EP1412728A1 - Appareil de detection en parallele du comportement de microoscillateurs mecaniques - Google Patents

Appareil de detection en parallele du comportement de microoscillateurs mecaniques

Info

Publication number
EP1412728A1
EP1412728A1 EP01992882A EP01992882A EP1412728A1 EP 1412728 A1 EP1412728 A1 EP 1412728A1 EP 01992882 A EP01992882 A EP 01992882A EP 01992882 A EP01992882 A EP 01992882A EP 1412728 A1 EP1412728 A1 EP 1412728A1
Authority
EP
European Patent Office
Prior art keywords
microoscillators
micro
oscillators
incident light
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01992882A
Other languages
German (de)
English (en)
Inventor
Jean-Paul Roger
Albert Claude Boccara
Christian Bergaud
Marie-Claude Potier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Original Assignee
Centre National de la Recherche Scientifique CNRS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP1412728A1 publication Critical patent/EP1412728A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/036Analysing fluids by measuring frequency or resonance of acoustic waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y35/00Methods or apparatus for measurement or analysis of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0256Adsorption, desorption, surface mass change, e.g. on biosensors

Definitions

  • the present invention relates to an apparatus for characterizing in parallel the dynamic response of microlevers or other mechanical microoscillators.
  • Nanotechnology represents a field of research which has been steadily growing in interest in the scientific community since its appearance in the early 90s. Its name derives from its field of application which relates to objects of the order of a few nanometers to a few micrometers. To date, the potential of such a field seems very vast, from the microelectronics industry to biology and medicine.
  • the image of a surface is obtained by detecting the amplitude and phase of the oscillations of a probe around the resonance.
  • Said probe is composed of a lever mounted on a support which is subjected to a resonant oscillation by a piezoelectric actuator.
  • the resonance frequency of the lever is then disturbed by the interaction of the tip, fixed at its free end, with the surface to be imaged.
  • Micromechanical oscillators such as the AFM levers can be used as sensors for chemical, biological reactions, etc.
  • the oscillators are covered with reactive compounds specific to a chemical or biological reaction that we are trying to highlight. This reaction will be followed by a variation in mass of the oscillator and therefore of its mechanical response (resonance for example).
  • the mechanical displacement of the lever can be detected in amplitude and in phase, for example, by the deflection of a laser beam focused on the free end of the lever.
  • the reflected beam is then detected by a position detector which thus gives a measure of the deformation of the lever.
  • Data acquisition is achieved by scanning a frequency range, located around the resonant frequency of the lever.
  • the detection system allows the use of only one lever. It is then a monodetector.
  • Baller et al. [Ultramicroscopy; 82 (2000) 1] and Fritz et al. [Science, 288 (2000) 316] have shown the almost simultaneous measurement of the deformations of a set of eight levers by a single detector.
  • a multi-channel analog detection method and device is known (patent FR-2,664,048), the performance of which has been demonstrated in surface proliferation (sensitivity of the order of a picometer).
  • the signal to be detected is a modulated light signal.
  • the reading frequency of the signals sent by the multichannel detector can be dissociated from the modulation frequency of the signal to be detected, thus making it possible to very significantly improve the signal / noise ratio, independently of the modulation frequency.
  • the objective of the present invention is therefore to propose a device which is simple in its design and in its operating mode, implementing a multi-channel detection device for the parallel measurement of the amplitude and of the phase of the oscillations of a large number of microlevers or other micromechanical oscillators, around the resonance.
  • the invention relates to an apparatus for detecting in parallel the behavior of mechanical microoscillators:
  • said optical means comprise:
  • a multi-channel detector comprising at least as many channels as there are micro oscillators.
  • This device also includes:
  • a computer makes it possible to record, in a buffer memory, the representative data obtained for each value of p and this, for a large number of accumulations. It then allows the calculation of the phase and the amplitude of the oscillations of each micro-oscillator.
  • a mechanical oscillator is called a microlever such as an elongated element with a length of about a few tens of micrometers, generally in the form of a beam, connected to one of its ends, called the first end, to the frame of the device via an elastic connection.
  • sample chemical or biological species regardless of how they interact with the micro oscillators.
  • the only condition to be respected by these samples is that their presence or their concentration affects the mechanical properties of the microoscillators.
  • the means of periodic displacement of the microoscillators comprise a. piezoelectric ceramic, whose frequency of electrical excitation, synchronized with the light source, is f;
  • the support is a silicon wafer, positioned directly on the piezoelectric ceramic; - the free end of the micro oscillators is functionalized for selective and differentiated detection of the sample; •.
  • the means for separating the incident light beams comprise: a polarization separator cube which linearly polarizes the incident light beam,
  • the assembly composed of the micro oscillators, the support and the piezoelectric ceramic is placed on a bench, the assembly being at atmospheric pressure;
  • the means making it possible to vary the value of the parameter p, to synchronize the detection, the light source and the piezoelectric ceramic comprise a sequencer;
  • the detection unit includes a zoom and a digital CCD camera;
  • the detection set includes a microscope and an analog camera.
  • FIG. 1 is a schematic representation of the detection apparatus according to the invention.
  • a light source 1 for example a light-emitting diode, is controlled by a sequencer 2, so that it emits a periodic signal represented by a slot function 3.
  • This function takes the value 1 during a fraction 1 / n of the period and a null value outside.
  • the optical axis of the beam 4 from the light source 1 is oriented at 45 ° from the plane of Figure 1.
  • Means of separation and polarization of the incident beam 4 are constituted, for example, of a polarization splitter cube 5 and a Wollaston prism 6.
  • the polarization splitter cube 5 produces a light beam 4 linearly polarized in a direction at 45 ° from the optical axes of the Wollaston prism 6.
  • the Wollaston prism 6 then separates the beam. incident light 4 in two beams of orthogonal polarizations 7 and 8.
  • the polarized beams 7 and 8 are then each focused by an objective 9 on one of the ends 10 and 11 of a microoscillator 12.
  • the interference means consist of the Wollaston 6, the separating cube 5 and a lens 13 which focuses the reflected beams, having interfered, on the multichannel detector.
  • the latter consists of a camera
  • the detection assembly consists of the lens 13 and the CD camera 14.
  • micro-oscillators must be in a plane conjugate with the plane of the multichannel receiver, most often the pixel matrix of the camera.
  • the micro oscillators 12 are beams of dimensions 70 ⁇ 20 ⁇ m 2 .
  • the beams are made of a layer of SiO 2 , 0.75 ⁇ m thick, covered by a layer of gold 0.45 ⁇ m thick.
  • the deposition of a layer of gold makes it possible to very significantly increase the reflection coefficient of the beams.
  • the calculated resonance frequency of these beams is 120.19 KHz.
  • the micro oscillators 12 are mounted on a support 15 which is a silicon matrix. It is directly brought into contact with a piezoelectric ceramic 16 which ensures a periodic displacement of the microoscillators 12. In order to ensure a good frequency response of the microoscillators 12, it is necessary to achieve satisfactory coupling between the support 15 and the piezoelectric ceramic 16. Advantageously, this coupling is ensured by a drop of paraffin oil, but the adhesive also gives good results.
  • the sequencer 2 controls the acquisition of the interference images 17 and synchronizes the electrical excitation signal 18 of the piezoelectric ceramic 16 and the trigger 19 of the light source 1.
  • a computer 20 makes it possible to record, in a buffer memory, the representative data obtained for each phase value p / n and this for a large number of accumulations. It then allows the calculation of the phase and amplitude 1 of oscillation of each micro-oscillatorJ2.
  • Four interference images are thus obtained by the CCD camera 14. Thanks to these four images, the amplitude and phase of each micro oscillator 12 can be extracted from the expressions described below.
  • ⁇ cos ( ⁇ t + ⁇ ) represents the optical phase shift due to the reflection of the beams 7 and 8 on the oscillating micro-oscillator 12.
  • is the amplitude of the oscillation of the microoscillators 12 expressed in optical phase shift and ⁇ the electrical phase shift of the oscillation of the microoscillators 12 relative to the mechanical oscillation of the piezoelectric ceramic 16.
  • the signal measured by the camera 14 is the integral of l p over N periods. Taking into account the shape of the light signal (slots function), we. then obtains:
  • ⁇ s is the electrical phase shift between the light source 1 and the excitation electrical reference of the piezoelectric ceramic 16. It also includes the
  • I 0 represents the light intensity cut by the power supply of the source 1 (light-emitting diode).
  • the operation of the device of the invention is as follows: The light source 1 product , after crossing a polarization separating cube 5 and a Wollaston prism 6, two incident beams 7 and 8 forming, between them, a small angle (of the order of a milliradian) and orthogonal polarizations. The incident polarized beams 7 and 8 are then focused by the objective 9 on the ends 10 and 11 of a micro-oscillator 12. These polarized beams are then modulated by their reflection on the micro-oscillator 12.
  • the Wollaston prism 6 is placed in the focal plane object of the objective 9.
  • the reflected beams, polarized and modulated, therefore cross, after reflection on the microoscillators, the Wollaston 6 along the reverse optical path.
  • the modulated polarized beams are focused by an objective 13 on the multichannel detector.
  • the pixels of the CCD camera 14 thus detect the signal after interference.
  • the signal received by a pixel from the CCD camera 14 then depends on the path difference between the beams 7 and 8, and therefore on the difference in amplitude between the points 10 and 11 of the micro-oscillator 12.
  • the description of the operation is based on the consideration of only polarized beams 7 and 8, but the diameter of the area illuminated on the surface by the light source 1 is a function of the active area of the light source 1, of the collimation lens. of the beam 4 and of the focusing objective 9.
  • the diameter of the illuminated area is 2.35 mm.
  • the set of signals received on the different pixels of the CCD camera 14 therefore makes it possible to determine the amplitude and the oscillation phase of a large set of micro, oscillators J2.
  • the pixels of the CCD camera 14 are read after storage of a number N of elementary measurements, for each phase value p / n.
  • the refresh rate of the pixel matrix is therefore f / N.
  • the choice of the focal length of the objective 9 must represent a compromise between a satisfactory optical resolution and a distance d separating the ends 10 and 11, sufficient.
  • the distance d is proportional to the focal length of the objective 9.
  • the distance d separating the points 10 and 11 is thus reduced at the risk of no longer detecting the difference in amplitude of the ends of the micro-oscillator. 12.
  • the offset between 10 and 11 is 70 ⁇ m
  • the optical resolution is 2.7 ⁇ m.
  • This device for characterizing the sample 21 can advantageously be used in the context of the detection of chemical species or . organic;
  • the functionalization of the free end 11 of the microoscillators 12 leads, in fact, to a selective and differentiated adsorption of species.
  • the resulting variation in mass results in a shift in the resonance frequency of the active microoscillators 12 relative to that which an inert microoscillator 12 would have for the species under consideration. It is thus possible to deduce therefrom the mass of the adsorbate.
  • this device With the possibility of simultaneously detecting, by the multiple imaging technique, the mechanical responses of a large number of microoscillators 12, this device has the advantage of allowing the acquisition of multiple data. It therefore becomes possible to obtain, by a device which is simple to use and implement, differentiated and multiple data on a sample 21 to be analyzed.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Microscoopes, Condenser (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

L'invention concerne un appareil de détection en parallèle du comportement de microoscillateurs mécaniques interagissant avec l'échantillon (21). Par des moyens optiques, on mesure l'amplitude et la phase de résonance des microoscillateurs (12). Selon l'invention, une source (1) est active pendant une fraction 1/n de la période (n entier) et de phase variable p/n de la période (p entier). On réalise des interférences entre des faisceaux lumineux produits par réflexion de faisceaux lumineux incidents (7) et (8), sur les microoscillateurs (12). Des moyens déplacent périodiquement les microoscillateurs (12). On fait varier la valeur du paramètre p (p entier) et on intègre N mesures élémentaires pour obtenir une mesure représentative pour chacune des valeurs de p. On calcule la phase et l'amplitude de chaque microoscillateur (12) à partir des données représentatives obtenues pour chaque valeur de p et ceci pour un grand nombre d'accumulations. Cette invention est appliquée dans le domaine des nanotechnologies.

Description

Appareil de détection en parallèle du comportement de microoscillateurs mécaniques
La présente invention concerne un appareil de caractérisation en parallèle de la réponse dynamique de microleviers ou autres microoscillateurs mécaniques.
Les nanotechnologies représentent un domaine de recherche qui ne cesse de connaître un intérêt croissant dans la communauté scientifique depuis son apparition au début des années 90. Son nom tient à son champ d'application qui porte sur des objets de l'ordre de quelques nanomètres à quelques micromètres. A ce jour, les potentialités d'un tel domaine semblent très vastes, de l'industrie de la microélectronique à la biologie et la médecine.
Les structures mécaniques que l'on sait fabriquer aujourd'hui par des techniques dérivées de la microélectronique (usinage du silicium, de la silice, des nitrures, etc..) jouent un grand rôle dans la réalisation de capteurs ou des actionneurs.
Par exemple, dans la microscopie à force atomique (AFM), l'image d'une surface est obtenue en détectant l'amplitude et la phase des oscillations d'une sonde autour de la résonance. Ladite sonde est composée d'un levier monté sur un support qui est soumis à une oscillation résonante par un actionneur piézoélectrique. La fréquence de résonance du levier est alors perturbée par l'interaction de la pointe, fixée à son extrémité libre, avec la surface à imager. Des oscillateurs micromécaniques, tels que les leviers d'AFM peuvent être utilisés comme capteurs de réactions chimiques, biologiques, etc ... . Dans ce cas, les oscillateurs sont recouverts de composés réactifs spécifiques d'une réaction chimique ou biologique que l'on cherche à mettre en évidence. Cette réaction sera suivie d'une variation de masse de l'oscillateur et donc de sa réponse mécanique (résonance par exemple).
Le déplacement mécanique du levier, peut être détecté en amplitude et en phase, par exemple, par la déflexion d'un faisceau laser focalisé sur l'extrémité libre du levier. Le faisceau réfléchi est alors détecté par un détecteur de position qui donne ainsi une mesure de la déformation du levier. L'acquisition des données est réalisée en balayant une plage de fréquence, située autour de la fréquence de résonance du levier. Cependant, ces systèmes restent limités par la mise en oeuvre d'un nombre très restreint de leviers. Dans le cas d'une mesure de la résonance mécanique, le système de détection ne permet l'utilisation que d'un seul levier. Il s'agit alors d'un monodétecteur. Dans le cas d'une détection de la déformation statique, des travaux récents par Baller et al. [Ultramicroscopy; 82 (2000) 1 ] et Fritz et al. [Science, 288 (2000) 316] ont montré la mesure quasi simultanée des déformations d'un ensemble de huit leviers par un détecteur unique.
Ces systèmes actuels ne permettent pas la mesure simultanée de la fréquence de résonance d'un très grand nombre de leviers.
On connaît, par ailleurs, un procédé et un dispositif de détection analogique multicanal (brevet FR-2 664 048) dont les performances ont été démontrées dans la prolifométrie de surface (sensibilité de l'ordre du picomètre). Avec ce procédé et ce dispositif, le signal à détecter est un signal lumineux modulé. La fréquence de lecture des signaux envoyés par le détecteur multicanal peut être dissociée de la fréquence de modulation du signal à détecter permettant ainsi d'améliorer très sensiblement le rapport signal/bruit, indépendamment de la fréquence de modulation.
L'objectif de la présente invention est donc de proposer un appareil simple dans sa conception et dans son mode opératoire, mettant en oeuvre un dispositif de détection multicanal pour la mesure en parallèle de l'amplitude et de la phase des oscillations d'un grand nombre de microleviers ou d'autres oscillateurs micromécaniques, autour de la résonance.
A cet effet, l'invention concerne un appareil de détection en parallèle du comportement de microoscillateurs mécaniques :
- des microoscillateurs mécaniques montés sur un support, interagissant avec l'échantillon,
- des moyens optiques pour la mesure de l'amplitude et de la phase des oscillations des microoscillateurs.
Selon l'invention, lesdits moyens optiques comportent :
- une source lumineuse périodique, active pendant une fraction 1/n de la période (n entier) et de phase variable p/n de la période (p entier),
- des moyens de production de faisceaux lumineux incidents dirigés respectivement sur chacune des extrémités des microoscillateurs,
- des moyens de séparation desdits faisceaux lumineux incidents,
- des moyens d'interférence des faisceaux lumineux réfléchis et modulés, produits par réflexion des faisceaux lumineux incidents sur les microoscillateurs, produisant une image d'interférence, - un détecteur multicanal comprenant au moins autant de canaux qu'il existe de microoscillateurs.
- Cet, appareil comporte de plus :
- des moyens de déplacement périodique des microoscillateurs dans leur ensemble,
- des moyens permettant de faire varier la valeur du paramètre p (p entier) et > d'intégrer N mesures élémentaires pour obtenir une mesure représentative pour chacune des valeurs de p,
- un ordinateur permet d'enregistrer, dans une mémoire tampon, les données représentatives obtenues pour chaque valeur de p et ceci, pour un grand nombre d'accumulations. Il permet ensuite le calcul de la phase et de l'amplitude des oscillations de chaque microoscillateur.
On appelle donc, ici, oscillateur mécanique soit un microlevier tel qu'un élément longiligne d'une longueur d'environ quelques dizaines de micromètres, généralement en forme de poutre, relié à Tune de ses extrémités, dite de première extrémité, au bâti de l'appareil par l'intermédiaire d'une liaison élastique.
Son autre, ou seconde extrémité est en mouvement. On mesure ce mouvement transverse de cette seconde extrémité de façon à caractériser l'échantillon.
Parmi les oscillateurs mécaniques utilisables, on citera aussi les membranes pour lesquelles on comparera le mouvement d'un point généralement le centre à un autre généralement périphérique.
Par échantillon, on entend des espèces chimiques ou biologiques quelle que soit la manière dont elles interagissent avec les microoscillateurs. La seule condition à respecter par ces échantillons est que leur présence ou leur concentration affecte les propriétés mécaniques des microoscillateurs.
Dans différents modes de réalisation particuliers ayant chacun ses avantages particuliers et susceptibles de nombreuses combinaisons techniques possibles :
- les moyens de déplacement périodique des microoscillateurs comportent une . céramique piézoélectrique, dont la fréquence d'excitation électrique, synchronisée avec la source lumineuse, est f ;
- le support est une lame de silicium, positionnée directement sur la céramique piézoélectrique ; - l'extrémité libre des microoscillateurs est fonctionnalisée pour la détection sélective et différenciée de l'échantillon ; • .
- les moyens de séparation des faisceaux lumineux incidents comportent : • un cube séparateur de polarisation qui polarise linéairement le faisceau lumineux incident,
• un " prisme de Wollaston qui sépare le, faisceau- lumineux^ incident en deux faisceaux de polarisations orthogonales ;
- l'ensemble composé des microoscillateurs, du support et de la céramique piézoélectrique est placé sur un banc, l'ensemble étant à la pression atmosphérique ;
- les moyens permettant de faire varier la valeur du paramètre p, de synchroniser la détection, la source lumineuse et la céramique piézoélectrique comportent un séquenceur ; - l'ensemble de détection comporte un zoom et une caméra CCD numérique ;
- l'ensemble de détection comporte un microscope et une caméra analogique.
L'invention sera décrite plus en détail en référence aux dessins annexés dans lesquels :
. - la figure 1, est une représentation schématique de l'appareil de détection selon l'invention ;
- la figure 2 représente le cheminement optique des polarisations.
Une source lumineuse 1, par exemple une diode électroluminescente, est commandée par un séquenceur 2, de telle sorte qu'elle émet un signal périodique représenté par une fonction créneaux 3. Cette fonction prend la valeur 1 pendant une fraction 1/n de la période et une valeur nulle en dehors.
L'axe optique du faisceau 4 issu de la source lumineuse 1 est orienté à 45° du plan de la figure 1. Des moyens de séparation et de polarisation du faisceau incident 4 sont constitués, par exemple, d'un cube séparateur de polarisation 5 et d'un prisme de Wollaston 6. Le cube séparateur de polarisation 5 produit un faisceau lumineux 4 polarisé linéairement dans une direction à 45° des axes optiques du prisme de Wollaston 6. Le prisme de Wollaston 6 sépare alors le faisceau. lumineux incident 4 en deux faisceaux de polarisations orthogonales 7 et 8. Les faisceaux polarisés 7 et 8 sont ensuite chacun focalisés par un objectif 9 sur l'une des extrémités 10 et 11 d'un microoscillateur 12.
Les moyens d'interférence se composent du Wollaston 6, du cube séparateur 5 et d'un objectif 13 qui focalise les faisceaux réfléchis, ayant interféré, sur le détecteur multicanal. Ce dernier est constitué d'une caméra
CCD 14. L'ensemble de détection est constitué de l'objectif 13 et de la caméra CD 14.
De manière générale, différents types d'interféromètres permettent la mise en oeuvre de l'invention. Les microoscillateurs doivent être dans un plan conjugué du plan du récepteur multicanal, le plus souvent la matrice de pixels de la caméra.
Les microoscillateurs 12 sont des poutres de dimensions 70x20 μm2. Les poutres sont faites d'une couche de SiO2, d'épaisseur 0.75 μm, recouverte par une couche d'or d'épaisseur 0.45μm. Le dépôt d'une couche d'or permet d'augmenter très sensiblement le coefficient de réflexion des poutres. La fréquence de résonance calculée de ces poutres est de 120.19 KHz.
Les microoscillateurs 12 sont montés sur un support 15 qui est une matrice en silicium. Elle est directement mise en contact avec une céramique piézoélectrique 16 qui assure un déplacement périodique des microoscillateurs 12. Afin d'assurer une bonne réponse fréquentielle des microoscillateurs 12, il est nécessaire de réaliser un couplage satisfaisant entre le support 15 et la céramique piézoélectrique 16. Avantageusement, ce couplage est assuré par une goutte d'huile de paraffine mais la colle donne de bons résultats également. Le séquenceur 2 commande l'acquisition des images d'interférence 17 et synchronise le signal d'excitation électrique 18 de la céramique piézoélectrique 16 et le déclenchement 19 de la source lumineuse 1.
Un ordinateur 20 permet d'enregistrer, dans une mémoire tampon, les données représentatives obtenues pour chaque valeur de phase p/n et ceci pour un grand nombre d'accumulations. Il permet ensuite le calcul de la phase et de l'amplitude1 d'oscillation de chaque microoscillateurJ2.
Dans le dispositif de la Figure 1 , la source lumineuse 1 est active pendant un quart de la période (n = 4) et la valeur de phase p/n est telle que p varie de 0 à 3. Quatre images d'interférences sont ainsi obtenues par la caméra CCD 14. Grâce à ces quatre images, les informations d'amplitude et de phase de chaque microoscillateur 12 peuvent être extraites à partir des expressions décrites ci-dessous.
Soit ls,p l'intensité lumineuse de la source 1 , où p représente le numéro du quart, dé. la période d'activité de la source, l'expression de l'intensité du signal d'interférence lp mesurée par la caméra CCD 14 s'écrit alors :
lp = ls,p [1-cos(ψw+A cos(ώt + φ))] (1) ^
Pour de petites oscillations de pulsation ω du microoscillateur et pour une position -du point 11 correspondant à l'extrémité du microoscillateur 12, la somme ψw des déphasages statiques dus au prisme de Wollaston 6 et à la déformation statique du microoscillateur 12 est égale à π/2.
On peut alors simplifier l'expression (1) qui devient : . - .
' lp ~ ls,p [1 + Δ cos(ωt + φ))]
L'expression Δ cos(ωt + φ) représente le déphasage optique dû à la réflexion des faisceaux 7 et 8 sur le miçrooscillateur 12 oscillant. Δ est l'amplitude de l'oscillation des microoscillateurs 12 exprimée en déphasage optique et φ le déphasage électrique de l'oscillation des microoscillateurs 12 par rapport à l'oscillation mécanique de la céramique piézoélectrique 16.
Ce sont ces deux paramètres φ et Δ que l'on cherche à déterminer. Le signal mesuré par la caméra 14 est l'intégrale de lp sur N périodes. En tenant compte de la forme du signal lumineux (fonction créneaux), on . obtient alors :
Sp = (1/2π) l0N2π/ω [π/2 + 2Δ sin(π/4)cos(pπ/2 + φ-ψs)]
où ψs est le déphasage électrique entre la source lumineuse 1 et la référence électrique excitatrice de la céramique piézoélectrique 16. Il inclut également le
* déphasage entre l'excitation électrique 18 de la céramique 16 et sa réponse mécanique. I0 représente l'intensité lumineuse découpée par l'alimentation de la source 1 (diode électroluminescente).
On en déduit alors :
π
So+Si+S^Ss≈ l0N- ω tan(φ-ψs) = (S3-Sι)/(S0-S2)
Δ = /Λ/2 x 1/(S0+S1+S2+S3) x V[(S3-Sι)2+(S0-S2)2]
L'acquisition des quatre images Sp (p = 0 à 3) permet ainsi de déterminer complètement l'amplitude et la phase des oscillations des microoscillateurs 12. - Le fonctionnement du dispositif de l'invention est le suivant : La source lumineuse 1 produit, après la traversée d'un cube séparateur de polarisation 5 et d'un prisme de Wollaston 6, deux faisceaux incidents 7 et 8 formant, entre eux, un petit angle (de l'ordre du milliradian) et de polarisations orthogonales. Les faisceaux polarisés incidents 7 et 8 sont alors focalisés par l'objectif 9 sur les extrémités 10 et 11 d'un microoscillateur 12. Ces faisceaux polarisés sont alors modulés par leur réflexion sur le microoscillateur 12. Le prisme de Wollaston 6 est placé dans le plan focal objet de l'objectif 9. Les faisceaux réfléchis, polarisés et modulés, traversent donc, après réflexion sur les microoscillateurs, le Wollaston 6 suivant le chemin optique inverse. Après avoir traversé, en retour, le cube séparateur 5, les faisceaux polarisés modulés sont focalisés par un objectif 13 sur le détecteur multicanal. Les pixels de la caméra CCD 14 détectent ainsi le signal après interférence. Le signal reçu par un pixel de la caméra CCD 14 dépend alors de la différence de marche entre les faisceaux 7 et 8, et donc de la différence d'amplitude entre les points 10 et 11 du microosciljateur 12.
La description du fonctionnement est basée sur la considération des seuls faisceaux polarisés 7 et 8 mais le diamètre de la zone éclairée, à la surface, par la source lumineuse 1 est fonction de la zone active de la source lumineuse 1 , de la lentille de collimation du faisceau 4 et de l'objectif de focalisation 9. Pour l'objectif de focale 9 et la source lumineuse 1 considérés sur la figure 1 , le diamètre de la zone éclairée est 2,35 mm. L'ensemble des signaux reçus sur les différents pixels de la caméra CCD 14 permet donc de déterminer l'amplitude et la phase d'oscillation d'un large ensemble de micro,oscillateurs J2. La lecture des pixels de la caméra CCD 14 est effectuée après stockage d'un nombre N de mesures élémentaires, pour chaque valeur de phase p/n. La fréquence de rafraîchissement de la matrice de pixels est donc f/N. Il est ainsi possible de suivre des fréquences de modulation des microoscillateurs 12 de l'ordre de plusieurs centaines de KHz. Le choix de la focale de l'objectif 9 doit représenter un compromis entre une résolution optique satisfaisante et une distance d séparant les extrémités 10 et 11 , suffisante. La distance d est proportionnelle à la focale de l'objectif 9. En choisissant un fort grossissement et donc une meilleure résolution optique, la distance d séparant les points 10 et 11 se trouve ainsi diminuée au risque de ne plus détecter la différence d'amplitude réelle des extrémités du microoscillateur.12. Pour l'objectif 9 de focale-50 >mm et un objectif 13 de focale 300 mm considérés sur la figure 1 , le décalage entre 10 et 11 est de 70 μm, la résolution optique est de 2,7 μm. Cet appareil de caractérisation de l'échantillon 21 peut avantageusement être utilisé dans le cadre de la détection d'espèces chimiques ou. biologiques; La fonctionnalisation de l'extrémité libre 11 des microoscillateurs 12 conduit, en effet, à une adsorption sélective et différenciée d'espèces. La variation de masse résultante entraîne un décalage de la fréquence de résonance des microoscillateurs 12 actifs par rapport à celle qu'aurait un microoscillateur 12 inerte pour l'espèce considérée. Il est ainsi possible d'en déduire la masse de l'adsorbat.
Avec la possibilité de détecter simultanément, par la technique d'imagerie multipléxée, les réponses mécaniques d'un large nombre de microoscillateurs 12, cet appareil a l'avantage de permettre l'acquisition de données multiples. Il devient, dés lors, possible d'obtenir par un appareil simple d'utilisation et de mise en oeuvre, des données différenciées et multiples sur un échantillon 21 à analyser.

Claims

REVENDICATIONS
1. Appareil de détection en parallèle du comportement ' de microoscillateurs mécaniques :
- des micr'ooscillateurs mécaniques (12) montés sur un , support (13) interagissant avec l'échantillon (21),
- des moyens optiques pour la mesure de l'amplitude et de la phase des oscillations des microoscillateurs (12), . < -. - -
- caractérisé en ce que lesdits moyens optiques comportent : - une source lumineuse (1) périodique, active pendant une fraction 1/n de la période, (n entier) et de phase variable p/n de la période (p entier);
^ des moyens de production de faisceaux lumineux incidents (7) et (8), dirigés respectivement sur chacune des extrémités (10) et (11) des microoscillateurs (12),
- des moyens de séparation desdits faisceaux lumineux incidents (7) et (S)', .
- dès moyens d'interférence des faisceaux lumineux réfléchis et modulés, produits par réflexion des faisceaux lumineux incidents sur . les microoscillateurs (12), produisant une image d'interférence,
- un détecteur multicanal (14) comprenant au moins autant de canaux qu'il existe de microoscillateurs (12),
• ' - et en ce qu'il comporte :
- des moyens de déplacement périodique des microoscillateurs (12), dans leur ensemble (21),
- des moyens permettant de faire varier la valeur du paramètre p (p entier) et d'intégrer N mesures élémentaires pour obtenir une mesure représentative pour chacune des valeurs de p,
- un ordinateur (20) permet d'enregistrer, dans une mémoire tampon, les données représentatives obtenues pour chaque valeur de p et ceci pour un grand nombre d'accumulations et permet ensuite le calcul de la phase et de l'amplitude de chaque microoscillateur (12).
2. Appareil selon la revendication 1 , caractérisé en ce que les moyens de déplacement périodique des microoscillateurs (12) comportent une céramique piézoélectrique (16) dont la fréquence d'excitation électrique (18), synchronisée avec la source lumineuse (1), est f.
3. Appareil selon la revendication 2, caractérisé en ce que le support (15) est une lame de silicium, positionnée directement sur- la céramique piézoélectrique (16>.
4, Appareil selon la revendication 2, caractérisé en ce que l'extrémité libre (11) des microoscillateurs (12) est fonctionnalisée pour la détection
- sélective et différenciée de l'échantillon (21).
' -5. Appareil- selon la revendication 1 , caractérisé en ce que les moyens de séparation et de polarisation des faisceaux lumineux incidents comportent-: - un cube séparateur de polarisation (5) qui polarise linéairement le faisceau' lumineux incident,
- un prisme de Wollaston (6) qui sépare le faisceau lumineux incident en deux faisceaux de polarisations orthogonales (7) et (8).
6. Appareil selon l'une quelconque des revendications 1 à 5, caractérisé en ce que l'ensemble, composé des microoscillateurs (12), du support (15) et de la céramique piézoélectrique (16) est placé sur un banc, l'ensemble étant à la pression atmosphérique.
7. Appareil selon la revendication 1 , caractérisé en ce que les moyens permettant de faire varier la valeur du paramètre p, de synchroniser la détection (17), la source lumineuse (1) et la céramique piézoélectrique (16) comportent un séquenceur (2).
8. Appareil selon la revendication 1 , caractérisé en ce que l'ensemble de détection comporte un zoom (13) et une caméra CCD numérique (14).
9. Appareil selon la revendication 1 , caractérisé en ce que l'ensemble de détection comporte un microscope et une caméra analogique.
EP01992882A 2000-11-06 2001-11-05 Appareil de detection en parallele du comportement de microoscillateurs mecaniques Withdrawn EP1412728A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0014215A FR2816407B1 (fr) 2000-11-06 2000-11-06 Appareil de detection en parallele du comportement de microoscillateurs mecaniques
FR0014215 2000-11-06
PCT/FR2001/003409 WO2002037090A1 (fr) 2000-11-06 2001-11-05 Appareil de detection en parallele du comportement de microoscillateurs mecaniques

Publications (1)

Publication Number Publication Date
EP1412728A1 true EP1412728A1 (fr) 2004-04-28

Family

ID=8856115

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01992882A Withdrawn EP1412728A1 (fr) 2000-11-06 2001-11-05 Appareil de detection en parallele du comportement de microoscillateurs mecaniques

Country Status (7)

Country Link
US (1) US7173714B2 (fr)
EP (1) EP1412728A1 (fr)
JP (1) JP3971305B2 (fr)
AU (1) AU2002223742A1 (fr)
CA (1) CA2428218C (fr)
FR (1) FR2816407B1 (fr)
WO (1) WO2002037090A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU168080U1 (ru) * 2016-06-10 2017-01-17 Федеральное государственное бюджетное образовательное учреждение высшего образования "Омский государственный университет путей сообщения" Устройство для определения амплитуды колебания металлических образцов в лабораторных условиях
CN106840359B (zh) * 2017-01-16 2020-07-07 北京航空航天大学 一种用于激光测振仪的双光束干涉校准装置
CN110595600B (zh) * 2019-08-21 2022-03-22 南京理工大学 基于偏振参数成像的视频帧速声场可视化***及方法
CN115574214B (zh) * 2022-10-14 2024-05-07 季华实验室 一种可多自由度调节的相机对中装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001005701A1 (fr) * 1999-07-16 2001-01-25 Japan Science And Technology Corporation Vibrateur mecanique de l'ordre du nanometre, procede de fabrication associe, et dispositif de mesure utilisant ledit vibrateur
WO2001081857A2 (fr) * 2000-04-20 2001-11-01 The University Of Bristol Systeme d'entrainement de sonde a resonance et microscope a sonde a balayage comprenant ce type de systeme

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2664048B1 (fr) * 1990-06-29 1993-08-20 Centre Nat Rech Scient Procede et dispositif de detection analogique multicanal.
US5445008A (en) * 1994-03-24 1995-08-29 Martin Marietta Energy Systems, Inc. Microbar sensor
US6219145B1 (en) * 1998-02-17 2001-04-17 California Institute Of Technology Interferometric system for precision imaging of vibrating structures
US6016686A (en) * 1998-03-16 2000-01-25 Lockheed Martin Energy Research Corporation Micromechanical potentiometric sensors
US6765680B2 (en) * 2002-06-21 2004-07-20 Agere Systems Inc. Methods of testing and manufacturing micro-electrical mechanical mirrors

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001005701A1 (fr) * 1999-07-16 2001-01-25 Japan Science And Technology Corporation Vibrateur mecanique de l'ordre du nanometre, procede de fabrication associe, et dispositif de mesure utilisant ledit vibrateur
WO2001081857A2 (fr) * 2000-04-20 2001-11-01 The University Of Bristol Systeme d'entrainement de sonde a resonance et microscope a sonde a balayage comprenant ce type de systeme

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO0237090A1 *

Also Published As

Publication number Publication date
JP3971305B2 (ja) 2007-09-05
JP2004513341A (ja) 2004-04-30
AU2002223742A1 (en) 2002-05-15
FR2816407B1 (fr) 2003-03-28
CA2428218A1 (fr) 2002-05-10
US20040052687A1 (en) 2004-03-18
WO2002037090A1 (fr) 2002-05-10
CA2428218C (fr) 2010-01-26
FR2816407A1 (fr) 2002-05-10
US7173714B2 (en) 2007-02-06

Similar Documents

Publication Publication Date Title
US7220962B2 (en) Cantilever array and scanning probe microscope including a sliding, guiding, and rotating mechanism
US7461543B2 (en) Overlay measurement methods with firat based probe microscope
US6650420B2 (en) Nanoscale vibrometric measurement apparatus and method
US7068377B2 (en) System and method for surface profiling a target object
US6844935B2 (en) Multi-function opto-electronic detection apparatus
US20060283338A1 (en) Force sensing integrated readout and active tip based probe microscope systems
US9835591B2 (en) Optical cantilever based analysis
US20080204879A1 (en) Miniature Lamellar Grating Interferometer Based on Silicon Technology
KR100866038B1 (ko) 헤테로다인 간섭계를 이용한 주사 현미경
EP3147673A1 (fr) Capteur physique opto-mecanique a sensibilite amelioree
EP2866000B1 (fr) Dispositif optomécanique d&#39;actionnement et/ou de détection du déplacement d&#39;un élément mécanique, notamment pour la détection gravimétrique
JP2008286518A (ja) 変位計測方法とその装置
CA2428218C (fr) Appareil de detection en parallele du comportement de microoscillateurs mecaniques
EP0942261A1 (fr) Procédé et dispositif pour la mesure de fonds de cratères dans un analyseur physico-chimique
FR2887986A1 (fr) Procede de caracterisation d&#39;un objet deformable et capteur pour la mise en oeuvre d&#39;un tel procede
US9057706B2 (en) Optical cantilever based analyte detection
JP5699105B2 (ja) 表面計測方法とその装置
EP3400488A2 (fr) Dispositif d&#39;imagerie du champs électromagnétique d&#39;un échantillon
Huang et al. Vibration frequency matching in fiber-based interferometer for femtogram measurement
JPH08313542A (ja) 走査型プローブ顕微鏡
JPH03123810A (ja) 原子間力顕微鏡

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030723

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20080527

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140122