EP1470615B1 - Dualpolarisierte strahleranordnung - Google Patents

Dualpolarisierte strahleranordnung Download PDF

Info

Publication number
EP1470615B1
EP1470615B1 EP03702516A EP03702516A EP1470615B1 EP 1470615 B1 EP1470615 B1 EP 1470615B1 EP 03702516 A EP03702516 A EP 03702516A EP 03702516 A EP03702516 A EP 03702516A EP 1470615 B1 EP1470615 B1 EP 1470615B1
Authority
EP
European Patent Office
Prior art keywords
antenna element
dual
devices
arrangement according
reflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03702516A
Other languages
English (en)
French (fr)
Other versions
EP1470615A1 (de
Inventor
Maximilian GÖTTL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kathrein SE
Original Assignee
Kathrein Werke KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kathrein Werke KG filed Critical Kathrein Werke KG
Publication of EP1470615A1 publication Critical patent/EP1470615A1/de
Application granted granted Critical
Publication of EP1470615B1 publication Critical patent/EP1470615B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • H01Q21/26Turnstile or like antennas comprising arrangements of three or more elongated elements disposed radially and symmetrically in a horizontal plane about a common centre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • H01Q13/18Resonant slot antennas the slot being backed by, or formed in boundary wall of, a resonant cavity ; Open cavity antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/20Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction

Definitions

  • the invention relates to a dual-polarized radiator arrangement especially for the mobile sector after the Preamble of claim 1.
  • Dual polarized antennas are preferred in the mobile sector at 800 - 1000 MHz and 1700 - 2200 MHz.
  • two antennas become orthogonal polarizations
  • the use has been generated of two linear polarizations with the orientation of + 45 ° or -45 ° proven over the vertical (X-polarization).
  • antennas with different horizontal Half-widths used, with as meaningful gradation Half-widths of 65 ° and 90 ° have enforced.
  • a reflector geometry for example with cross dipoles or with a special dipole structure, such as DE 198 60 121 A1 is known, used, so can be a horizontal half width between about 85 ° and 90 ° realize.
  • this example only concerns an antenna that is only in an operating frequency band is operated.
  • antennas which, however, also not in a half-width of about 90 ° for operation in two mutually offset frequency ranges are suitable.
  • antennas as stated in the publication S. Maxi and Biffi Gentili: “Dual Frequency Patch Antennas” in: IEEE Antennas and Propagation Magazine, Vol. 6, December 1997 are described.
  • a dual polarized antenna which has a 3-fold structure and in its polarization Aligned horizontally and vertically is also in Nobuhiro Kuga: "A Notch-Wire Composite Antenna for Polarization Diversity Reception "in IEEE AP Vol. 46, No. 6, June 1998, pp. 902-906 as known.
  • This antenna generates an omnidirectional diagram. But also lets it out Do not remove a dual-band antenna that is a horizontal Half width of about 90 °.
  • the object of the invention is therefore a radiator arrangement to create, on the one hand for two orthogonal Polarizations can be used and in which at least one Spotlights can be integrated for a higher frequency band range is, with half-widths of about 90 ° feasible should be.
  • radiators which is horizontal in both frequency ranges Have half-widths of 90 °. Regardless of this These radiator structures can also be used at Need to be operated only in one frequency range.
  • Figures 1 to 3 is a first embodiment a dual polarized antenna according to the invention shown.
  • the inventive Emitter arrangement essentially four radiator devices 1, i. four radiator devices 1a, 1b, 1c and 1d, which are conductive. These four radiator devices 1 form a square in plan view Structure.
  • the antenna is explained with the Radiator arrangement in plan view by 90 ° rotationally symmetrical or point-symmetrical.
  • Radiator devices 1 can also be used as radiator elements, Radiator arms, radiator rods or generally as Radiator structures are called.
  • rod-shaped radiator devices 1 point about an equal length of about a 0.2 times to the 1 times the operating wavelength ⁇ .
  • the distance to the Level 3 of the reflector 5 is about 1/8 to 1/4 of the Operating wavelength.
  • radiator devices 1 parallel to the reflector plane in a common Emitter plane 7 are arranged.
  • radiator devices 1a and 1c parallel to each other.
  • the two in each case offset by 90 ° further radiator devices, So in the embodiment shown the Radiator devices 1b and 1d also parallel to each other arranged.
  • Both pairs of parallel to each other arranged radiator devices 1a and 1c on the one hand and 1b and 1d to the other are perpendicular to each other or at least approximately perpendicular to each other, resulting in an antenna arrangement, which in two send polarizations perpendicular to each other and can receive, in a plane E1, in one Angle of + 45 ° with respect to the horizontal is aligned and in a plane E2, which faces at an angle of -45 ° the horizontal is aligned.
  • radiator ends 9 of the four radiator devices 1 are each opposite, so removed mutually lying ends 9 of the four radiator devices 1, i. the radiator ends 9a, 9a 'and 9b, 9b', and 9c, 9c 'and 9d, 9d' high frequency to the respective adjacent End point of the adjacent radiator device isolated. That is, the radiator end 9a of the adjacent Radiating 9b ', the radiator end 9b from the adjacent Radiating 9c ', the radiator end 9c from the neighboring Radiating 9d 'and the emitter end 9d from the adjacent Emitter 9a 'is high frequency isolated.
  • Each of the four radiator devices 1 each by an electric conductive holding device 17 is held and carried, preferred over the reflector 5.
  • This holding device 17 may in the embodiment according to the figures 1 to 3 per radiator device 1 each consisting of two rods or rod means 19 consist, each of a preferably formed by the reflector base 21 at which mechanically mounted and electrically conductive attached to the radiator devices 1 in divergent Form are guided to the radiator ends 9.
  • the Arrangement is such that each of the adjacent Emitter ends, for example the emitter ends 9a and 9b 'of the mutually adjacent radiator devices 1a and 1b, guided rod devices 19 from their base 21 from parallel to each other at a distance run, whereby between two adjacent lying Rods or rod assemblies 19 each have a slot or Gap 25 is formed.
  • the bars or rod means 19 at the reflector side or base-side end 27 via a conductive base 21, the conductive reflector sheet 5 and / or a conductive Compound 29 are interconnected.
  • a line connection is additionally preferred made to the reflector 5 itself. This line connection
  • the reflector 5 does not necessarily have to to be available.
  • the inlets of the radiator devices 1 take place in this embodiment at the respective end of the four Columns or slots 25, so at the radiator ends 9. Die Infeed takes place at these four corners or points 13 preferably by means of coaxial cable 31, which in the schematic Top view according to Figure 2 schematically indicated are.
  • the inner conductor 31 'with one end of a radiator device 1 and the outer conductor 31 " with the adjacent end of the adjacent radiator device 1 electrically connected are electrically connected.
  • the outer conductor 31 "of the coaxial cable 31 with the radiator end 9a of the radiator device 1a electrically connected is electrically connected, whereas the inner conductor 31 ' with the adjacent radiator end 9b 'of the adjacent Radiator device 1b is electrically connected.
  • each pair adjacent to each other lying ends 9 of the radiator devices 1, ie at the mentioned four points or corners 13 feed points 113 formed, wherein the supply of the radiator arrangement each at these feed points, so on the reflector side repellent end of the slots or columns 25 at the diametrically opposite points or corners, so at the respective column end to the mentioned Feeding points 113 in-phase takes place.
  • This can be, for example by interconnection by means of an equal length Coaxial line from a central feed point respectively.
  • FIGS. 4 and 5 Reference to the figures 4 and 5 is another embodiment shown. This embodiment distinguishes from that according to FIGS. 1 to 3 in that the area that passes through the respective radiator device 1 and the laterally at the ends of the radiator devices.
  • 1 attacking rods or rod means 19 and the Rods 19 supporting base 21, optionally through the reflector 5 and / or the mentioned conductive connecting elements 29 is bounded, not vacant or left blank is, but electrically full surface and thus as a closed Surface is designed.
  • the upper boundary edge 1 ' this surface element 39 represents the radiator device 1, comparable to the embodiment of Figure 1 to 3, dar.
  • the lateral boundary edges 19 ' provide ultimately the associated slot or its associated Gap 25 limiting rods or rod means 19 is.
  • the lower edge 27 ' is comparable to the base or reflector-side connecting element 28.
  • FIGS 1 to 3 Another difference of the embodiment according to Figures 4 to 6 to the embodiment of FIGS 1 to 3 is that the surface elements 39 in vertical section are formed edged, the lower base or reflector-side portion 39 'of the surface element outgoing from a central section to the outside slightly divergent runs (for example, in a Angle of 20 ° to 70 °, preferably by 30 ° to 60 °, in particular by 45 °, whereas only one of the reflector spaced outside portion 39 "of the respective Surface element 39 is aligned in the vertical direction, perpendicular to the reflector 5.
  • the total height of a radiator element thus formed is by this kinked formation of the individual surface elements 39 lower.
  • FIGS. 4 to 6 can also be so be formed that only top-lying rectangular Surface elements 39 "are provided instead of the lower in plan view each trapezoidal shaped surface elements 39 'breakthroughs are provided, with the upper Surface elements 39 "then by lateral support elements 19th being held.
  • the Radiator devices 1 not convex but concave. Otherwise in this embodiment as well the overhead radiator device 1 again as electrically conductive, rod-shaped device or the like be formed by corresponding bars or Rod means 19 are held. The in between free Surface can also be completely closed again, so that surface elements 39, comparable to the embodiment are formed according to Figures 4 and 5.
  • an improvement The radiation characteristic also realized thereby is that to the possibly rod-shaped Radiator devices 1 or in the case of surface elements 39 at the corresponding the actual radiator devices 1 forming boundary edges 1 'preferred running centrally and parallel to the reflector 5 aligned outwardly projecting electrically conductive connected Lugs or lugs 45 may protrude.
  • a dual polarized antenna i. a radiator assembly described been working in a frequency band and while large half-widths of, for example, 90 ° can have.
  • an antenna can be set up, for example, in a 900 MHz frequency range and a 1800 MHz frequency range or, for example, in one 900 MHz frequency range and a 2000 MHz or 2100 MHz Frequency range is operable.
  • a patch antenna 51 which in plan view for example, has a square structure and in about the height of the boundary edges 1 ', ie the radiator devices 1 can lie.
  • FIGS. 15 and 16 becomes a vector dipole arrangement for operation in the higher frequency band 53 used as they basically look DE 198 60 121 A1 is known.
  • this vector dipole element 53 the dipole halves are constructive each of two mutually perpendicular Halbdipolkomponenten formed, the interconnection of the Ends of the symmetrical leading to the respective dipole halves or substantially or approximately symmetrical Lines done in such a way that always the corresponding Conduit halves of the adjacent, perpendicular to each other standing dipole halves are electrically connected.
  • the inner antenna element shown in Figures 15 and 16 in the form of an illustrated vector dipole 53 thereby also for sending or receiving X-aligned, so in the + 45 ° and -45 ° opposite the aligned Polarizations suitable.
  • the polarizations of the inner vector dipole 53 and of the outer from the bottom to the top wedge-shaped antenna element parallel.
  • radiator types for example cross dipoles conceivable, which are used and used in the context of the invention can.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)
  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)
  • Paper (AREA)

Description

Die Erfindung betrifft eine dualpolarisierte Strahleranordnung insbesondere für den Mobilfunkbereich nach dem Oberbegriff des Anspruches 1.
Dualpolarisierte Antennen kommen bevorzugt im Mobilfunkbereich bei 800 - 1000 MHz und 1700 - 2200 MHz zum Einsatz. Dabei werden von einer Antenne zwei orthogonale Polarisationen erzeugt, insbesondere hat sich die Verwendung von zwei linearen Polarisationen mit der Ausrichtung von +45° bzw. -45° gegenüber der Vertikalen bewährt (X-Polarisation). Um die Ausleuchtung des Versorgungsbereiches zu optimieren, werden Antennen mit verschiedenen horizontalen Halbwertsbreiten verwendet, wobei sich als sinnvolle Abstufung Halbwertsbreiten von 65° und 90° durchgesetzt haben.
Für Antennen mit nur einer Polarisation existieren mehrere Lösungen nach dem Stand der Technik, um diese verschiedenen Halbwertsbreiten zu realisieren.
So werden z.B. einfache vertikal ausgerichtete Dipole mit einem auf die entsprechende Halbwertsbreite optimierten Reflektor als vertikal polarisierte Antennen verwendet. Für Antennen mit nur einem Betriebsfrequenzbereich sind ebenfalls Lösungen für X-polarisierte Antennen mit Halbwertsbreiten von 90° bereits bekannt geworden. Dazu werden beispielsweise Kreuzdipole bzw. Dipolquadrate oder Patchstrahler mit entsprechend gestaltetem Reflektor verwendet, um eine entsprechende horizontale Halbwertsbreite zu erzielen.
Gemäß der DE-A1-197 22 742 wird dazu eine Reflektorgeometrie vorgeschlagen, bei welcher in den gegenüber dem Reflektorblech seitlich vorstehenden Reflektorseitenbegrenzungen Schlitze eingebracht sind. Wird eine derartige Reflektorgeometrie beispielsweise mit Kreuzdipolen oder mit einer speziellen Dipolstruktur, wie sie beispielsweise aus der DE 198 60 121 A1 bekannt ist, verwendet, so lässt sich eine horizontale Halbwertsbreite zwischen etwa 85° und 90° realisieren. Allerdings betrifft dieses Beispiel lediglich eine Antenne, die lediglich in einem Betriebsfrequenzband betrieben wird.
Bei dualpolarisierten Antennen jedoch, welche in zwei weit auseinander liegenden Frequenzbereichen betrieben werden sollen, die z.B. mit einem Faktor 2:1 versetzt zueinander liegen, sind Lösungen nur mit horizontalen Halbwertsbreiten von etwa 65° bekannt.
So wird beispielsweise gemäß der US-B-6 333 720 (die der DE-A1-198 23 749 entspricht) eine Antenne in Form eines Dipolquadrats vorgeschlagen, die aus vier jeweils paarweise parallel ausgerichtet und versetzt zueinander liegenden Dipolen besteht. Jeder Dipol besteht dabei aus zwei Dipolhälften, die mittig über eine Symmetrierung gespeist werden. Die jeweiligen Dipolhälften werden dabei an ihren aufeinanderzuweisenden Enden an dort ausgebildeten Anspeisestellen zumindest näherungsweise gleichphasig und näherungsweise symmetrisch gespeist. In den Eckbereichen des Dipolquadrates sind die nach außen und um 90° versetzt zueinander liegenden Dipolenden hochfrequenzmäßig voneinander isoliert.
Zusätzlich wird in dieser Vorveröffentlichung eine Kombination von Dipolstrahlern vorgeschlagen, wodurch sich für beide Frequenzbereiche (beispielsweise das 900 MHz Band und das 1800 MHz Band) eine Halbwertsbreite von etwa 65° realisieren lässt.
Eine entsprechende Lösung unter Verwendung von Patchstrahlern ist beispielsweise aus der WO 00/01 032 bekannt.
Die Realisierung von Antennen, die in zwei Frequenzbändern bzw. zwei Betriebsfrequenzbereichen betrieben werden können und dabei eine Halbwertsbreite von etwa 90° aufweisen sollen, ist bisher nicht umsetzbar gewesen.
Darüber hinaus wird auch noch auf weitere Vorveröffentlichungen von Antennen verwiesen, die allerdings ebenfalls nicht in einer Halbwertsbreite von ca. 90° für den Betrieb in zwei versetzt zueinander liegenden Frequenzbereichen geeignet sind. Es handelt sich dabei beispielsweise um Antennen, wie sie in der Veröffentlichung S. Maxi and Biffi Gentili: "Dual-Frequency Patch Antennas" in: IEEE Antennas and Propagation Magazine, Vol. 39, No. 6, December 1997 beschrieben sind. Eine dualpolarisierte Antenne, welche eine 3-fach Struktur aufweist und in ihrer Polarisation horizontal und vertikal ausgerichtet ist, ist auch in Nobuhiro Kuga: "A Notch-Wire Composite Antenne for Polarization Diversity Reception" in IEEE AP Vol. 46, No. 6, June 1998, S. 902 - 906 als bekannt zu entnehmen. Diese Antenne erzeugt ein Rundstrahldiagramm. Aber auch hieraus lässt sich keine Dual-Band-Antenne entnehmen, die eine horizontale Halbwertsbreite von etwa 90° aufweist.
Aufgabe der Erfindung ist es von daher eine Strahleranordnung zu schaffen, welche einerseits für zwei orthogonale Polarisationen einsetzbar ist und in welcher zumindest ein Strahler für einen höheren Frequenzbandbereich integrierbar ist, wobei Halbwertsbreiten von etwa 90° realisierbar sein sollen.
Die Aufgabe wird erfindungsgemäß entsprechend den im Anspruch 1 angegebenen Merkmalen gelost. Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben.
Durch die erfindungsgemäße dualpolarisierte Strahleranordnung wird erstmals die Möglichkeit geschaffen, Antennen aufzubauen, welche in beiden Frequenzbereichen horizontale Halbwertsbreiten von 90° aufweisen. Unabhängig davon können diese Strahlerstrukturen aber auch verwendet werden um bei Bedarf nur in einem Frequenzbereich betrieben zu werden.
Die Erfindung wird nachfolgend anhand von Zeichnungen dargestellt. Dabei zeigen im Einzelnen:
Figur 1 :
eine schematische perspektivische Darstellung einer erfindungsgemäßen dualpolarisierten Strahleranordnung;
Figur 2 :
eine schematische Seitenansicht der in Figur 1 in perspektivischer Darstellung dargestellten Strahleranordnung in einem Querschnitt senkrecht durch die Reflektorebene;
Figur 3 :
eine schematische Draufsicht auf das Ausführungsbeispiel gemäß Figuren 1 und 2;
Figur 4 :
eine schematische perspektivische Darstellung eines abgewandelten Ausführungsbeispieles einer Strahleranordnung;
Figur 5 :
eine Seitenansicht auf das Ausführungsbeispiel gemäß Figur 4;
Figur 6 :
eine Draufsicht auf das Ausführungsbeispiel gemäß Figuren 4 und 5;
Figur 7 :
eine zu Figur 6 entsprechende Draufsicht auf ein abgewandeltes Ausführungsbeispiel mit einem Lochraster als Strahleranordnungen;
Figur 8 :
eine Draufsicht auf ein weiteres abgewandeltes Ausführungsbeispiel mit konvex geformten Strahleranordnungen;
Figur 9 :
ein weiteres abgewandeltes Ausführungsbeispiel in schematischer Draufsicht mit konkav geformten Strahleranordnungen;
Figur 10 :
eine schematische Draufsicht auf ein nochmals abgewandeltes Ausführungsbeispiel mit seitlichen Strahleransätzen;
Figur 11 :
eine Draufsicht auf eine Weiterentwicklung des in Figur 10 gezeigten Ausführungsbeispieles mit senkrecht zu den Erweiterungsansätzen verlaufenden vorstehenden Vorsprüngen;
Figur 12 :
eine Seitenansicht auf das Ausführungsbeispiel gemäß Figur 11;
Figur 13 :
eine schematische Draufsicht auf eine dualpolarisierte Zweiband-Strahleranordnung mit einem innenliegenden Patchstrahler für die höhere Frequenz;
Figur 14 :
eine perspektivische Darstellung der Strahleranordnung nach Figur 13;
Figur 15 :
eine schematische Draufsicht auf eine zu Figur 13 abgewandelte Strahleranordnung; und
Figur 16 :
eine schematische perspektivische Darstellung zum Ausführungsbeispiel nach Figur 15.
In den Figuren 1 bis 3 ist ein erstes Ausführungsbeispiel einer erfindungsgemäßen dualpolarisierten Antenne gezeigt.
Wie aus Figur 1 in perspektivischer Darstellung, in Figur 2 in schematischer Seitenansicht (in einer Schnittdarstellung senkrecht durch die Reflektorebene) und in Figur 3 in einer Draufsicht zu entnehmen ist, weist die erfindungsgemäße Strahleranordnung im Wesentlichen vier Strahlereinrichtungen 1, d.h. vier Strahlereinrichtungen 1a, 1b, 1c und 1d auf, die leitend sind. Diese vier Strahlereinrichtungen 1 bilden in Draufsicht eine quadratförmige Struktur. Mit anderen Worten ist die Antenne mit der erläuterten Strahleranordnung in Draufsicht um 90° rotationssymmetrisch oder punktsymmetrisch aufgebaut.
Die in Draufsicht eine quadratische Struktur bildenden Strahlereinrichtungen 1 können dabei auch als Strahlerelemente, Strahlerarme, Strahlerstäbe oder allgemein als Strahlerstrukturen bezeichnet werden.
Diese vier im gezeigten Ausführungsbeispiel nach den Figuren 1 bis 3 stabförmigen Strahlereinrichtungen 1 weisen etwa eine gleiche Länge von etwa einem 0,2-fachen bis zum 1-fachen der Betriebswellenlänge λ auf. Der Abstand zur Ebene 3 des Reflektors 5 beträgt etwa 1/8 bis 1/4 der Betriebswellenlänge.
Aus dem geschilderten Aufbau ergibt sich also, dass die im gezeigten Ausführungsbeispiel stabförmigen Strahlereinrichtungen 1 parallel zur Reflektorebene in einer gemeinsamen Strahlerebene 7 angeordnet sind. Dabei liegen die jeweils gegenüberliegenden Strahlereinrichtungen 1, also im gezeigten Ausführungsbeispiel die Strahlereinrichtungen 1a und 1c parallel zueinander. Ferner sind die beiden jeweils um 90° versetzt liegenden weiteren Strahlereinrichtungen, also im gezeigten Ausführungsbeispiel die Strahlereinrichtungen 1b und 1d ebenfalls parallel zueinander angeordnet. Beide Paare von parallel zueinander angeordneten Strahlereinrichtungen 1a und 1c zum einen und 1b und 1d zum anderen sind senkrecht zueinander oder zumindest näherungsweise senkrecht zueinander ausgerichtet, wodurch sich eine Antennenanordnung ergibt, die in zwei senkrecht zueinander stehenden Polarisationen senden und empfangen kann, und zwar in einer Ebene E1, die in einem Winkel von +45° gegenüber der Horizontalen ausgerichtet ist und in einer Ebene E2, die in einem Winkel von -45° gegenüber der Horizontalen ausgerichtet ist.
Wie aus dem Ausführungsbeispiel ebenfalls zu entnehmen ist, sind die jeweils gegenüberliegenden, also entfernt zueinander liegenden Enden 9 der vier Strahlereinrichtungen 1, d.h. die Strahlerenden 9a, 9a' und 9b, 9b', sowie 9c, 9c' und 9d, 9d' hochfrequenzmäßig zu dem jeweils benachbarten Endpunkt der benachbarten Strahlereinrichtung isoliert. D.h., dass das Strahlerende 9a vom benachbarten Strahlerende 9b', das Strahlerende 9b vom benachbarten Strahlerende 9c', das Strahlerende 9c vom benachbarten Strahlerende 9d' und das Strahlerende 9d vom benachbarten Strahlerende 9a' hochfrequenzmäßig isoliert ist. Jede der vier Strahlereinrichtungen 1 wird jeweils durch eine elektrisch leitende Halteeinrichtung 17 gehalten und getragen, bevorzugt gegenüber dem Reflektor 5. Diese Halteeinrichtung 17 kann bei dem Ausführungsbeispiel gemäß den Figuren 1 bis 3 pro Strahlereinrichtung 1 jeweils aus zwei Stäben oder Stabeinrichtung 19 bestehen, die jeweils von einer bevorzugt durch den Reflektor gebildeten Basis 21, an welcher sie mechanisch montiert und elektrisch leitend angebracht sind, zu den Strahlereinrichtungen 1 in divergierender Form zu den Strahlerenden 9 geführt sind. Die Anordnung ist dabei derart, dass die jeweils zu den benachbarten Strahlerenden, beispielsweise den Strahlerenden 9a und 9b' der benachbart zueinander angeordneten Strahlereinrichtungen 1a und 1b, geführten Stabeinrichtungen 19 von ihrer Basis 21 aus parallel im Abstand zueinander verlaufen, wodurch zwischen zwei benachbart liegenden Stäben oder Stabanordnungen 19 jeweils ein Schlitz oder Spalt 25 gebildet ist.
Aus dem geschilderten Aufbau ist zum einen zu ersehen, dass die Stäbe oder Stabeinrichtung 19 am reflektorseitigen oder basisseitigen Ende 27 über eine leitende Basis 21, das leitende Reflektorblech 5 und/oder eine leitende Verbindung 29 miteinander verbunden sind. Wie ausgeführt, wird dabei zusätzlich bevorzugt auch eine Leitungsverbindung zu dem Reflektor 5 selbst hergestellt. Diese Leitungsverbindung zum Reflektor 5 muss jedoch nicht zwangsläufig vorhanden sein.
Näherungsweise wird also bei dem erläuterten Ausführungsbeispiel gemäß Figuren 1 bis 3 durch die jeweilige Strahlereinrichtung 1, die zu den jeweiligen Strahlerenden der Strahlereinrichtung 1 führende Stab- oder Halteeinrichtung 17, 19 und die basis- oder reflektorseitig liegenden Enden 27 sowie durch die gegebenenfalls dazwischen vorgesehenen leitenden Verbindungseinrichtungen 29 und/oder eine leitende Basis oder durch den Reflektor 5 selbst eine trapezförmige Struktur gebildet.
Die Einspeisungen der Strahlereinrichtungen 1 erfolgen in diesem Ausführungsbeispiel am jeweiligen Ende der vier Spalten oder Schlitze 25, also an den Strahlerenden 9. Die Einspeisung erfolgt dabei an diesen vier Ecken oder Stellen 13 bevorzugt mittels Koaxialkabel 31, die in der schematischen Draufsicht gemäß Figur 2 schematisch angedeutet sind.
Dabei wird jeweils der Innenleiter 31' mit dem einen Ende der einen Strahlereinrichtung 1 und der Außenleiter 31" mit dem benachbart liegenden Ende der benachbarten Strahlereinrichtung 1 elektrisch verbunden. Mit anderen Worten wird also beispielsweise der Außenleiter 31" des Koaxialkabels 31 mit dem Strahlerende 9a der Strahlereinrichtung 1a elektrisch verbunden, wohingegen der Innenleiter 31' mit dem benachbarten Strahlerende 9b' der benachbarten Strahlereinrichtung 1b elektrisch verbunden wird.
Somit werden jeweils an den paarweise benachbart zueinander liegenden Enden 9 der Strahlereinrichtungen 1, also an den erwähnten vier Stellen oder Ecken 13 Einspeisstellen 113 gebildet, wobei die Anspeisung der Strahleranordnung jeweils an diesen Einspeisstellen, also an dem reflektorseitig abweisenden Ende der Schlitze oder Spalten 25 an den jeweils diametral gegenüberliegenden Stellen oder Ecken, also am jeweiligen Spaltende an den erwähnten Einspeisstellen 113 gleichphasig erfolgt. Dies kann beispielsweise durch Zusammenschaltung mittels einer gleichlangen Koaxialleitung von einem zentralen Speisepunkt aus erfolgen. Es entstehen somit zwei zentrale Speisepunkte 35a und 35b für jede der orthogonalen Polarisationen, welche zugleich eine hohe Entkopplung zueinander aufweisen.
Da die Stäbe oder Stabeinrichtung 19 der Halteeinrichtung 17 und damit die Schlitze oder Spalten 25 eine Länge λ/4 aufweisen, können die Strahlerenden 9 problemlos basis- oder reflektorseitig kurzgeschlossen werden. Diese wirken in diesem Beispiel somit zusammen mit den Speisekabeln als Symmetrierung.
In der schematischen Querschnittsdarstellung gemäß Figur 2 ist der Reflektor im Querschnitt gezeigt, der außenliegend auch quer oder senkrecht zur Reflektorebene 3 verlaufende Seitenbegrenzungswände 5' umfassen kann.
Nachfolgend wird auf ein nächstes Ausführungsbeispiel Bezug genommen.
Anhand der Figuren 4 und 5 ist ein weiteres Ausführungsbeispiel gezeigt. Dieses Ausführungsbeispiel unterscheidet sich von demjenigen nach den Figuren 1 bis 3 dadurch, dass die Fläche, die durch die jeweilige Strahlereinrichtung 1 und die seitlich an den Enden der Strahlereinrichtungen 1 angreifenden Stäben oder Stabeinrichtungen 19 und die die Stäbe 19 tragende Basis 21, gegebenenfalls durch den Reflektor 5 und/oder die erwähnten leitenden Verbindungselemente 29 umgrenzt ist, nicht frei oder leergelassen ist, sondern elektrisch vollflächig und damit als geschlossene Fläche gestaltet ist. Dadurch werden also vier Strahlereinrichtungen 1 bzw. Strahlerstrukturen 1 geschaffen, die jeweils ein geschlossenes Flächenelement 39 aufweisen. Jeweils die oben liegende Begrenzungskante 1' dieses Flächenelementes 39 stellt die Strahlereinrichtung 1, vergleichbar dem Ausführungsbeispiel nach Figur 1 bis 3, dar. Die seitlichen Begrenzungskanten 19' stellen letztlich die den zugehörigen Schlitz oder den zugehörigen Spalt 25 begrenzenden Stäbe oder Stabeinrichtung 19 dar. Die unten liegende Kante 27' ist vergleichbar dem basis- oder reflektorseitigen Verbindungselement 28.
Ein weiterer Unterschied des Ausführungsbeispiels gemäß den Figuren 4 bis 6 zu dem Ausführungsbeispiel gemäß Figuren 1 bis 3 ist, dass die Flächenelemente 39 in Vertikalschnittdarstellung gekantet ausgebildet sind, der untere basis- oder reflektorseitige Abschnitt 39' des Flächenelementes von einem Zentralabschnitt ausgehend nach außen leicht divergierend verläuft (beispielsweise in einem Winkel von 20° bis 70°, vorzugsweise um 30° bis 60°, insbesondere um 45°, wohingegen nur ein von dem Reflektor beabstandeter außenliegender Abschnitt 39" des jeweiligen Flächenelementes 39 in Vertikalrichtung ausgerichtet ist, also senkrecht zum Reflektor 5. Dies eröffnet die Möglichkeit, dass die Gesamtlänge des Schlitzes oder Spaltes 25 und damit die Gesamtlänge der den Haltestäben 19 gemäß Figur 1 vergleichbaren Begrenzungskanten 19' ebenfalls wieder λ/4 der Betriebsfrequenz ist (bevorzugte Mittenbetriebsfrequenz), so dass durch die Flächenelemente 39 basis- oder reflektorseitig ein Kurzschluss der strahlenden oben liegenden, parallel zum Reflektor verlaufenden Begrenzungskanten 19' erfolgen kann, wodurch die eigentlichen Strahlereinrichtungen 1 gebildet sind. Das Ausführungsbeispiel gemäß Figur 2 zeigt insoweit auch, dass natürlich das Ausführungsbeispiel gemäß Figur 1 nicht mit gerade verlaufenden Stäben oder Stabeinrichtungen 19 verlaufen muss, sondern dass auch bei dem Ausführungsbeispiel gemäß den Figuren 1 bis 3 die Stäbe oder Stabeinrichtungen unter Parallelverlauf zueinander eine geknickte Form, vergleichbar der Kante 19' bei dem Ausführungsbeispiel gemäß den Figuren 3 bis 5, unter Bildung eines Schlitzes 25 aufweisen können.
Die Gesamthöhe eines so gebildeten Strahlerelementes ist durch diese geknickte Ausbildung der einzelnen Flächenelemente 39 niedriger.
Die Ausführungsform gemäß Figuren 4 bis 6 kann auch so ausgebildet sein, dass nur oben liegende rechteckförmige Flächenelemente 39" vorgesehen sind anstelle der unteren in Draufsicht jeweils trapezförmig gestalteten Flächenelemente 39' Durchbrüche vorgesehen sind, wobei die oberen Flächenelemente 39" dann durch seitliche Tragelemente 19 gehalten werden.
Anhand der schematischen Draufsicht gemäß Figur 7 ist nur dargestellt, dass die Flächenelemente 39 abweichend von dem zuletzt erläuterten Ausführungsbeispiel nicht vollflächig geschlossen ausgebildet sein müssen, sondern auch beispielsweise mit einem Lochraster 43 versehen sein können. Weitere Abwandlungen sind beliebig möglich und denkbar.
Bei dem Ausführungsbeispiel gemäß Figur 8 ist eine Gesamtstruktur gewählt worden, bei der die einzelnen Strahlereinrichtungen 1 nicht aus gerade laufenden Stäben oder Begrenzungskanten gebildet sind, sondern in Draufsicht konvexe oder sogar teilkreisförmige Strahlereinrichtungen 1 bilden. Wären die kreuzweise gegenüberliegenden Schlitze oder Spalten 25 nicht durch Haltestäbe oder Stabeinrichtungen 19 begrenzt, sondern sind diese Kanten 19' Teil von um 90° versetzt liegenden Flächenelementen 39, so sind diese entsprechend teilkegelstumpfförmig oder teilzylinderförmig ausgerichtet verlaufend ausgebildet.
Bei einem Ausführungsbeispiel gemäß Figur 9 sind die Strahlereinrichtungen 1 nicht konvex sondern konkav geformt. Auch bei diesem Ausführungsbeispiel könnte ansonsten die oben liegende Strahlereinrichtung 1 wieder als elektrisch leitende, stabförmige Einrichtung oder dergleichen gebildet sein, die durch entsprechende Stäbe oder Stabeinrichtungen 19 gehalten sind. Die dazwischen freie Fläche kann aber auch wieder vollflächig geschlossen sein, so dass Flächenelemente 39, vergleichbar dem Ausführungsbeispiel gemäß den Figuren 4 und 5, gebildet sind.
Insbesondere anhand der Figuren 8 und 9 ist also ersichtlich, dass die Strahlereinrichtungen 1, z.B. bei Verwendung von entsprechenden Flächenelementen 39, die Strahlerkanten 1' aufweisen können, die zwischen den Einspeisestellen 13, 113 nicht nur gerade verlaufen, sondern in Draufsicht von einem zentralen Mittelabschnitt aus betrachtet konvex nach außen vorstehend oder sogar konkav geformt gebildet sind. Dabei können entsprechend geformte Strahlereinrichtungen 1 verwendet werden oder vollflächige oder teilweise vollflächige Strahlerelemente 1 mit Flächenabschnitten 39 oder unter Bildung eines entsprechenden Freiraumes 39'.
Anhand von Figur 10 ist ferner erläutert, dass eine Verbesserung der Strahlungscharakteristik auch dadurch realisierbar ist, dass an den gegebenenfalls stabförmigen Strahlereinrichtungen 1 oder im Falle von Flächenelementen 39 an den entsprechenden die eigentlichen Strahlereinrichtungen 1 bildenden Begrenzungskanten 1' bevorzugt mittig und parallel zum Reflektor 5 ausgerichtet verlaufend nach außen vorstehende elektrisch leitend angebundene Lappen oder Ansätze 45 vorstehen können.
Bei dem Ausführungsbeispiel gemäß den Figuren 11 und 12 ist an den außenliegenden Enden 47 dieser Lappen oder Ansätze 45 noch eine weitere Verlängerung 49 vorgesehen, die bei diesem Ausführungsbeispiel wiederum bevorzugt vertikal zur Reflektorebene 3 ausgerichtet ist. Dabei zeigt die Draufsicht gemäß Figur 11 auch, dass die jeweils paarweise um 90° versetzt zueinander liegenden, bevorzugt parallel zur Reflektorebene 3 verlaufenden Lappen oder Ansätze 45 mit unterschiedlicher Längserstreckung längs zur Reflektorebene verlaufen können. Das gleiche gilt auch für die bevorzugt vertikal zur Reflektorebene 3 vorgesehen Verlängerungsansätze 49.
Anhand der erläuterten Ausführungsbeispiele ist also eine dualpolarisierte Antenne, d.h. eine Strahleranordnung beschrieben worden, die in einem Frequenzband arbeitet und dabei große Halbwertsbreiten von beispielsweise um 90° aufweisen kann.
Dabei können beispielsweise mehrere derartige, anhand der Figuren 1 bis 11 erläuterte Strahleranordnungen in Vertikalanordnung übereinander, bevorzugt vor einem gemeinsamen Reflektor 3 angeordnet sein. Sind die erwähnten Strahlereinrichtungen 1 bzw. Begrenzungskanten 1' entsprechend den erläuterten Ausführungsbeispielen horizontal bzw. vertikal zueinander angeordnet, so ergibt sich dadurch eine X-polarisierte Antenne, bei der die eine Polarisation in +45° und die andere Polarisation in -45° gegenüber der Horizontalebene ausgerichtet ist. Die Polarisationsrichtungen stimmen in Draufsicht also mit dem Verlauf der Schlitze oder Spalten 25 überein.
In einer erweiterten Antennenstruktur kann aber nunmehr eine Gesamtantennenanordnung aufgebaut werden, die auch zum Betrieb in zwei Frequenzbändern oder Frequenzbereichen geeignet ist, die entfernt zueinander liegen und sich beispielsweise um einen Faktor 2:1 unterscheiden. Mit anderen Worten kann also eine Antenne aufgebaut werden, die beispielsweise in einem 900 MHz Frequenzbereich und einem 1800 MHz Frequenzereich oder beispielsweise in einem 900 MHz Frequenzbereich und einem 2000 MHz bzw. 2100 MHz Frequenzbereich betreibbar ist.
Anhand des Ausführungsbeispieles gemäß den Figuren 13 und 14 wird dies dadurch realisiert, dass im Inneren der anhand der Figuren 1 bis 11 erläuterten dualpolarisierten Strahleranordnung eine weitere Strahleranordnung zum Betrieb in einem höheren Frequenzband vorgesehen ist.
Bei dem Ausführungsbeispiel gemäß Figuren 13 und 14 wird dies durch eine Patchantenne 51 realisiert, die in Draufsicht beispielsweise eine quadratische Struktur aufweist und dabei in etwa der Höhe der Begrenzungskanten 1', also der Strahlereinrichtungen 1 liegen kann.
Bei dem Ausführungsbeispiel gemäß den Figuren 15 und 16 wird für den Betrieb in dem höheren Frequenzband eine Vektordipolanordnung 53 eingesetzt, wie sie grundsätzlich aus der DE 198 60 121 A1 bekannt ist. Bei diesem Vektordipolelement 53 sind die Dipolhälften in konstruktiver Hinsicht jeweils aus zwei senkrecht zueinander ausgerichteten Halbdipolkomponenten gebildet, wobei die Verschaltung der Enden der zu den jeweiligen Dipolhälften führenden symmetrischen oder im Wesentlichen oder annähernd symmetrischen Leitungen derart erfolgt, dass immer die entsprechenden Leitungshälften der benachbarten, senkrecht aufeinander stehenden Dipolhälften elektrisch verbunden sind. Die elektrische Einspeisung der jeweils diametral gegenüberliegenden Dipolhälften erfolgt für eine erste Polarisation und eine dazu orthogonale zweite Polarisation entkoppelt. Das in den Figuren 15 und 16 gezeigte innenliegende Antennenelement in Form eines erläuterten Vektordipols 53 ist dadurch auch zum Senden oder Empfangen von X-ausgerichteten, also im +45° und -45° gegenüber der ausgerichteten Polarisationen geeignet. Mit anderen Worten sind die Polarisationen des innenliegenden Vektordipols 53 und des äußeren von unten nach oben keilförmig gestalteten Antennenelementes parallel.
Selbstverständlich sind auch abweichend von den bisher erläuterten Ausführungsbeispielen noch andere Kombinationen von Strahlertypen, beispielsweise Kreuzdipole denkbar, die im Sinne der Erfindung verwendet und eingesetzt werden können.

Claims (30)

  1. Dualpolarisierte Strahleranordnung, die vorzugsweise vor einem Reflektor oder einer Reflektoranordnung (5) angeordnet ist, mit folgenden weiteren Merkmalen
    die Strahleranordnung weist mindestens vier leitende Strahlereinrichtungen (1, 1') auf, die zumindest näherungsweise jeweils um 90° versetzt zueinander angeordnet sind,
    die vier leitenden Strahlereinrichtungen (1, 1') sind mittels einer Halteeinrichtung gegenüber einer Basis (21) oder einem Reflektor bzw. einer Reflektoranordnung (5) befestigt und gehalten,
    die jeweils paarweise benachbart zueinander liegenden Strahlerenden (9) zweier benachbarter Strahlereinrichtungen (1, 1') sind jeweils hochfrequenzmäßig voneinander isoliert, und
    die Strahlereinrichtungen (1, 2') weisen Anspeisestellen (113) auf, so dass die Strahlereinrichtung (1, 1') zwischen den jeweils gegenüberliegenden Anspeisestellen (113) zumindest näherungsweise gleichphasig und näherungsweise symmetrisch angespeist werden,
    gekennzeichnet durch die folgenden weiteren Merkmale
    die vier Strahlereinrichtungen (1, 1') weisen jeweils zwischen ihren gegenüberliegenden Strahlerenden (9) eine leitende Struktur auf, und
    die jeweils paarweise benachbart zueinander liegenden Strahlerenden (9) zweier benachbarter Strahlereinrichtungen (1, 1') bilden die Anspeisestellen (113).
  2. Dualpolarisierte Strahleranordnung nach Anspruch 1, dadurch gekennzeichnet, dass der maximale Abstand zwischen jeweils zwei gegenüberliegenden Strahlereinrichtungen (1, 1'), insbesondere der auf den Reflektor bzw. die Reflektoranordnung (5) projizierte maximale Abstand zwischen jeweils zwei gegenüberliegenden Strahlereinrichtungen (1, 1') gleich oder größer als 1/4 der Wellenlänge des Betriebsfrequenzbereiches ist.
  3. Dualpolarisierte Strahleranordnung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass zwischen den in Draufsicht näherungsweise um 90° in Umfangsrichtung versetzt zueinander liegenden Strahlereinrichtungen (1, 1') jeweils ein Schlitz oder eine Spalte (25) vorgesehen ist, vorzugsweise mit einer Länge, die ca. 1/4 der Betriebswellenlänge entspricht.
  4. Dualpolarisierte Strahleranordnung nach Anspruch 3, dadurch gekennzeichnet, dass die Strahlereinrichtungen (1, 1') jeweils mittels einer elektrisch leitenden Halteeinrichtung (17) gegenüber einer Basis (21) oder einem Reflektor bzw. einer Reflektoranordnung (5) gehalten und/oder befestigt sind, und dass zwischen der elektrisch leitenden Halteeinrichtung (17) der jeweils einen Strahlereinrichtung (1, 1') und der Halteeinrichtung (17) einer benachbarten Strahlereinrichtung (1, 1') ein von der Basis (21) oder dem Reflektor oder der Reflektoranordnung (5) bis zur Anspeisestelle (113) verlaufender Schlitz oder Spalt (25) gebildet ist.
  5. Dualpolarisierte Strahleranordnung nach Anspruch 4, dadurch gekennzeichnet, dass die Halteeinrichtung (17) für eine Strahlereinrichtung (1, 1') auch aus zumindest zwei Stäben oder zumindest zwei Stabeinrichtungen (19) gebildet ist, wobei die zumindest beiden Stäbe oder Stabeinrichtungen (19) von dem jeweiligen Strahlerende (9) einer Strahlereinrichtung (1, 1') ausgehen und zu einer Befestigungs- und/oder Endstelle an einem basisseitigen und/oder reflektorseitigen Ende (27) führen.
  6. Dualpolarisierte Strahleranordnung nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass die Schlitze oder Spalten (25) zwischen zwei benachbarten Halteeinrichtungen (17) oder Stäben oder Stabeinrichtungen (19) über die gesamte Länge zumindest annähernd gleich breit sind.
  7. Dualpolarisierte Strahleranordnung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Halteeinrichtung (17) der Strahlereinrichtungen (1, 1') oder die zwischen den Halteeinrichtungen (17) gebildeten Schlitze oder Spalten (25) basis- und insbesondere reflektorseitig kurzgeschlossen sind.
  8. Dualpolarisierte Strahleranordnung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Länge der einzelnen Strahlereinrichtungen (1, 1') etwa dem 0,2-fach bis zum 1-fachen der Wellenlänge einer Mitten-Betriebsfrequenz entspricht.
  9. Dualpolarisierte Strahleranordnung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Strahlereinrichtungen (1, 1') und die von den gegenüberliegenden Strahlerenden (9) ausgehenden Stäbe oder Stabeinrichtungen (19) und das basis- und/oder reflektorseitig vorgesehene Verbindungselement (28) oder Begrenzungsebene (3) als freie Fläche (39') gebildet ist.
  10. Dualpolarisierte Strahleranordnung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Strahlereinrichtungen (1, 1') und die von den gegenüberliegenden Strahlerenden (9) ausgehenden Stäbe oder Stabeinrichtungen (19) und das basis- und/oder reflektorseitig vorgesehene Verbindungselement (28) oder Begrenzungsebene (3) vollflächig leitend ausgebildet ist.
  11. Dualpolarisierte Strahleranordnung nach Anspruch 10, dadurch gekennzeichnet, dass die Strahlereinrichtung (1, 1') mit einer tragenden Halteeinrichtung (17) als vollflächiges Element, gegebenenfalls mit einer Vielzahl von regelmäßigen oder unregelmäßigen Durchbrechungen, Öffnungen, in Form eines Rasters und dergleichen gebildet ist.
  12. Dualpolarisierte Strahleranordnung nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die Halteeinrichtung (17) vorzugsweise in Form von Stäben oder Stabeinrichtungen (19) und/oder als vollflächig oder teilflächig geschlossenes elektrisches Element in Vertikalschnittdarstellung gerade verlaufend ausgebildet ist.
  13. Dualpolarisierte Strahleranordnung nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die Halteeinrichtung (17) vorzugsweise in Form von Stäben oder Stabeinrichtungen (19) und/oder als vollflächig oder teilflächig geschlossenes elektrisches Element in Vertikalschnittdarstellung geknickt, gebogen, d.h. allgemein den Richtungsverlauf ändernd ausgebildet ist.
  14. Dualpolarisierte Strahleranordnung nach Anspruch 13, dadurch gekennzeichnet, dass der basis- oder reflektorseitig näherliegende Abschnitt der Halteeinrichtung (17) in Vertikalschnittdarstellung in einem Winkelbereich von 20° bis 70°, vorzugsweise 30° bis 60°, insbesondere um 45° nach außen divergierend über die Basis oder über einen Reflektor bzw. eine Reflektoranordnung (5) verlaufend ausgerichtet ist.
  15. Dualpolarisierte Strahleranordnung nach Anspruch 13 oder 14, dadurch gekennzeichnet, dass zumindest ein außenliegender, gegenüber der Basis (21) oder einem Reflektor (5) entfernter liegender Abschnitt der Halteeinrichtung (17) bevorzugt zumindest näherungsweise vertikal zu einer Basis (21) oder einem Reflektor bzw. einer Reflektoranordnung (5) ausgerichtet verläuft.
  16. Dualpolarisierte Strahleranordnung nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass die Strahlereinrichtungen (1, 1') gegebenenfalls einschließlich der Halteeinrichtung (17) in Draufsicht zumindest näherungsweise quadratisch gebildet ist.
  17. Dualpolarisierte Strahleranordnung nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass die Strahlereinrichtungen (1, 1') gegebenenfalls einschließlich der Halteeinrichtung (17) in Draufsicht zumindest näherungsweise konvex und vorzugsweise insgesamt kreisförmig gestaltet ist.
  18. Dualpolarisierte Strahleranordnung nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass die Strahlereinrichtungen (1, 1') gegebenenfalls einschließlich der Halteeinrichtung (17) in Draufsicht konkav geformte Strahlereinrichtungen (1, 1') umfasst.
  19. Dualpolarisierte Strahleranordnung nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, dass an den Strahlereinrichtungen (1, 1') vorzugsweise paarweise gegenüberliegend nach außen vorstehende Ansätze oder Lappen (45) ausgebildet sind.
  20. Dualpolarisierte Strahleranordnung nach Anspruch 19, dadurch gekennzeichnet, dass an den nach außen vorstehenden Ansätzen oder Lappen (45) von der Basis oder dem Reflektor bzw. der Reflektoranordnung (5) wegweisend Verlängerungsansätze (49) ausgebildet sind.
  21. Dualpolarisierte Strahleranordnung nach einem der Ansprüche 1 bis 20, dadurch gekennzeichnet, dass die Strahleranordnung (1, 1') eine kelchförmige Struktur aufweist.
  22. Dualpolarisierte Strahleranordnung nach einem der Ansprüche 1 bis 21, dadurch gekennzeichnet, dass in Draufsicht im Inneren der Strahleranordnung (1, 1') eine weitere Strahleranordnung (50) zum Betrieb in einem weiteren Frequenzband angeordnet ist.
  23. Dualpolarisierte Strahleranordnung nach Anspruch 22, dadurch gekennzeichnet, dass die weitere Strahleranordnung (50) zum Betrieb in einem weiteren höheren Frequenzband aus einem Patchstrahler (51) besteht.
  24. Dualpolarisierte Strahleranordnung nach Anspruch 22, dadurch gekennzeichnet, dass die weitere Strahleranordnung (50) zum Betrieb in einem weiteren höheren Frequenzband aus einem Kreuzdipol besteht.
  25. Dualpolarisierte Strahleranordnung nach Anspruch 22, dadurch gekennzeichnet, dass die weitere Strahleranordnung zum Betrieb in einem weiteren höheren Frequenzband aus einem Dipolquadrat besteht.
  26. Dualpolarisierte Strahleranordnung nach Anspruch 22, dadurch gekennzeichnet, dass die weitere Strahleranordnung zum Betrieb in einem weiteren höheren Frequenzband aus einem Vektordipol (53) besteht.
  27. Dualpolarisierte Strahleranordnung nach einem der Ansprüche 1 bis 26, dadurch gekennzeichnet, dass jeweils zwei gegenüberliegende Anspeisstellen (113) über eine zumindest näherungsweise gleichlange Koaxialleitung zu einem zentralen Speisepunkt zusammengeschaltet sind, wobei die einen paarweise zusammengeschalteten gegenüberliegenden Anspeisestellen (113) zur Anspeisung der einen Polarisation und die um 90° versetzt dazu liegenden beiden weiteren zusammengeschalteten Anspeisepunkte (113) zur Speisung der jeweils anderen Polarisation dienen.
  28. Dualpolarisierte Strahleranordnung nach einem der Ansprüche 1 bis 27, dadurch gekennzeichnet, dass vier Strahlereinrichtungen (1, 1') vorgesehen sind, die in Draufsicht zumindest näherungsweise punktsymmetrisch zu einem Mittelpunkt angeordnet sind.
  29. Dualpolarisierte Strahleranordnung nach einem der Ansprüche 1 bis 28, dadurch gekennzeichnet, dass der maximale Abstand zwischen jeweils zwei gegenüberliegenden Strahleranordnungen (1, 1') kleiner oder gleich der Wellenlänge λ des Betriebsfrequenzbereiches ist.
  30. Dualpolarisierte Strahleranordnung nach einem der Ansprüche 1 bis 29, dadurch gekennzeichnet, dass die Länge der Strahlereinrichtungen (1, 1') kleiner oder gleich der Wellenlänge λ des Betriebsfrequenzbereiches ist.
EP03702516A 2002-01-31 2003-01-23 Dualpolarisierte strahleranordnung Expired - Lifetime EP1470615B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10203873 2002-01-31
DE10203873A DE10203873A1 (de) 2002-01-31 2002-01-31 Dualpolarisierte Strahleranordnung
PCT/EP2003/000703 WO2003065505A1 (de) 2002-01-31 2003-01-23 Dualpolarisierte strahleranordnung

Publications (2)

Publication Number Publication Date
EP1470615A1 EP1470615A1 (de) 2004-10-27
EP1470615B1 true EP1470615B1 (de) 2005-07-06

Family

ID=27588190

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03702516A Expired - Lifetime EP1470615B1 (de) 2002-01-31 2003-01-23 Dualpolarisierte strahleranordnung

Country Status (14)

Country Link
US (1) US6930650B2 (de)
EP (1) EP1470615B1 (de)
JP (1) JP2005516513A (de)
KR (1) KR20040077441A (de)
CN (2) CN2607673Y (de)
AT (1) ATE299300T1 (de)
AU (1) AU2003205665B2 (de)
BR (1) BR0302904A (de)
DE (2) DE10203873A1 (de)
ES (1) ES2245441T3 (de)
RU (1) RU2288527C2 (de)
TW (1) TWI264146B (de)
WO (1) WO2003065505A1 (de)
ZA (1) ZA200307057B (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007060083A1 (de) 2007-12-13 2009-06-18 Kathrein-Werke Kg Mehrspalten-Multiband-Antennen-Array
DE102012023938A1 (de) 2012-12-06 2014-06-12 Kathrein-Werke Kg Dualpolarisierte, omnidirektionale Antenne
DE102014014434A1 (de) 2014-09-29 2016-03-31 Kathrein-Werke Kg Multiband-Strahlersystem
WO2019162345A1 (de) 2018-02-23 2019-08-29 Kathrein Se Multibandantennenanordnung für mobilfunkanwendungen

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10203873A1 (de) * 2002-01-31 2003-08-14 Kathrein Werke Kg Dualpolarisierte Strahleranordnung
US6856298B1 (en) * 2003-08-18 2005-02-15 Golden Bridge Electech Inc. Dual band linear antenna array
DE102004032175A1 (de) * 2004-07-02 2006-01-19 Robert Bosch Gmbh Vorrichtung und Verfahren zum Senden/Empfangen elektromagnetischer HF-Signale
US7148848B2 (en) * 2004-10-27 2006-12-12 General Motors Corporation Dual band, bent monopole antenna
US7079083B2 (en) 2004-11-30 2006-07-18 Kathrein-Werke Kg Antenna, in particular a mobile radio antenna
DE102004057774B4 (de) * 2004-11-30 2006-07-20 Kathrein-Werke Kg Antenne, insbesondere Mobilfunkantenne
KR100731278B1 (ko) * 2005-01-31 2007-06-25 주식회사 와이어리스데이터커뮤니케이션 안테나 어셈블리
US20070066224A1 (en) * 2005-02-28 2007-03-22 Sirit, Inc. High efficiency RF amplifier and envelope modulator
US20070109197A1 (en) * 2005-07-15 2007-05-17 M/A-Com, Inc. Fixed tiltable antenna device
KR100883408B1 (ko) * 2006-09-11 2009-03-03 주식회사 케이엠더블유 이동통신 기지국용 이중대역 이중편파 안테나
US7808441B2 (en) * 2007-08-30 2010-10-05 Harris Corporation Polyhedral antenna and associated methods
DE102008059268A1 (de) 2008-11-27 2009-11-19 Kathrein-Werke Kg Einrichtung zur Lageerkennung einer Antennenanordnung
US8228258B2 (en) * 2008-12-23 2012-07-24 Skycross, Inc. Multi-port antenna
KR101125180B1 (ko) * 2009-11-17 2012-03-19 주식회사 케이엠더블유 서로 다른 평면에 배치되는 방사소자들의 설치 방법 및 이를 이용한 안테나
CN101916910A (zh) * 2010-07-08 2010-12-15 华为技术有限公司 基站天线单元及基站天线
FR2966986B1 (fr) * 2010-10-27 2013-07-12 Alcatel Lucent Element rayonnant d'antenne
KR101271356B1 (ko) * 2011-10-17 2013-06-07 한국과학기술원 원형편파 안테나 시스템
US20130201070A1 (en) * 2012-02-02 2013-08-08 Harris Corporation Wireless communications device having loop waveguide transducer with spaced apart coupling points and associated methods
US20130201066A1 (en) * 2012-02-02 2013-08-08 Harris Corporation Wireless communications device having loop antenna with four spaced apart coupling points and reflector and associated methods
US20130201065A1 (en) * 2012-02-02 2013-08-08 Harris Corporation Wireless communications device having loop antenna with four spaced apart coupling points and associated methods
CN102760976B (zh) * 2012-05-23 2014-08-20 深圳市华一通信技术有限公司 双极化天线辐射单元及双极化天线
US9373884B2 (en) 2012-12-07 2016-06-21 Kathrein-Werke Kg Dual-polarised, omnidirectional antenna
US10490908B2 (en) * 2013-03-15 2019-11-26 SeeScan, Inc. Dual antenna systems with variable polarization
EP2787576A1 (de) * 2013-04-03 2014-10-08 Alcatel Lucent Antennenanordnung zum Senden und/oder Empfangen von Hochfrequenzsignalen, Zugriffsnetzwerkknoten und Fahrzeug dafür
KR101756112B1 (ko) * 2013-11-05 2017-07-11 주식회사 케이엠더블유 안테나 방사소자 및 다중대역 안테나
RU2589848C2 (ru) * 2014-02-18 2016-07-10 Закрытое акционерное общество "Меркурий" Микрополосковый излучатель
GB2523201B (en) 2014-02-18 2017-01-04 Filtronic Wireless Ab A multiband antenna with broadband and parasitic elements
CN103972663A (zh) * 2014-05-12 2014-08-06 京信通信技术(广州)有限公司 移动通信天线及其双极化宽频辐射单元
KR101547474B1 (ko) * 2014-06-13 2015-09-04 주식회사쏘우웨이브 편전 효과를 이용한 미모용 무지향성 안테나
CN104092008B (zh) * 2014-07-07 2017-12-26 董玉良 天线单元和天线
EP3201986B1 (de) 2014-10-24 2018-12-12 Huawei Technologies Co. Ltd. Antennenvorrichtung für antennensystem einer basisstation
CN105514613B (zh) * 2015-08-20 2019-06-18 广东通宇通讯股份有限公司 一种超宽频双极化天线振子
CN105048065B (zh) * 2015-09-02 2017-09-29 林伟 宽频的天线收发装置
CN106099396B (zh) * 2015-10-21 2019-02-05 罗森伯格技术(昆山)有限公司 双极化天线辐射单元及双极化天线阵列
USD806689S1 (en) * 2015-10-28 2018-01-02 Aiju Deng Antenna
EP3166178B1 (de) * 2015-11-03 2019-09-11 Huawei Technologies Co., Ltd. Antennenelement, vorzugsweise für eine basisstationsantenne
US11128055B2 (en) * 2016-06-14 2021-09-21 Communication Components Antenna Inc. Dual dipole omnidirectional antenna
DE102016011890A1 (de) 2016-10-05 2018-04-05 Kathrein-Werke Kg Mobilfunk-Antenne
HUE060358T2 (hu) * 2016-11-09 2023-02-28 Tongyu Communication Inc Kétsávos sugárzórendszer, valamint annak antennaelrendezése
TWI632734B (zh) * 2016-11-15 2018-08-11 和碩聯合科技股份有限公司 無線收發裝置及其天線單元
CN110235306B (zh) 2016-12-06 2020-12-25 华为技术有限公司 双频带天线元件和基站
US11101550B2 (en) * 2017-02-21 2021-08-24 Ace Technologies Corporation Base station antenna
CN111201669B (zh) 2017-10-12 2021-07-16 华为技术有限公司 超紧凑型辐射单元
DE102018110486A1 (de) 2018-05-02 2019-11-07 Kathrein Se Mehrfachantennensystem für Mobilfunk
WO2019216721A1 (ko) * 2018-05-10 2019-11-14 주식회사 케이엠더블유 이중 편파 안테나 및 안테나 어레이
CN112335120B (zh) * 2018-06-29 2023-09-19 上海诺基亚贝尔股份有限公司 多频带天线结构
TWI678024B (zh) * 2018-08-24 2019-11-21 啓碁科技股份有限公司 天線結構和電子裝置
CN110957569B (zh) * 2019-12-30 2022-11-04 京信通信技术(广州)有限公司 一种宽频辐射单元及天线
CN111180870B (zh) * 2020-01-06 2021-11-23 武汉虹信科技发展有限责任公司 天线辐射单元、基站天线及天线指标调节方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3740754A (en) * 1972-05-24 1973-06-19 Gte Sylvania Inc Broadband cup-dipole and cup-turnstile antennas
US4015264A (en) * 1975-11-20 1977-03-29 Textron, Inc. Dual mode broadband antenna
US4218685A (en) * 1978-10-17 1980-08-19 Nasa Coaxial phased array antenna
JPH02123111U (de) * 1989-03-23 1990-10-09
US5173715A (en) * 1989-12-04 1992-12-22 Trimble Navigation Antenna with curved dipole elements
US5220337A (en) * 1991-05-24 1993-06-15 Hughes Aircraft Company Notched nested cup multi-frequency band antenna
CA2128738C (en) * 1993-09-10 1998-12-15 George D. Yarsunas Circularly polarized microcell antenna
DE19627015C2 (de) * 1996-07-04 2000-07-13 Kathrein Werke Kg Antennenfeld
DE19722742C2 (de) * 1997-05-30 2002-07-18 Kathrein Werke Kg Dualpolarisierte Antennenanordnung
AU730484B2 (en) * 1997-07-03 2001-03-08 Alcatel Dual polarized cross bow tie antenna with airline feed
DE19823749C2 (de) 1998-05-27 2002-07-11 Kathrein Werke Kg Dualpolarisierte Mehrbereichsantenne
SE512439C2 (sv) * 1998-06-26 2000-03-20 Allgon Ab Dubbelbandsantenn
US6034649A (en) * 1998-10-14 2000-03-07 Andrew Corporation Dual polarized based station antenna
DE19860121A1 (de) * 1998-12-23 2000-07-13 Kathrein Werke Kg Dualpolarisierter Dipolstrahler
US6618016B1 (en) * 2001-02-21 2003-09-09 Bae Systems Aerospace Inc. Eight-element anti-jam aircraft GPS antennas
DE10203873A1 (de) * 2002-01-31 2003-08-14 Kathrein Werke Kg Dualpolarisierte Strahleranordnung

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007060083A1 (de) 2007-12-13 2009-06-18 Kathrein-Werke Kg Mehrspalten-Multiband-Antennen-Array
DE102012023938A1 (de) 2012-12-06 2014-06-12 Kathrein-Werke Kg Dualpolarisierte, omnidirektionale Antenne
DE102014014434A1 (de) 2014-09-29 2016-03-31 Kathrein-Werke Kg Multiband-Strahlersystem
WO2019162345A1 (de) 2018-02-23 2019-08-29 Kathrein Se Multibandantennenanordnung für mobilfunkanwendungen
US11329390B2 (en) 2018-02-23 2022-05-10 Telefonaktiebolaget Lm Ericsson (Publ) Multiband antenna array for mobile radio applications

Also Published As

Publication number Publication date
ZA200307057B (en) 2003-11-18
JP2005516513A (ja) 2005-06-02
RU2288527C2 (ru) 2006-11-27
KR20040077441A (ko) 2004-09-04
CN100470930C (zh) 2009-03-18
US6930650B2 (en) 2005-08-16
CN2607673Y (zh) 2004-03-24
AU2003205665B2 (en) 2007-01-04
ATE299300T1 (de) 2005-07-15
CN1496596A (zh) 2004-05-12
TWI264146B (en) 2006-10-11
US20040140942A1 (en) 2004-07-22
ES2245441T3 (es) 2006-01-01
RU2003127835A (ru) 2005-03-27
TW200302598A (en) 2003-08-01
DE50300732D1 (de) 2005-08-11
EP1470615A1 (de) 2004-10-27
WO2003065505A1 (de) 2003-08-07
BR0302904A (pt) 2004-07-06
DE10203873A1 (de) 2003-08-14

Similar Documents

Publication Publication Date Title
EP1470615B1 (de) Dualpolarisierte strahleranordnung
EP1749331B1 (de) Mobilfunkantenne mit strahlformungselement
DE19823749C2 (de) Dualpolarisierte Mehrbereichsantenne
EP1082781B1 (de) Antennenarray mit mehreren vertikal übereinander angeordneten primärstrahler-modulen
EP0916169B1 (de) Antennenanordnung
DE10064129B4 (de) Antenne, insbesondere Mobilfunkantenne
EP0848862B1 (de) Antennenarray
EP1277252B1 (de) Dualpolarisierte dipolgruppenantenne
EP2929589B1 (de) Dualpolarisierte, omnidirektionale antenne
EP1817815B1 (de) Zweiband-mobilfunkantenne
EP3220480B1 (de) Dipolförmige strahleranordnung
EP3025395B1 (de) Breitband-antennenarray
EP3306742A1 (de) Mobilfunk-antenne
WO2000039894A1 (de) Dualpolarisierter dipolstrahler
EP1964205A1 (de) Dual polarisierte antenne mit länge- oder querstegen
DE69835944T2 (de) Anordnung mit antenneneinheiten
EP1525642B1 (de) Zweidimensionales antennen-array
WO2016050336A1 (de) Multiband-strahlersystem
EP3756235A1 (de) Multibandantennenanordnung für mobilfunkanwendungen
DE60019412T2 (de) Antenne mit vertikaler polarisation
DE202004008770U1 (de) Dualpolarisierte Antenne
EP3333971B1 (de) Dipolstrahlermodul
DE202004013971U1 (de) Antenne, insbesondere Mobilfunkantenne

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030918

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

17Q First examination report despatched

Effective date: 20040924

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050706

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050706

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050706

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050706

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050706

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050706

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050706

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050706

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050706

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50300732

Country of ref document: DE

Date of ref document: 20050811

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051006

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051006

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051006

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051212

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2245441

Country of ref document: ES

Kind code of ref document: T3

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060131

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060131

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060131

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

BERE Be: lapsed

Owner name: KATHREIN-WERKE K.G.

Effective date: 20060131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050706

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20150123

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20150123

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20160122

Year of fee payment: 14

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160123

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160123

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170124

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20180628

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50300732

Country of ref document: DE

Representative=s name: FLACH BAUER & PARTNER PATENTANWAELTE MBB, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 50300732

Country of ref document: DE

Representative=s name: FLACH BAUER STAHL PATENTANWAELTE PARTNERSCHAFT, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50300732

Country of ref document: DE

Owner name: ERICSSON AB, SE

Free format text: FORMER OWNER: KATHREIN-WERKE KG, 83022 ROSENHEIM, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50300732

Country of ref document: DE

Owner name: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL), SE

Free format text: FORMER OWNER: KATHREIN-WERKE KG, 83022 ROSENHEIM, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 50300732

Country of ref document: DE

Representative=s name: FLACH BAUER STAHL PATENTANWAELTE PARTNERSCHAFT, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50300732

Country of ref document: DE

Owner name: KATHREIN SE, DE

Free format text: FORMER OWNER: KATHREIN-WERKE KG, 83022 ROSENHEIM, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50300732

Country of ref document: DE

Owner name: ERICSSON AB, SE

Free format text: FORMER OWNER: KATHREIN SE, 83022 ROSENHEIM, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 50300732

Country of ref document: DE

Representative=s name: FLACH BAUER STAHL PATENTANWAELTE PARTNERSCHAFT, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50300732

Country of ref document: DE

Owner name: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL), SE

Free format text: FORMER OWNER: KATHREIN SE, 83022 ROSENHEIM, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50300732

Country of ref document: DE

Representative=s name: FLACH BAUER STAHL PATENTANWAELTE PARTNERSCHAFT, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50300732

Country of ref document: DE

Owner name: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL), SE

Free format text: FORMER OWNER: ERICSSON AB, STOCKHOLM, SE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210125

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20210127

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220127

Year of fee payment: 20

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220131

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50300732

Country of ref document: DE