EP1476661B1 - Pompe a vide - Google Patents

Pompe a vide Download PDF

Info

Publication number
EP1476661B1
EP1476661B1 EP03702650A EP03702650A EP1476661B1 EP 1476661 B1 EP1476661 B1 EP 1476661B1 EP 03702650 A EP03702650 A EP 03702650A EP 03702650 A EP03702650 A EP 03702650A EP 1476661 B1 EP1476661 B1 EP 1476661B1
Authority
EP
European Patent Office
Prior art keywords
rotor
seal
bearing
oil
vacuum pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03702650A
Other languages
German (de)
English (en)
Other versions
EP1476661A1 (fr
Inventor
Thomas Dreifert
Wolfgang Giebmanns
Hans-Rochus Gross
Hartmut Kriehn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leybold GmbH
Original Assignee
Leybold Vakuum GmbH
Leybold Vacuum GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leybold Vakuum GmbH, Leybold Vacuum GmbH filed Critical Leybold Vakuum GmbH
Publication of EP1476661A1 publication Critical patent/EP1476661A1/fr
Application granted granted Critical
Publication of EP1476661B1 publication Critical patent/EP1476661B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C27/00Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
    • F04C27/008Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids for other than working fluid, i.e. the sealing arrangements are not between working chambers of the machine
    • F04C27/009Shaft sealings specially adapted for pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2220/00Application
    • F04C2220/40Pumps with means for venting areas other than the working chamber, e.g. bearings, gear chambers, shaft seals

Definitions

  • the invention relates to a vacuum pump with at least one rotor shaft, which has a rotor section with a rotor, a bearing section with a bearing and axially between the rotor section and the bearing section a shaft seal arrangement.
  • Such vacuum pumps can be designed, inter alia, as screw pumps, side channel blower, and Roots pumps.
  • the mentioned vacuum pumps have in common that they are dry-compressing vacuum pumps with oil or grease lubricated bearings and / or gearboxes. These pumps are typically used to generate pre-vacuum.
  • the task of the sealing arrangement between the actual rotor and the bearing or gearbox is firstly to prevent gas from passing from the rotor section to the bearing section and secondly to prevent the passage of fluid from the bearing section into the rotor section.
  • rotor speeds and small rotor shaft diameters For example, in the form of radial shaft seals, slip rings, etc.
  • only contact-free shaft seals can be used, which, however, can not completely exclude leaks due to the design.
  • a known non-contact shaft seal assembly consists of one or more piston seals as a gas seal and an oil spray ring as an oil seal.
  • this can not achieve a reliable and high sealing effect.
  • the gas compressed in the rotor section should not come into contact with the oil from the bearing section, since the oil may be decomposed thereby and thereby lose its lubricity.
  • the escaping oil, gas or gas mixture can also be toxic or explosive and therefore dangerous.
  • the object of the invention is therefore to improve in a vacuum pump, the gas seal and an oil seal having shaft seal.
  • the shaft seal arrangement is designed such that between the rotor-side gas seal and the bearing-side oil seal a surrounding the rotor shaft separation chamber is provided which is vented through at least one separation chamber ventilation duct.
  • the ventilation duct Through the ventilation duct, the separation chamber is adjusted to a desired gas pressure. This ensures that the drop across the gas seal pressure difference and the above the oil seal decreasing pressure difference can be adjusted.
  • the separation chamber can be acted upon by the ventilation duct, for example, with atmospheric gas pressure or with the bearing-side gas pressure, so that the gas pressure in the separation chamber is not below the bearing-side gas pressure. In this way it can be avoided that the oil migrates from the bearing side through the oil seal towards the separation chamber.
  • the separation chamber gas pressure can be set higher, so that explosive and / or toxic gases from the rotor section can not escape through the gas seal.
  • a shaft seal arrangement is realized, which prevents a passage of gas from the rotor section into the bearing section and oil from the bearing section in the rotor section in a simple manner and reliably even with structurally imperfect gas and oil seals.
  • For the separation chamber only a small manufacturing effort and space is required, so that a small and effective means a compact and effective shaft seal arrangement is realized.
  • the separation chamber ventilation channel opens outside the pump into the surrounding atmosphere. In this way prevails in the separation chamber always atmospheric pressure and the same gas pressure as in the bearing housing, since this is also vented to the environment. The pressure gradient across the oil seal is then practically equal to zero, so that due to lack of pressure difference and no oil from the bearing section in the direction of separation chamber or rotor section is pressed.
  • the gas seal and the oil seal are each designed as non-contact seals.
  • the shaft seal arrangement can also be used in vacuum pumps be used with high speeds and high rotor shaft diameters.
  • the gas seal is designed as a gap seal or as a labyrinth seal, with piston rings or with floating sealing rings.
  • the gas seal is in any case a contact-free throttle seal, which reduces the gas passage to an unavoidable minimum.
  • the labyrinth seal of the gas seal has at least one piston ring, which projects into an annular groove of the rotor shaft.
  • the piston ring is biased outwards and therefore fixed on the housing side and fixed.
  • the piston ring protrudes into the rotor shaft annular groove, whereby a labyrinth-like gap is formed between the piston ring and the annular groove, which acts as a throttle seal.
  • the gas seal may have a plurality of such labyrinth seals arranged axially one behind the other.
  • the oil seal on the rotor shaft on a rotating slinger which projects into a housing-side annular centrifugal chamber, which is connected to an oil return passage to the bearing housing. In this way, an effective non-contact oil seal is created.
  • radial and / or axial non-conical or conical gaps are formed between the oil slinger and the housing-side Schleuderschdonn.
  • the slinger and the opposing fixed walls are designed so that the incoming oil is thrown outwards with the rotor shaft rotating and the unsprayed oil runs down into the return channel.
  • the oil seal on the axial rotor side of the oil slinger preferably has at least one annular trap chamber with an oil drain channel which opens into the bearing housing.
  • the oil seal thus consists of two or more axially behind one another centrifugal or catch chambers with an oil drain channel.
  • the oil drainage channels can be combined in a single channel, but it can also be associated with each separate centrifugal or catching chamber own separate oil drain channel. As a result, mutual disturbances in the oil flow are excluded, so that the oil seal is only slightly affected even in case of disturbances in an oil drain channel in their sealing effect.
  • each spin or catch chamber of the oil seal is assigned at least one ventilation duct.
  • the ventilation duct can be outwardly to the atmosphere but should preferably be led back to the bearing housing.
  • the centrifugal chambers can be ventilated via a single common ventilation duct, or else via at least one separate ventilation duct in each case. Ventilation through the ventilation channels ensures that there is no pressure difference within the oil seal, ie between the individual centrifugal chambers. A gas flow and thus entrainment of oil in the direction of separation chamber or rotor section is thus practically impossible. The transfer of gases from the separation chamber in the direction of the bearing housing is therefore largely prevented.
  • the separation chamber venting channel opens in the vicinity of the lowest point of the separation chamber and has a slope, so that any leaking liquid can drain from the separation chamber. Even if oil or other liquids from the storage section or from the Rotor section should reach the separation chamber, this could run outward. This ensures that no liquid can accumulate in the separation chamber.
  • the bearing is formed axially capped on the rotor side.
  • a first barrier for oil is already between the bearing and the shaft seal arrangement. or other liquids from the warehouse realized.
  • the rotor shaft is designed as a flying rotor shaft, which is mounted only on the pressure side of the rotor section, on the suction side of the rotor section
  • the rotor shaft is designed to be free of bearings. In this way, a bearing in the range of greater negative pressure is avoided, so that even with large pressure differences problematic shaft seal arrangement is avoided on the suction side of the rotor shaft.
  • flying rotor shafts have a relatively large shaft diameter. Only by the present shaft seal arrangement and the provision of a separation chamber between the gas seal and the oil seal can be sealed with large rotor shaft diameters high peripheral velocities must be taken without an unreasonably large leakage in purchasing.
  • a barrier gas source is connected to the separation chamber ventilation duct through which a sealing gas is introduced into the separation chamber under overpressure. This is necessary and useful if toxic and / or explosive gases are conveyed in the rotor section. By feeding the separation gas, a small separation gas flow is generated from the separation chamber in the direction of the rotor section. In this way, the escape of gas from the rotor section can be prevented.
  • a barrier gas for example, air or nitrogen can be used.
  • a seal gas line is additionally provided from the seal gas source to the bearing housing or the bearing portion. This ensures that there is no significant pressure drop across the oil seal.
  • the sealing gas has a pressure of, for example, 1.3 bar.
  • the in the FIGS. 1 to 4 illustrated vacuum pump 10 is a screw vacuum pump for generating an advance vacuum.
  • the vacuum pump 10 is essentially formed by a housing in which two rotor shafts are rotatably mounted, of which in the Figures 1-4 only the main rotor shaft 12 is shown.
  • Rotor shaft 12 has a rotor portion 14 with a helical rotor 16, a bearing portion 18 with two rolling bearings 20 and axially between the rotor portion 14 and the bearing portion 18 has a portion with a shaft seal assembly 22. At the rotor-side end 24 of the rotor shaft 12, no rolling bearing is provided.
  • a gas is drawn in at the flying ends of the rotor sections 14 through a suction line, not shown, in order to generate a negative pressure in a recipient connected to the suction line.
  • the sucked gas is compressed by interaction of the illustrated rotor 16 with a second rotor of a second rotor shaft, not shown, to the pressure side of the rotor section 14 and there discharged at approximately atmospheric pressure via a gas outlet, not shown.
  • bearing portion 18 of the rotor shaft 12 two rolling bearings are provided for rotatable mounting, of which only the rotor-side roller bearing 20 is shown. Furthermore, the rotor shaft 12 in the bearing portion 18, a gear 26, via which the rotor shaft 12 is driven. For lubrication and cooling of the rolling bearing 20 and the gear or wheels 26 of the bearing housing 28 formed by the bearing housing interior 30 contains an oil reservoir.
  • the shaft seal arrangement has essentially three axial sections, namely a gas seal 32 on the rotor side, an oil seal 34 on the bearing side and a separation chamber 36 therebetween.
  • the shaft seal arrangement 22 is surrounded by a seal housing 66.
  • the gas seal 32 is formed by three piston rings 38, which are arranged axially one behind the other.
  • the piston rings 38 are biased outwardly and therefore non-positively connected to the stationary housing.
  • the piston rings 38 engage in each case in an annular groove 40 of the rotor shaft 12, so that results in a meandering gap in longitudinal section through the three piston rings 38 in the annular grooves 40. In this way, a non-contact labyrinth seal is formed, which ensures a satisfactory gas seal at pressure differences of less than 0.5 bar.
  • the oil seal 34 consists of several parts.
  • the bearing-side portion of the oil seal 34 has rotor shaft side to an oil slinger 42, which has a wave-like profile in longitudinal section.
  • an oil slinger 42 which has a wave-like profile in longitudinal section.
  • the oil slinger 42 is surrounded on the housing side by an annular centrifugal chamber 48, which serves to receive and discharge the oil slid by the slinger 42 outwardly through the oil return passage 46.
  • the oil seal 34 has on the oil slinger 42 axially on the rotor side, then two annular oil-trapping chambers 50,52, which rotor shaft side is assigned in each case a circumferential annular groove 58.
  • the oil slinger 48 has a larger volume than the two axially adjacent oil trapping chambers 50,52.
  • Both the annular rotating centrifugal chamber 48 and the likewise annular oil collecting chambers 50,52 each have their own ventilation duct 59 near their highest point, which leads in each case in the axial direction in the bearing housing 28.
  • the three ventilation channels 59 are arranged offset from one another in the circumferential direction.
  • the two oil trapping chambers 50, 52 each have, near their lowest point, an oil return passage 54, 56, through which oil, if any, can flow back into the bearing housing 28.
  • waiving one or both oil-collecting chambers 50,52 may be used in the annular grooves 58 of the rotor shaft 12 and piston rings to prevent further creep of oil axially in the direction of the rotor.
  • the annular and relatively large volume separation chamber 36 between the gas seal 32 and the oil seal 34 has near its highest point a separation chamber vent passage 60 through which the separation chamber is vented to the environment or through which it is connected to a purge gas source.
  • the separation chamber ventilation channel 60 has an axial section on the separation chamber side and, at right angles thereto, a radial section which leads to the outside. There is no pressure difference and no oil is pressed by a pressure difference in the direction of the rotor through the oil seal, as well as the bearing housing is vented to the environment or since it is also acted upon by the same barrier gas pressure as the separation chamber.
  • a further separation chamber ventilation channel 62 is provided, which has a downward slope and opens into a vertical outlet 64.
  • the separation chamber ventilation channel 62 also serves as a drain for optionally up to here reached oil, or for liquids from the rotor section.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)
  • Sealing Devices (AREA)

Abstract

L'invention concerne une pompe à vide (10) comprenant au moins un arbre rotor (12), lequel comprend une section de rotor (14) comportant un rotor (16), une section de palier (18) comportant un palier (20), ainsi qu'un système d'étanchéité (22) destiné à l'arbre, ce système étant disposé axialement entre la section de rotor (14) et la section de palier (18). Ledit système d'étanchéité (22) comprend axialement côté rotor un joint étanche au gaz (32) et côté palier un joint étanche à l'huile (34). Entre ces deux joints, le système d'étanchéité (22) comprend une chambre de séparation entourant l'arbre rotor (12), cette chambre étant ventilée au moyen d'au moins un canal de ventilation (60, 62). Cette configuration permet de régler la différence entre les pressions de part et d'autre du joint étanche au gaz et la différence entre les pressions de part et d'autre du joint étanche à l'huile. Ce réglage permet d'éviter que de l'huile côté palier ne se répande à travers le joint étanche à l'huile en direction de la chambre de séparation.

Claims (12)

  1. Pompe à vide comprenant au moins un arbre de rotor (12), avec une section de rotor (14) incluant un rotor (16), une section de palier (18) comprenant un palier (20) dans un boitier de palier (28), et un ensemble d'étanchéité de l'arbre (22) situé axialement entre ladite section de rotor (14) et ladite section de palier (18), dans laquelle
    ledit ensemble d'étanchéité de l'arbre (22) comprend, côté rotor vu dans la direction axiale, un joint (32) étanche aux gaz et, côté palier vu dans la direction axiale, un joint (34) étanche à l'huile, ledit joint étanche à l'huile étant réalisé comme joint sans contact,
    ledit ensemble d'étanchéité de l'arbre (22) comprend une chambre de séparation (36) entre ledit joint (32) étanche aux gaz et ledit joint (34) étanche à l'huile, ladite chambre entourant ledit arbre de rotor (12) et étant aérée par au moins un canal d'aération de la chambre de séparation (60, 62) guidé vers l'extérieur dans l'atmosphère ambiante, et
    ledit boitier de palier (28) est aéré par l'atmosphère ambiante de sorte que la même pression de gaz règne dans ladite chambre de séparation (36) que dans ledit boitier de palier (28).
  2. Pompe à vide selon la revendication 1, caractérisée en ce que ledit joint (32) étanche aux gaz est réalisé comme joint d'interstice ou joint labyrinthe.
  3. Pompe à vide selon la revendication 2, caractérisée en ce que ledit joint de labyrinthe comprend au moins un segment de piston (38) en saillie dans une rainure annulaire (40) dudit arbre de rotor (12).
  4. Pompe à vide selon l'une des revendications 1 - 3, caractérisée en ce que ledit joint étanche aux gaz (34) comprend un anneau de projection d'huile (42) circonférentiel sur ledit arbre de rotor (12), ledit anneau saillant dans une chambre de projection (48) annulaire, côté boitier, raccordée à un canal de retour d'huile (46) s'étendant jusqu'au boitier de palier (28).
  5. Pompe à vide selon l'une des revendications 1 - 4, caractérisée en ce que des fentes radiales ou axialement coniques ou non coniques sont prévues entre ledit anneau de projection d'huile (42) et les parois de la chambre de projection, côté boitier.
  6. Pompe à vide selon l'une des revendications 1 - 5, caractérisée en ce que ledit joint d'étanchéité à l'huile (34) comprend, côté rotor par rapport à l'anneau de projection d'huile, vu dans la direction axiale, au moins une chambre de réception d'huile (50, 52) annulaire avec au moins un canal de drainage d'huile (54, 56) s'étendant jusqu'à un boitier de palier (28) entourant le palier (20).
  7. Pompe à vide selon l'une des revendications 4 - 6, caractérisée en ce que chaque chambre de réception et de projection (48, 50, 52) dudit joint étanche à l'huile (34) est associée à au moins un canal d'aération.
  8. Pompe à vide selon l'une des revendications 1 - 7, caractérisée en ce que ledit arbre de rotor (12) est flottant et est réalisé sans palier sur le côté d'aspiration de la section de rotor (14).
  9. Pompe à vide selon l'une des revendications 1 - 8, caractérisée en ce que ledit canal d'aération de la chambre de séparation (60, 62) s'ouvre dans la région du point le plus bas de ladite chambre de séparation (36) et présente une pente de sorte qu'une liquide peut s'écouler de ladite chambre de séparation (36).
  10. Pompe à vide selon l'une des revendications 1 - 9, caractérisée en ce que ledit palier est muni d'un couvercle sur le côté rotor, vu dans la direction axiale.
  11. Pompe à vide comprenant au moins un arbre de rotor (12), avec une section de rotor (14) incluant un rotor (16), une section de palier (18) comprenant un palier (20) dans un boitier de palier (28), et un ensemble d'étanchéité de l'arbre (22) situé axialement entre ladite section de rotor (14) et ladite section de palier (18), dans laquelle
    ledit ensemble d'étanchéité de l'arbre (22) comprend, côté rotor vu dans la direction axiale, un joint (32) étanche aux gaz et, côté palier vu dans la direction axiale, un joint (34) étanche à l'huile, ledit joint étanche à l'huile étant réalisé comme joint sans contact,
    ledit ensemble d'étanchéité de l'arbre (22) comprend une chambre de séparation (36) entre ledit joint (32) étanche aux gaz et ledit joint (34) étanche à l'huile, ladite chambre entourant ledit arbre de rotor (12) et étant aérée par au moins un canal d'aération de la chambre de séparation (60, 62), et
    une source de gaz d'arrêt est raccordée audit boitier de palier (28) et au canal d'aération (60) de sorte qu'environ la même pression de gaz règne dans ladite chambre de séparation (36) que dans ledit boitier de palier (28).
  12. Pompe à vide selon la revendication 11, caractérisée par les caractéristiques supplémentaires d'une quelconque des revendications 2-10.
EP03702650A 2002-02-23 2003-02-18 Pompe a vide Expired - Lifetime EP1476661B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10207929 2002-02-23
DE10207929A DE10207929A1 (de) 2002-02-23 2002-02-23 Vakuumpumpe
PCT/EP2003/001598 WO2003071134A1 (fr) 2002-02-23 2003-02-18 Pompe a vide

Publications (2)

Publication Number Publication Date
EP1476661A1 EP1476661A1 (fr) 2004-11-17
EP1476661B1 true EP1476661B1 (fr) 2012-01-11

Family

ID=27674929

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03702650A Expired - Lifetime EP1476661B1 (fr) 2002-02-23 2003-02-18 Pompe a vide

Country Status (6)

Country Link
US (1) US7153093B2 (fr)
EP (1) EP1476661B1 (fr)
JP (2) JP2005517866A (fr)
AU (1) AU2003205775A1 (fr)
DE (1) DE10207929A1 (fr)
WO (1) WO2003071134A1 (fr)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0326613D0 (en) * 2003-11-14 2003-12-17 Boc Group Plc Vacuum pump
US7543822B2 (en) * 2004-07-12 2009-06-09 A.W. Chesterton Company Composite rotary seal assembly
DE102005015212A1 (de) * 2005-04-02 2006-10-05 Leybold Vacuum Gmbh Wellendichtung
DE102005041003A1 (de) * 2005-08-29 2007-03-01 Man Turbo Ag Wellendichtung für einen Getriebeexpander oder -kompressor
US20080044279A1 (en) * 2006-08-17 2008-02-21 Orlowski David C Adaptor Frame
JP5046379B2 (ja) * 2007-03-30 2012-10-10 アネスト岩田株式会社 オイルフリーロータリコンプレッサのロータ軸シール装置
JP2008255797A (ja) * 2007-03-30 2008-10-23 Anest Iwata Corp オイルフリーロータリコンプレッサのロータ軸シール装置
JP2008255796A (ja) * 2007-03-30 2008-10-23 Anest Iwata Corp オイルフリーロータリ圧縮機の軸封装置
DE102007039237A1 (de) 2007-08-20 2009-02-26 Daimler Ag Pumpe und Brennstoffzellensystem mit einer derartigen Pumpe
DE102008055793B3 (de) * 2008-11-04 2010-09-02 Voith Patent Gmbh Vorrichtung zur Abdichtung einer mit einem flüssigen Schmiermittel geschmierten Lagerung
DE102010045881A1 (de) * 2010-09-17 2012-03-22 Pfeiffer Vacuum Gmbh Vakuumpumpe
DE102010041939A1 (de) * 2010-10-04 2012-04-05 Robert Bosch Gmbh Pumpengehäuse sowie Pumpe
JP5425049B2 (ja) * 2010-12-17 2014-02-26 株式会社神戸製鋼所 水噴射式スクリュ圧縮機
CN102654127A (zh) * 2011-03-04 2012-09-05 中国科学院沈阳科学仪器研制中心有限公司 一种真空泵用轴封结构
JP2013002590A (ja) * 2011-06-20 2013-01-07 Ulvac Japan Ltd 真空装置
DE102011108092A1 (de) 2011-07-19 2013-01-24 Multivac Sepp Haggenmüller Gmbh & Co. Kg Reinigungsverfahren und -system für Vakuumpumpe
EP2570673B1 (fr) * 2011-09-13 2014-05-07 Pierburg Pump Technology GmbH Pompe à vide électrique pour véhicule automobile
CN102661280A (zh) * 2012-04-28 2012-09-12 山东三牛机械有限公司 罗茨风机主动轴轴端密封***
EP2941566B1 (fr) * 2012-12-31 2018-10-17 Thermo King Corporation Dispositif et procédé pour prolonger la durée de vie d'un joint pour arbre tournant pour un compresseur ouvert
CN104047707A (zh) * 2013-03-11 2014-09-17 伊顿公司 增压器
CN103883357B (zh) * 2014-03-20 2016-04-13 泸州市长江液压件装备有限公司 一种齿轮分流马达的旋转密封机构、齿轮分流马达
CN105065276A (zh) * 2015-07-22 2015-11-18 宋东方 干式螺杆真空泵组合式密封装置
ITUB20152676A1 (it) * 2015-07-30 2017-01-30 Nuovo Pignone Tecnologie Srl Disposizione di raffreddamento di tenute a gas secco e metodo
KR101721933B1 (ko) * 2015-11-06 2017-04-03 홍우산업기계(주) 오일 밀봉장치 및 이를 포함하는 블로어
DE202016003924U1 (de) 2016-06-24 2017-09-27 Vacuubrand Gmbh + Co Kg Vakuumpumpe mit Sperrgaszufuhr
DE102016007672A1 (de) 2016-06-24 2017-12-28 Vacuubrand Gmbh + Co Kg Vakuumpumpe mit Sperrgaszufuhr
GB2558954B (en) 2017-01-24 2019-10-30 Edwards Ltd Pump sealing
WO2020095328A1 (fr) * 2018-11-08 2020-05-14 Elgi Equipments Ltd Compresseur d'air à vis sans huile à injection d'eau
JP7436345B2 (ja) 2020-10-30 2024-02-21 株式会社荏原製作所 軸封装置、回転機械、および軸封装置の組み立て方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4196910A (en) * 1977-05-19 1980-04-08 Ishikawajima-Harima Jukogyo Kabushiki Kaisha Shaft sealing device for turbocharger
JPS61104187A (ja) 1984-10-29 1986-05-22 Hitachi Ltd 真空ポンプ用軸封装置
JPS62153597A (ja) * 1985-12-27 1987-07-08 Hitachi Ltd 真空ポンプ
DE3720250A1 (de) * 1986-06-27 1988-01-14 Battelle Institut E V Pumpe zum transport gasfoermiger medien, insbesondere fuer einen gaslaser
JPS63285279A (ja) 1987-05-15 1988-11-22 Hitachi Ltd 真空ポンプの軸封装置
JP3493850B2 (ja) * 1995-11-22 2004-02-03 石川島播磨重工業株式会社 機械駆動式過給機のシール構造
DE29522263U1 (de) 1995-12-02 2001-08-02 Pfeiffer Vacuum GmbH, 35614 Aßlar Mehrwellenvakuumpumpe
JPH1061671A (ja) * 1996-08-22 1998-03-06 Nippon Seiko Kk 密封装置
BE1010821A3 (nl) 1996-12-23 1999-02-02 Atlas Copco Airpower Nv Droge compressor met asafdichtingen en werkwijze om een asafdichting in dergelijke compressor aan te brengen.
BE1010915A3 (nl) * 1997-02-12 1999-03-02 Atlas Copco Airpower Nv Inrichting voor het afdichten van een rotoras en schroefcompressor voorzien van dergelijke inrichting.
GB9708397D0 (en) 1997-04-25 1997-06-18 Boc Group Plc Improvements in vacuum pumps
BE1011349A3 (nl) 1997-09-04 1999-07-06 Atlas Copco Airpower Nv Compressoreenheid met minstens een olievrij compressorelement voorzien van een asafdichting.
DE29807796U1 (de) * 1998-04-30 1999-09-09 GHH-RAND Schraubenkompressoren GmbH & Co. KG, 46145 Oberhausen Dichtungsanordnung für einen Wellenzapfen eines trockenlaufenden Rotationsschraubenverdichters
JP2001207984A (ja) * 1999-11-17 2001-08-03 Teijin Seiki Co Ltd 真空排気装置
DE19963170A1 (de) * 1999-12-27 2001-06-28 Leybold Vakuum Gmbh Vakuumpumpe mit Wellendichtmitteln
ITMI20021222A1 (it) * 2002-06-05 2003-12-05 Nuovo Pignone Spa Sistema di tenuta per compressori centrifughi che eleborano gas letali

Also Published As

Publication number Publication date
AU2003205775A1 (en) 2003-09-09
WO2003071134A1 (fr) 2003-08-28
JP2009270581A (ja) 2009-11-19
JP2005517866A (ja) 2005-06-16
JP5135301B2 (ja) 2013-02-06
US20050147517A1 (en) 2005-07-07
US7153093B2 (en) 2006-12-26
EP1476661A1 (fr) 2004-11-17
DE10207929A1 (de) 2003-09-04

Similar Documents

Publication Publication Date Title
EP1476661B1 (fr) Pompe a vide
EP0993553B1 (fr) Dispositif d'etancheite place sur un bout d'arbre d'un compresseur helicoidal a piston sec
DE60116966T2 (de) Abdichtung
DE102005015212A1 (de) Wellendichtung
DE69614225T2 (de) Abdichtung eines brennkraftmaschinen getriebenen Laders
DE1476808A1 (de) Gasturbinentriebwerk mit Schmierungsvorrichtung
DE3326910A1 (de) Oelfreier rotationsverdraengungskompressor
EP2192272A1 (fr) Dispositif pour étanchéifier un boîtier de palier de turbocompresseur
EP0217134A2 (fr) Dispositif d'étanchéité pour arbre
DE112013000924T5 (de) Labyrinthdichtung
DE29904409U1 (de) Schraubenkompressor
DE102010061916B4 (de) Pumpe zum Fördern eines Mediums und Schmiermittelsystem
EP2431613B1 (fr) Pompe à vide avec joint d'arbre
CH628709A5 (en) Roots pump
EP3371458B1 (fr) Pompe à vide sèche
EP0569424B1 (fr) Pompe a vide du type a marche a sec
DE102017106197B4 (de) Drehvorrichtung
DE102017120761A1 (de) Wälzlager zur Lagerung einer Getriebewelle eines Kraftfahrzeuggetriebes
DE19900926B4 (de) Pumpe
DE20302989U1 (de) Drehkolbenpumpe
DE102008036623A1 (de) Verwendung eines Wälzlagers zur Lagerung rotierender Bauteile in Vakuumeinirchtungen sowie Vakuumeinrichtung
DE10152955A1 (de) Lagereinheit
DE19849237C2 (de) Dichtsystem für eine aus Motor und Getriebe bestehende Antriebseinheit
EP0942172A1 (fr) Pompe à vide à arbres d'entraínements multiples
DE10303419B4 (de) Baueinheit mit einem ölgefüllten Gehäuse und einer durch das Gehäuse hindurchgeführten Welle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040807

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

17Q First examination report despatched

Effective date: 20061012

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: DE

Ref legal event code: R081

Ref document number: 50314167

Country of ref document: DE

Owner name: LEYBOLD GMBH, DE

Free format text: FORMER OWNER: LEYBOLD VAKUUM GMBH, 50968 KOELN, DE

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: OERLIKON LEYBOLD VACUUM GMBH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50314167

Country of ref document: DE

Effective date: 20120308

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50314167

Country of ref document: DE

Owner name: LEYBOLD GMBH, DE

Free format text: FORMER OWNER: LEYBOLD VACUUM GMBH, 50968 KOELN, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 50314167

Country of ref document: DE

Representative=s name: VON KREISLER SELTING WERNER, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 50314167

Country of ref document: DE

Representative=s name: VON KREISLER SELTING WERNER - PARTNERSCHAFT VO, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 50314167

Country of ref document: DE

Representative=s name: DOMPATENT VON KREISLER SELTING WERNER - PARTNE, DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120229

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120229

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120111

26N No opposition filed

Effective date: 20121012

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50314167

Country of ref document: DE

Effective date: 20121012

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140218

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140220

Year of fee payment: 12

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150218

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20151030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150302

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50314167

Country of ref document: DE

Owner name: LEYBOLD GMBH, DE

Free format text: FORMER OWNER: OERLIKON LEYBOLD VACUUM GMBH, 50968 KOELN, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 50314167

Country of ref document: DE

Representative=s name: DOMPATENT VON KREISLER SELTING WERNER - PARTNE, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220225

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50314167

Country of ref document: DE