennkraftmaschine
DE10301470A1 (de) Kontrollvorrichtung und-Verfahren für eine Vorrichtung zum Speichern von Energie in motorisierten Fahrzeugen
DE102008002661A1 (de) Verfahren zum Begrenzen des Motordrehmoments in einem hybriden elektrischen Fahrzeug
DE102006027702B4 (de) Maschinenstartsystem mit zwei Anlassern eines unterschiedlichen Typs
DE112007001256B4 (de) Fahrzeugantriebstrang und Verfahren zum Steuern des Fahrzeugantriebstrangs
DE19724921A1 (de) Antriebssystem für ein Kraftfahrzeug
EP1287257A1 (de) Startverfahren und startvorrichtung für brennkraftmaschinen
DE102007050306B4 (de) Verfahren zum Steuern eines Startvorgangs einer Brennkraftmaschine
EP2017497A1 (de) Verfahren zum Starten einer mit einem geteilten Schwungrad ausgestatteten Brennkraftmaschine und Brennkraftmaschine zur Durchführung eines derartigen Verfahrens
DE112014002707T5 (de) Steuerungsvorrichtung für Verbrennungsmotor
DE102015112242A1 (de) Verfahren zum Betreiben einer Antriebsanordnung
EP1486666A1 (de) Hilfsvorrichtung zur Unterstützung des Startvorgangs
DE19727595C2 (de) Verfahren und Vorrichtung zum Starten einer Brennkraftmaschine mit Zweimassenschwungrad
WO2016016197A1 (de) Verfahren zum betreiben einer verbrennungskraftmaschine mit einem einstellbaren neustartverdichtungsverhältnis
DE102009046531A1 (de) Verfahren zum Starten einer Brennkraftmaschine mittels Direktstart, Steuer- und/oder Regeleinrichtung und Brennkraftmaschine
DE112018003904T5 (de) Verbrennungsmotorstartsteuervorrichtung
DE102017131020A1 (de) Antriebssystem für ein Fahrzeug
DE102017217874B4 (de) Parallele Hybridantriebsstranganordnung, Fahrzeug und Verfahren zum Anlassen eines Verbrennungsmotors einer parallelen Hybridantriebsstranganordnung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20050615

AKX Designation fees paid

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20060907

17Q First examination report despatched

Effective date: 20060907

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20070515