EP1423593B1 - Verfahren zum ansteuern eines piezobetriebenen kraftstoff-einspritzventils - Google Patents

Verfahren zum ansteuern eines piezobetriebenen kraftstoff-einspritzventils Download PDF

Info

Publication number
EP1423593B1
EP1423593B1 EP02760150A EP02760150A EP1423593B1 EP 1423593 B1 EP1423593 B1 EP 1423593B1 EP 02760150 A EP02760150 A EP 02760150A EP 02760150 A EP02760150 A EP 02760150A EP 1423593 B1 EP1423593 B1 EP 1423593B1
Authority
EP
European Patent Office
Prior art keywords
injection
valve
timepoint
actuator
servo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02760150A
Other languages
English (en)
French (fr)
Other versions
EP1423593A1 (de
Inventor
Dirk Baranowski
Hellmut Freudenberg
Christian Hoffmann
Wolfgang Lingl
Lorand Ouvenou
Richard Pirkl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1423593A1 publication Critical patent/EP1423593A1/de
Application granted granted Critical
Publication of EP1423593B1 publication Critical patent/EP1423593B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D41/2096Output circuits, e.g. for controlling currents in command coils for controlling piezoelectric injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/143Controller structures or design the control loop including a non-linear model or compensator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2055Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit with means for determining actual opening or closing time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M45/00Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship
    • F02M45/02Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts
    • F02M45/04Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts with a small initial part, e.g. initial part for partial load and initial and main part for full load
    • F02M45/08Injectors peculiar thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/0603Injectors peculiar thereto with means directly operating the valve needle using piezoelectric or magnetostrictive operating means

Definitions

  • the invention relates to a method for driving a piezo-operated fuel injection valve according to the features of claim 1.
  • the fuel injection process in diesel engines is usually carried out in several stages, with one or more pre- or post-injections being assigned to achieve a smoother combustion process of each main injection, in which the injected fuel quantity is small compared to the main injection quantity.
  • the piezo actuator actuates a hydraulic servo valve, which then moves the main valve.
  • the electrical control of the piezoelectric actuator is made so that the desired amount of fuel is injected.
  • the electrical control signals are designed in the injection of small amounts of fuel in terms of driving time and amplitude so that a safe injection takes place. Because of security concerns with respect to pressure fluctuations in the fuel supply line, parameter tolerances of the system and the wide operating temperature range is thus, especially in pre and post injections, a fuel quantity overdose connected. For this purpose, it has hitherto been concluded from the charge or energy fed into the piezoelectric actuator to the piezoelectric deflection.
  • the method according to the invention is based on a detection and evaluation of the length changes or forces of the piezoactuator which are determined from the electrical signals (of the current supplied to the piezoactuator and the voltage that builds up on it) on the piezoelectric actuator, with the aid of a nonlinear actuator model and an adaptive Method for evaluating the length changes on the piezoelectric actuator or the forces occurring on it.
  • the actuator model contains the non-linear relationships between charge or voltage and mechanical deflection, as well as operating point-dependent parameters. Furthermore, the actuator model takes into account the dielectric hysteresis of the piezoelectric actuator. Thus, this actuator model allows the conclusion of the electrical to the mechanical parameters and the simulation of the piezoelectric actuator in the range of pulse-shaped deflection.
  • FIG. 1 shows the basic course of the piezo stroke, ie, the change in length s of a piezoelectric actuator over time t during a driving process of a fuel injection valve.
  • This change in length s is calculated by means of the measured data of the current supplied to the piezoelectric actuator and the voltage which subsequently builds up on it with the aid of an actuator model which simulates the properties of a piezoactuator.
  • the curve s 1 shows the basic course of the beginning of the change in length s (expansion) of a piezoelectric actuator in a correct injection process.
  • the curve rises from the beginning 0 of the Control on, has a kink at a time t A and then increases faster, until it reaches a maximum and then drops again.
  • the kink is explained by the fact that the piezoactuator travels a free path before it penetrates against the force of the rail pressure in the servo valve and opens the servo valve.
  • the dashed curve s 0 shows the difference from the curve s 1, the basic course of the beginning of the change in length (expansion) of a piezoelectric actuator in an incorrect injection process.
  • the curve rises flat without having a kink, reaches a maximum and then falls off again, ie, the free travel is not completely measured.
  • the maximum of the curve of the linear expansion of a piezoelectric actuator depends inter alia on the energy that is supplied to the piezoelectric actuator: the greater the energy amount, the greater the longitudinal expansion s.
  • the beginning of the opening of the servo valve is thus approximately at the time t A of the curve s. 1
  • This opening of the servo valve is a mandatory requirement for a subsequent injection.
  • the actual injection is significantly delayed, since with the opening of the servo valve, the pressure in the valve chamber is slowly reduced and only then opens the actual injection valve.
  • the presence of the "bend" in the path is an indication that there is enough energy in the piezo for the servo valve to open.
  • the inventive method for determining this opening timing t A of the servo valve will be explained below.
  • the time t A for example, varies with the energy supplied to the piezoelectric actuator E and counteracting him Fuel rail pressure p and the actuator temperature T etc. He is so empirically known.
  • the times t1 to t4 which are stored in the maps and which determine the time windows W1 and W2 are also stored, that is, adapted, as a function of the time t A determined in the preceding previous injection process.
  • a determination of the injection duration is only made if a correct injection with a defined start of injection has previously been determined.
  • the fuel injection duration D is determined by means of the force F acting on the piezoactuator.
  • This force F is - as the change in length s - determined from the electrical signals (from the current supplied to the piezoelectric actuator and the voltage built up on it) with the aid of the aforementioned non-linear actuator model.
  • FIG. 2 a shows the basic profile of the force F 1 acting on a piezoelectric actuator during a fuel injection process or during a faulty injection (F 0 , dashed).
  • the force F increases from the beginning of the driving process and reaches its maximum at about time t A , then goes into an approximately horizontal course (in a faulty injection, it decreases slowly) and makes when switching off first a dip in the negative and then a jump into Positive, before it becomes zero again.
  • the first time derivative dF 1 / dt of the force F is used according to the invention.
  • the course of the first derivative dF 1 / dt of the force F (FIG. 2 a ) is shown schematically in FIG. 2 b.
  • this derivative dF 1 / dt reaches its maximum where the force F 1 rises steepest, then becomes negative when the force drops and reaches a plateau around the value zero where the force F 1 is horizontal. before it turns off at first negative and then positive and finally to zero.
  • a tolerance band for the value of the first derivative is applied in the area of the abovementioned plateau, with an upper value g1 (for dF / dt positive) and a lower value g2 (for dF / dt negative). Both values are shown in dashed lines in FIG. 2b.
  • These values like the windows W1 and W2 in FIG. 1, can also be determined via characteristic maps as a function of supplied energy, rail pressure and so on. be varied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

Mittels des dem Piezoaktor zugeführten Stromes und der sich daraufhin an ihm aufbauenden Spannung unter Zuhilfenahme eines nichtlinearen Aktormodells wird der Verlauf der Längenänderung (s) und die vom Aktor ausgeübte Kraft (F) errechnet und aus diesen oder von ihnen abgeleiteten Grössen (dF/dt) der Öffnungsbeginn (tA) eines Servoventils und die Einspritzdauer (D) ermittelt.

Description

  • Die Erfindung betrifft ein Verfahren zum Ansteuern eines piezobetriebenen Kraftstoff-Einspritzventils gemäß den Merkmalen von Anspruch 1.
  • Der Kraftstoff-Einspritzvorgang in Dieselmotoren wird üblicherweise in mehreren Abschnitten durchgeführt, wobei zur Erzielung eines sanfteren Verbrennungsverlaufs jeder Haupteinspritzung eine oder mehrere Vor- oder Nacheinspritzungen zugeordnet sind, bei denen die eingespritzte Kraftstoffmenge klein gegenüber der Haupteinspritzmenge ist.
  • Für eine präzise Dosierung der Kraftstoffmengen, insbesondere der Kleinmengen und zur Optimierung der Einspritz-Zeitpunkte, sind schnell schaltende Ventile erforderlich, wozu zunehmend piezobetriebene Einspritzventile eingesetzt werden.
  • Wegen der geringen maximalen Längenänderung der eingesetzten Piezoelemente (stacks) betätigt der Piezoaktor ein hydraulisches Servoventil, welches dann das Hauptventil bewegt. Mittels einer Ansteuerelektronik wird die elektrische Ansteuerung des Piezoaktors so vorgenommen, daß die gewünschte Kraftstoffmenge eingespritzt wird.
  • Da es nicht möglich ist, Kraftstoffmengen oder mechanische Bewegungen im Einspritzventil zu erfassen, werden die elektrischen Steuersignale bei der Einspritzung kleiner Kraftstoffmengen hinsichtlich Ansteuerdauer und Amplitude so ausgelegt, daß ein sicheres Einspritzen erfolgt. Wegen der Sicherheitsvorbehalte gegenüber Druckschwankungen in der Kraftstoffzuleitung, Parametertoleranzen des Systems und des weiten Betriebstemperaturbereichs ist damit, insbesondere bei Vor- und Nacheinspritzungen, eine Kraftstoffmengen-Überdosierung verbunden. Dazu wurde bisher aus der in den Piezoaktor eingespeisten Ladung oder Energie auf die Piezoauslenkung geschlossen.
  • Aus DE 196 44 521 A1 ist ein Verfahren zur Ansteuerung eines kapazitiven Stellgliedes eines Kraftstoffeinspritzventils bekannt, welchem zur Erzielung eines konstanten Hubs eine diesem Hub zugeordnete Energiemenge zugeführt wird.
  • Es ist Aufgabe der Erfindung, ein Verfahren anzugeben, mit dessen Hilfe überwacht werden kann, ob Kraftstoff-Vor-, Haupt- oder Nach-Einspritzungen stattfinden oder nicht, und welches eine genauere Festlegung der Menge jeder Kraftstoff-Vor-, Haupt- oder Nach-Einspritzung ermöglicht.
  • Diese Aufgabe wird erfindungsgemäß durch die Merkmale des Anspruchs 1 gelöst.
  • Das erfindungsgemäße Verfahren beruht auf einer Erfassung und Auswertung der am Piezoaktor bei einem Ansteuervorgang wirkenden, aus den elektrischen Signalen (des dem Piezoaktor zugeführten Stromes und der sich an ihm aufbauenden Spannung) ermittelten Längenänderungen oder Kräfte des Piezoaktors, unter Zuhilfenahme eines nichtlinearen Aktormodells und eines adaptiven Verfahrens zur Bewertung der Längenänderungen am Piezoaktor bzw. der an ihm auftretenden Kräfte.
  • Das Aktormodell beinhaltet die nichtlinearen Zusammenhänge zwischen Ladung bzw. Spannung und mechanischer Auslenkung, sowie Arbeitspunkt-abhängigen Parametern. Ferner berücksichtigt das Aktormodell die dielektrische Hysterese des Piezoaktors. Damit erlaubt dieses Aktormodell den Rückschluß von den elektrischen auf die mechanischen Größen und die Simulation des Piezoaktors im Bereich pulsförmiger Auslenkung.
  • Damit ist es möglich, eine fehlerhafte oder korrekte Einspritzfunktion sowie die Einspritzdauer (-menge) des Einspritzventils sicher festzustellen und die Ansteuersignale adaptiv so zu gestalten, daß die gewünschten minimalen Kraftstoffeinspritzungen ohne Überdosierung erfolgen.
  • Nachstehend wird ein Ausführungsbeispiel nach der Erfindung anhand einer schematischen Zeichnung näher erläutert.
  • In der Zeichnung zeigen:
  • Figur 1
    die Längenänderung s eines Piezoaktors bei einem Ansteuervorgang, und
    Figur 2
    die an einem Piezoaktor bei einem Öffnungsvorgang des Ventils mit oder ohne Kraftstoffeinspritzung wirkende Kraft F und die daraus abgeleiteten Größen.
  • Figur 1 zeigt den prinzipiellen Verlauf des Piezohubs, d.h., der Längenänderung s eines Piezoaktors über der Zeit t bei einem Ansteuervorgang eines Kraftstoffeinspritzventils. Diese Längenänderung s wird mittels der gemessenen Daten des dem Piezoaktor zugeführten Stromes und der sich daraufhin an ihm aufbauenden Spannung mit Hilfe eines Aktormodells, welches die Eigenschaften eines Piezoaktors nachbildet, errechnet. Die Kurve s1 zeigt den prinzipiellen Verlauf des Beginns der Längenänderung s (Ausdehnung) eines Piezoaktors bei einem korrekten Einspritzvorgang. Die Kurve steigt vom Beginn 0 der Ansteuerung an, weist zu einem Zeitpunkt tA einen Knick auf und steigt danach schneller an, bis sie ein Maximum erreicht und dann wieder abfällt. Der Knick erklärt sich daraus, dass der Piezoaktor einen Leerweg zurücklegt, bevor er sich gegen die Kraft des Raildrucks im Servoventil durchsetzt und das Servoventil öffnet.
  • Die gestrichelt dargestellte Kurve s0 zeigt zum Unterschied von der Kurve s1 den prinzipiellen Verlauf des Beginns der Längenänderung (Ausdehnung) eines Piezoaktors bei einem nicht korrekten Einspritzvorgang. Die Kurve steigt flach an, ohne einen Knick aufzuweisen, erreicht ein Maximum und fällt dann wieder ab, d.h., der Leerweg wird nicht zur Gänze durchmessen. Das Maximum der Kurve der Längenausdehnung eines Piezoaktors hängt u.a. von der Energie ab, die dem Piezoaktor zugeführt wird: je größer der Energiebetrag, desto größer die Längenausdehnung s.
  • Der Beginn der Öffnung des Servoventils liegt also etwa im Zeitpunkt tA der Kurve s1. Diese Öffnung des Servoventils ist zwingende Voraussetzung für eine anschließende Einspritzung. Die eigentliche Einspritzung erfolgt deutlich verzögert, da mit dem Öffnen des Servoventils der Druck in der Ventilkammer langsam abgebaut wird und dann erst das eigentliche Einspritzventil öffnet. Das Vorhandensein des "Knicks" im Wegverlauf ist ein Indiz dafür, dass genügend Energie im Piezo vorhanden ist, damit das Servoventil öffnet.
  • Das erfindungsgemäße Verfahren zur Ermittlung dieses Öffnungszeitpunkts tA des Servoventils wird nachstehend erklärt. Der Zeitpunkt tA variiert beispielsweise mit der dem Piezoaktor zugeführten Energie E und dem ihm entgegenwirkenden Kraftstoff-Raildruck p sowie der Aktortemperatur T etc.. Er ist also empirisch bekannt.
  • Über Kennfelder, die diesen Zusammenhang berücksichtigen, werden ein erstes Zeitfenster W1 (festgelegt durch Zeitpunkte t1 und t2) kurz vor dem Zeitpunkt tA [tA=f(E, p, T ...)] und ein zweites Zeitfenster W2 (festgelegt durch Zeitpunkte t3 und t4) kurz nach diesem Zeitpunkt tA, definiert.
  • Durch die Längenänderungen zu den Zeitpunkten t1 und t2 ist eine erste Gerade - Tangente T1 - bestimmt, und durch die Längenänderungen zu den Zeitpunkten t3 und t4 ist eine zweite Gerade - Tangente T1' - bestimmt. Diese beiden Tangenten, in Figur 1 fett hervorgehoben, schneiden sich in einem mittels einer einfachen trigonometrischen Rechnung ermittelbaren Zeitpunkt tA, der als Zeitpunkt der Öffnung des Servoventils gewertet wird. Für eine korrekte Einspritzung wird jedoch nur ein solcher Verlauf der Längenänderung s gewertet, bei dem die Tangente T1' einen definierbar steileren Winkel gegenüber der Abszisse aufweist als die Tangente T1. Andernfalls wird eine Fehleinspritzung angenommen (T0 - T0').
  • Aufgrund von Verschleißerscheinungen kann es langfristig vorkommen, dass sich die Lage des Zeitpunkts tA verschiebt. Deshalb ist vorgesehen, dass die in den Kennfeldern gespeicherten Zeitpunkte t1 bis t4, welche die Zeitfenster W1 und W2 bestimmen, auch von dem in dem jeweils vorhergehenden früheren Einspritzvorgang ermittelten Zeitpunkt tA abhängig gespeichert, d.h., adaptiert werden.
  • Eine Ermittlung der Einspritzdauer wird nur dann vorgenommen, wenn zuvor eine korrekte Einspritzung mit definiertem Einspritzbeginn festgestellt wurde.
  • Die Kraftstoff-Einspritzdauer D wird mittels der am Piezoaktor wirkenden Kraft F ermittelt. Diese Kraft F wird - wie die Längenänderung s -aus den elektrischen Signalen (aus dem dem Piezoaktor zugeführten Strom und der sich an ihm aufbauenden Spannung) unter Zuhilfenahme des bereits erwähnten, nichtlinearen Aktormodells ermittelt.
  • Figur 2a zeigt den prinzipiellen Verlauf der an einem Piezoaktor wirkenden Kraft F1 bei einem Kraftstoffeinspritzvorgang bzw. bei einer Fehleinspritzung (F0, strichliert).
  • Die Kraft F steigt vom Beginn des Ansteuervorgangs an und erreicht etwa im Zeitpunkt tA ihr Maximum, geht anschließend in einen etwa horizontalen Verlauf über (bei einer Fehleinspritzung nimmt sie langsam ab) und macht beim Abschalten zunächst einen Sprung ins Negative und anschließend einen Sprung ins Positive, bevor sie wieder zu Null wird.
  • Zur Ermittlung der Einspritzdauer D wird erfindungsgemäß die erste zeitliche Ableitung dF1/dt der Kraft F herangezogen. Der Verlauf der ersten Ableitung dF1/dt der Kraft F (Figur 2a) ist schematisch in Figur 2b dargestellt.
  • Bei einem korrekten Einspritzvorgang erreicht diese Ableitung dF1/dt ihr Maximum da, wo die Kraft F1 am steilsten ansteigt, wird dann negativ, wenn die Kraft abfällt und erreicht ein Plateau um den Wert Null da, wo die Kraft F1 horizontal verläuft, bevor sie beim Abschalten zunächst negativ und dann positiv und schließlich zu Null wird.
  • Bei einer Fehleinspritzung würde die Ableitung dF0/dt (in Figur 2b strichliert) ein geringeres Maximum erreichen und anschließend negativ werden, bevor sie beim Abschalten wieder zu Null würde.
  • Erfindungsgemäß wird im Bereich des oben genannten Plateaus ein Toleranzband für den Wert der ersten Ableitung gelegt, mit einem oberen Wert g1 (für dF/dt positiv) und einem unteren Wert g2 (für dF/dt negativ). Beide Werte sind in Figur 2b strichliert dargestellt. Auch diese Werte können, wie die Fenster W1 und W2 in Figur 1, über Kennfelder in Abhängigkeit von zugeführter Energie, Raildruck u.s.w. variiert werden.
  • Solange sich nun die erste Ableitung dF1/dt - nach dem Zeitpunkt tA - innerhalb dieses Toleranzbandes befindet, was zwischen den Zeitpunkten t5 und t6 in Figur 2b festgestellt wird, wird angenommen, dass die Kraftstoffeinspritzung, die allerdings erst zeitversetzt dazu erfolgt, eine Dauer D (D=t6-t5) aufweist.
  • Auf die beschriebene Weise kann für jede Ansteuerung eines Piezoaktors für eine Vor-, Haupt- oder Nacheinspritzung festgestellt werden, ob eine korrekte oder eine Fehl-Einspritzung stattfindet, wann die Einspritzung beginnt und wie lange sie dauert.

Claims (6)

  1. Verfahren zum Ansteuern eines piezobetriebenen Kraftstoff-Einspritzventils bei einer Vor-, Haupt- oder Nacheinspritzung, mittels eines Piezoaktors und eines von ihm betätigten Servoventils zur Erkennung einer Öffnung des Servoventils und der Bestimmung der Einspritzdauer (D),
    dadurch gekennzeichnet,
    dass bei einem Ansteuervorgang aus dem dem Piezoaktor zugeführten Strom und der sich daraufhin an ihm aufbauenden Spannung unter Zuhilfenahme eines nichtlinearen Aktormodells der Verlauf der Längenänderung (s) und die vom Aktor ausgeübte Kraft (F) errechnet werden und aus diesen oder von ihnen abgeleiteten Größen (dF/dt) ein Öffnungsvorgang des Servoventils (tA) ermittelt und die Einspritzdauer (D) bestimmt werden.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet,
    daß ein erstes (W1) und zweites Zeitfenster (W2) vorgesehen sind,
    dass die Längenänderungen am Beginn (t1) und am Ende (t2) des ersten Zeitfensters (W1) eine erste Tangente (T1), und die Längenänderungen am Beginn (t3) und am Ende (t4) des zweiten Zeitfensters (W2) eine zweite Tangente (T1') bestimmen, und
    dass sich die beiden Tangenten (T1, T1') in einem Zeitpunkt (tA) schneiden.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass der Zeitpunkt (tA) als Öffnungszeitpunkt des Servoventils gewertet wird, wenn die Tangente (T1') einen definierbar steileren Winkel gegenüber der Abszisse aufweist als die Tangente (T1), andernfalls (T0, T0') eine Fehleinspritzung detektiert wird.
  4. Verfahren nach Anspruch 1, dadurch gekennzeichnet,
    dass bei einem als Öffnungszeitpunkt des Servoventils gewerteten Zeitpunkt (tA) für die erste zeitliche Ableitung (dF1/dt) der Kraft (F) ein Toleranzband zwischen einem oberen Grenzwert (g1) und einem unteren Grenzwert (g2) festgelegt wird, und
    dass die Zeit (t5 bis t6), in der sich der Wert der ersten Ableitung (dF1/dt) nach dem Zeitpunkt (tA) innerhalb dieses Toleranzbandes bewegt, als Einspritzdauer (D) gewertet wird.
  5. Verfahren nach Anspruch 2 oder 4, dadurch gekennzeichnet, dass die die beiden Zeitfenster (W1, W2) definierenden Zeitpunkte (t1 bis t4) oder die Grenzwerte (g1, g2) des Toleranzbandes als von wenigstens der dem Piezoaktor zugeführten Energie, dem Kraftstoff-Raildruck oder der Aktortemperatur zugeordnete Zeitpunkte in Kennfeldern gespeichert sind.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die in den Kennfeldern gespeicherten Zeitpunkte (t1 bis t4), welche die Zeitfenster (W1, W2) bestimmen, auch von dem in dem jeweils vorhergehenden früheren Einspritzvorgang ermittelten Zeitpunkt (tA) abhängig adaptiert werden.
EP02760150A 2001-09-05 2002-09-02 Verfahren zum ansteuern eines piezobetriebenen kraftstoff-einspritzventils Expired - Lifetime EP1423593B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10143501 2001-09-05
DE10143501A DE10143501C1 (de) 2001-09-05 2001-09-05 Verfahren zum Ansteuern eines piezobetriebenen Kraftstoff-Einspritzventils
PCT/DE2002/003226 WO2003023212A1 (de) 2001-09-05 2002-09-02 Verfahren zum ansteuern eines piezobetriebenen kraftstoff-einspritzventils

Publications (2)

Publication Number Publication Date
EP1423593A1 EP1423593A1 (de) 2004-06-02
EP1423593B1 true EP1423593B1 (de) 2006-11-02

Family

ID=7697798

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02760150A Expired - Lifetime EP1423593B1 (de) 2001-09-05 2002-09-02 Verfahren zum ansteuern eines piezobetriebenen kraftstoff-einspritzventils

Country Status (5)

Country Link
US (1) US7040297B2 (de)
EP (1) EP1423593B1 (de)
JP (1) JP4047809B2 (de)
DE (2) DE10143501C1 (de)
WO (1) WO2003023212A1 (de)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10301822B4 (de) * 2003-01-20 2011-04-07 Robert Bosch Gmbh Verfahren zur Bestimmung der Längenausdehnung eines piezoelektrischen Aktors
DE10345226B4 (de) * 2003-09-29 2006-04-06 Volkswagen Mechatronic Gmbh & Co. Kg Verfahren und Vorrichtung zum Steuern eines Ventils und Verfahren und Vorrichtung zum Steuern einer Pumpe-Düse-Vorrichtung mit einem Ventil
DE10349307B3 (de) * 2003-10-23 2005-05-25 Siemens Ag Diagnoseverfahren für einen elektromechanischen Aktor
DE10357481A1 (de) * 2003-12-09 2005-07-14 Siemens Ag Betriebsverfahren für einen Aktor eines Einspritzventils
DE102004020937B4 (de) * 2004-04-28 2010-07-15 Continental Automotive Gmbh Verfahren zum Bestimmen einer Schließzeit eines Schließgliedes und Schaltungsanordnung
DE102004023545A1 (de) * 2004-05-13 2005-12-08 Daimlerchrysler Ag Verfahren zur Ermittlung der Position eines beweglichen Verschlusselementes eines Einspritzventils
DE102004029907A1 (de) * 2004-06-21 2006-02-02 Siemens Ag Verfahren und Datenverarbeitungsvorrichtung zum Simulieren eines Piezo-Aktuators und Computerprogramm
DE102004063294B4 (de) * 2004-12-29 2006-11-16 Siemens Ag Verfahren und Vorrichtung zum Steuern eines Einspritzventils
DE102005037361B4 (de) * 2005-08-08 2007-05-24 Siemens Ag Verfahren zur Ermittlung eines Ventilöffnungszeitpunkts
DE102005046743B3 (de) * 2005-09-29 2007-05-16 Siemens Ag Verfahren zur Ermittlung des Zeitpunktes des Anschlags eines Ventilkörpers in einem von einem elektromechanischen Aktor betätigten Ablaufventil
JP4475331B2 (ja) 2008-01-10 2010-06-09 株式会社デンソー 燃料噴射装置
DE102008023373B4 (de) * 2008-05-13 2010-04-08 Continental Automotive Gmbh Verfahren zum Steuern eines Einspritzventils, Kraftstoff-Einspritzanlage und Verbrennungsmotor
JP5284005B2 (ja) * 2008-08-25 2013-09-11 本田技研工業株式会社 圧電アクチュエータの制御方法
CN102933836B (zh) * 2010-05-20 2015-06-03 康明斯知识产权公司 压电燃料喷射器***、估计燃料喷射事件的定时特性的方法
DE102010039841B4 (de) * 2010-08-26 2014-01-09 Continental Automotive Gmbh Verfahren zum Anpassen der Einspritzcharakteristik eines Einspritzventils
DE102010041320B4 (de) * 2010-09-24 2021-06-24 Vitesco Technologies GmbH Bestimmung des Schließzeitpunkts eines Steuerventils eines indirekt angetriebenen Kraftstoffinjektors
DE102012204278A1 (de) * 2012-03-19 2013-09-19 Continental Automotive Gmbh Verfahren zum Betreiben eines Kraftstoffeinspritzsystems und Kraftstoffeinspritzsystem mit Einspritzventil mit Regelung der Bewegung des Verschlusselementes
DE102012204272B4 (de) * 2012-03-19 2021-10-28 Vitesco Technologies GmbH Verfahren zum Betreiben eines Kraftstoffeinspritzsystems mit Regelung des Einspritzventils zur Erhöhung der Mengengenauigkeit und Kraftstoffeinspritzsystem
DE102013223750B3 (de) * 2013-11-21 2015-02-19 Continental Automotive Gmbh Verfahren zur Bestimmung des Ventilöffnungszeitpunktes bei piezoservobetriebenen Injektoren
DE102013226849B3 (de) * 2013-12-20 2015-04-30 Continental Automotive Gmbh Verfahren zum Betreiben eines Einspritzventils
DE102014212377B4 (de) * 2014-06-27 2016-07-21 Continental Automotive Gmbh Verfahren zur Bestimmung eines Zustandes eines Einspritzventils
DE102015206286B4 (de) * 2015-04-09 2019-05-29 Continental Automotive Gmbh Verfahren und Vorrichtung zum Betreiben eines Injektors

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4748954A (en) * 1984-07-16 1988-06-07 Nippon Soken, Inc. Electrostrictive actuator device and fuel injection device using same
DE4308811B9 (de) * 1992-07-21 2004-08-19 Robert Bosch Gmbh Verfahren und Einrichtung zur Steuerung einer magnetventilgesteuerten Kraftstoffzumeßeinrichtung
GB9225622D0 (en) * 1992-12-08 1993-01-27 Pi Research Ltd Electromagnetic valves
DE19644521A1 (de) * 1996-10-25 1998-04-30 Siemens Ag Verfahren und Vorrichtung zum Ansteuern eines kapazitiven Stellgliedes
DE19652801C1 (de) * 1996-12-18 1998-04-23 Siemens Ag Verfahren und Vorrichtung zum Ansteuern wenigstens eines kapazitiven Stellgliedes
KR100638939B1 (ko) * 1998-06-25 2006-10-25 지멘스 악티엔게젤샤프트 용량성 액추에이터를 제어하기 위한 방법 및 상기 제어 방법 실행 장치
DE19930309C2 (de) * 1999-07-01 2001-12-06 Siemens Ag Verfahren und Vorrichtung zur Regelung der Einspritzmenge bei einem Kraftstoffeinspritzventil mit Piezoelement-Aktor
DE19960971A1 (de) * 1999-12-17 2001-03-08 Bosch Gmbh Robert Piezoaktor
EP1138912A1 (de) * 2000-04-01 2001-10-04 Robert Bosch GmbH Online Optimierung eines Einspritzsystems mit piezolektrischen Elementen

Also Published As

Publication number Publication date
JP4047809B2 (ja) 2008-02-13
WO2003023212A1 (de) 2003-03-20
US7040297B2 (en) 2006-05-09
JP2005501999A (ja) 2005-01-20
EP1423593A1 (de) 2004-06-02
DE10143501C1 (de) 2003-05-28
DE50208611D1 (de) 2006-12-14
US20050072854A1 (en) 2005-04-07

Similar Documents

Publication Publication Date Title
EP1423593B1 (de) Verfahren zum ansteuern eines piezobetriebenen kraftstoff-einspritzventils
DE102008051820B4 (de) Verfahren zur Korrektur von Einspritzmengen bzw. -dauern eines Kraftstoffinjektors
EP2422067B1 (de) Verfahren und steuergerät zum betreiben eines aktorbetätigten ventils
EP1825124B1 (de) Verfahren zum steuern eines piezoelektrischen aktors und steuereinheit zum steuern eines piezoelektrischen aktors
DE3929747A1 (de) Verfahren und einrichtung zum steuern der kraftstoffeinspritzung
EP1423594B1 (de) Verfahren und vorrichtung zum ansteuern piezobetriebener kraftstoff-einspritzventile
DE10032022A1 (de) Verfahren und Bestimmung der Ansteuerspannung für ein Einspritzentil mit einem piezoelektrischen Aktor
DE102011075732A1 (de) Regelverfahren für ein Einspritzventil und Einspritzsystem
DE102013206600B4 (de) Einspritzsystem zum Einspritzen von Kraftstoff in eine Brennkraftmaschine und Regelverfahren für ein solches Einspritzsystem
WO2011039043A1 (de) Verfahren und steuergerät zum betreiben eines ventils
EP2297444A1 (de) Verfahren und vorrichtung zur druckwellenkompensation bei zeitlich aufeinander folgenden einspritzungen in einem einspritzsystem einer brennkraftmaschine
DE102005050338A1 (de) Verfahren zum Überprüfen eines Ventils
WO2005093241A1 (de) Verfahren und vorrichtung zur druckwellenkompensierenden steuerung zeitlich aufeinanderfolgender einspritzungen in einem einspritzsystem einer brennkraftmaschine
EP2142785B1 (de) Verfahren und steuergerät zur steuerung der einspritzung bei einer brennkraftmaschine
DE102015000310A1 (de) Stromflussendzeitpunktkorrektur für Common-Rail-Kraftstoffsysteme
DE19945670A1 (de) Verfahren zum Ansteuern eines kapazitiven Stellgliedes eines Kraftstoffeinspritzventils einer Brennkraftmaschine
WO2008049704A1 (de) Verfahren zur bestimmung eines kennfeldes der einspritzmenge über einer elektrischen grösse eines elektrisch angesteuerten einspritzventils
DE102016200836A1 (de) Verfahren zur Regelung eines Magnetventil-Injektors
DE102015220405A1 (de) Verfahren und Vorrichtung zur Steuerung eines Kraftstoff-Einspritzsystems einer Brennkraftmaschine
DE102016206369B3 (de) Verfahren zum Ermitteln des Servoventilschließzeitpunktes bei piezogetriebenen Injektoren und Kraftstoffeinspritzsystem
DE102008020931A1 (de) Verfahren zur Ansteuerung eines Piezoaktors in einem Kraftstoffinjektor
DE10323488B4 (de) Verfahren und Vorrichtung zur betriebspunktabhängigen Steuerung von Injektoren eines Kraftstoffzumesssystems einer Brennkraftmaschine
DE102007058540A1 (de) Verfahren und Vorrichtung zum Laden und Entladen eines piezoelektrischen Elements
DE102007061946A1 (de) Verfahren zum Betreiben einer Kraftstoff-Einspritzvorrichtung
WO2024088704A1 (de) Verfahren zum ermitteln eines oder mehrerer charakteristischer zeitpunkte einer kraftstoffeinspritzung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040210

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LINGL, WOLFGANG

Inventor name: BARANOWSKI, DIRK

Inventor name: PIRKL, RICHARD

Inventor name: HOFFMANN, CHRISTIAN

Inventor name: OUVENOU, LORAND

Inventor name: FREUDENBERG, HELLMUT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20061102

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50208611

Country of ref document: DE

Date of ref document: 20061214

Kind code of ref document: P

ET Fr: translation filed
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20061102

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061102

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080912

Year of fee payment: 7

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180930

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50208611

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200401