EP1355114A2 - Kühlung von Hochtemperatursupraleitern - Google Patents

Kühlung von Hochtemperatursupraleitern Download PDF

Info

Publication number
EP1355114A2
EP1355114A2 EP03008648A EP03008648A EP1355114A2 EP 1355114 A2 EP1355114 A2 EP 1355114A2 EP 03008648 A EP03008648 A EP 03008648A EP 03008648 A EP03008648 A EP 03008648A EP 1355114 A2 EP1355114 A2 EP 1355114A2
Authority
EP
European Patent Office
Prior art keywords
cryogenic liquid
liquid
nitrogen
cooled
circulated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03008648A
Other languages
English (en)
French (fr)
Other versions
EP1355114A3 (de
Inventor
Horst Holzberger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP1355114A2 publication Critical patent/EP1355114A2/de
Publication of EP1355114A3 publication Critical patent/EP1355114A3/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B19/00Machines, plants or systems, using evaporation of a refrigerant but without recovery of the vapour
    • F25B19/005Machines, plants or systems, using evaporation of a refrigerant but without recovery of the vapour the refrigerant being a liquefied gas

Definitions

  • the invention relates to a method for cooling elements by Heat exchange with a cryogenic liquid, the cryogenic liquid with Pressurized, guided in a closed cycle and indirect Heat exchange is cooled with a coolant.
  • the invention further relates to a corresponding device for cooling elements that have a ring line for guiding a cryogenic liquid in a closed circuit, a heat exchanger and means for conveying the cryogenic in the ring line Liquid are provided in the closed circuit.
  • High temperature superconducting cables must always be below during operation the transition temperature of the superconducting material used.
  • this has so far been achieved in that the HTSL cable in direct Heat exchange can be cooled with liquid nitrogen.
  • the liquid takes Nitrogen heats up the power loss in the HTSL cables and heats up or partially evaporates.
  • the cooling medium is recirculated nitrogen used must therefore also be cooled down again or be reliquefied. According to the state of the art, this is done by indirect Heat exchange with liquid helium achieved, for cost reasons evaporated helium is liquefied again.
  • this known method is complex and expensive.
  • the object of the present invention is therefore to provide an inexpensive method and a to develop corresponding device of the type mentioned, the cryogenic liquid is circulated with little loss and the single-phase the liquid is preserved as far as possible over the entire cycle.
  • This object is achieved by a method in which the Elements are cooled by heat exchange with a cryogenic liquid, wherein the cryogenic liquid is pressurized in a closed Circulated and cooled in indirect heat exchange with a coolant is, the cryogenic liquid carried in a closed circuit through a same cryogenic liquid stored in an expansion tank with pressure is applied.
  • a device of the type mentioned is characterized in that with the Ring line a surge tank for cryogenic stored under increased pressure Liquid is connected.
  • a cryogenic liquid is used as a coolant in one closed circuit and for cooling components, system parts or other elements used.
  • the cryogenic liquid is increased Pressure is conveyed through the circuit line and with a cooling medium in indirect Heat exchange cooled down. Pressurizing the cryogenic liquid as well as the pressure maintenance and pressure control are carried out by means of a Expansion tank containing the same cryogenic liquid under increased pressure filled and directly connected to the circuit. Furthermore, the expansion tank the task of large, sudden gas formation in a closed circuit as well as to compensate for leakage losses.
  • the cryogenic liquid carried in the closed circuit is preferably included cryogenic liquid of the same chemical composition, which under lower pressure than the circulating liquid is cooled.
  • Especially liquid nitrogen is preferably used as the cryogenic liquid. This is with a closed circuit pressure above atmospheric pressure led and cooled with liquid nitrogen as the cooling medium, which with a lower pressure than the circulating nitrogen.
  • the promotion of the cryogenic liquid in a closed circuit is an advantage achieved by means of a pump, preferably a centrifugal pump, particularly advantageous, the mass flow of the circulating cryogenic liquid continuously is adjustable.
  • a pump preferably a centrifugal pump
  • the mass flow of the circulating cryogenic liquid continuously is adjustable.
  • liquid nitrogen has become an adjustable Mass throughput in the circuit between 60 g / s and 2 kg / s has been proven, whereby the Throughput may vary as needed.
  • the invention is particularly suitable for cooling high-temperature superconducting parts or machines, in particular cables, Power cables, motors, generators, current limiters, transformers, such as Power transformers or railway transformers, energy storage or Kurz practitionerstrombegrenzem.
  • the invention enables economical Cooling high-temperature superconductors on an industrial scale. This gives energy supply companies a low-loss option Energy transfer available.
  • the system shown in the figure for cooling a high-temperature superconducting Cable includes a storage tank 1 and a surge tank 2 for liquid nitrogen.
  • the two containers 1, 2 are so together via a line 3 connected that if necessary liquid nitrogen from the storage container 1 in the Expansion tank 2 can be passed.
  • the high-temperature superconductor cable to be cooled is in direct heat exchange cooled with liquid nitrogen in a closed nitrogen cycle circulated.
  • the high temperature superconductor cable consists of a variety of a flexible inner tube wound superconducting wires.
  • the inner tube forms a first cooling channel 4 through which liquid nitrogen is passed as the cooling medium and cools the high temperature superconductor cable from the inside.
  • the entire cable is from an insulated jacket, the annular space between the Cable and the jacket forms a second cooling channel 5, through which also more liquid Nitrogen flows to cool the cable.
  • the terminations, i.e. the Connections of the superconducting cable to a normal conducting cable are also made cooled with the liquid nitrogen circulating in the closed circuit.
  • the nitrogen circuit comprises 5 for the superconducting cable two heat exchanger coils 6, 7 and one Centrifugal pump 8.
  • the heat exchanger coils it is also possible to use others Types of heat exchangers, such as finned tube heat exchangers or Plate heat exchanger to be used.
  • the feed to the cooling unit 5 also has a control valve 23, which has the task of the partial flows for the internal cooling 4th and to regulate the external cooling 5. Is parallel to the two cooling channels 4, 5 a bypass line 27 provided with a valve 28 is provided.
  • the heat exchanger coils 6, 7 are in an unpressurized state Liquid nitrogen bath 9, which via line 10 from the storage container 1 can be refilled.
  • the nitrogen cycle is also one with one Exhaust valve 30 connectable exhaust pipe 29 connected.
  • Evacuation line 11 is provided, which is also opened by means of a valve 12 or can be closed, and to which a vacuum pump 13 is connected. Is downstream of the branch of the evacuation and exhaust pipes 11 and 29, respectively a valve 26 is connected to the nitrogen cycle.
  • the storage container 1 is gaseous via a first feed line 14 for supply Nitrogen connected to the nitrogen cycle.
  • a first feed line 14 for supply Nitrogen connected to the nitrogen cycle.
  • a air-heated evaporator 15 and an electrically heated heater 16 integrated.
  • Downstream of the heater 16 there is a valve 17 provided with a control valve Liquid nitrogen line 18 into line 14.
  • a venturi mixing tube 19 is provided to pass through the liquid nitrogen line Mix the 18 supplied liquid with the gas flowing in line 14.
  • One branches off from the liquid nitrogen line 18 upstream of the control valve 17 further line 20, which is provided with a valve 21 and which also in the Lead 14 opens.
  • a further control valve 22 is connected to the mouth of line 20.
  • the nitrogen cycle is used to start up the system shown in the figure first by opening the valve 12 and starting the vacuum pump 13 via the Evacuation line 11 evacuated. This may be in the piping of the Removed moisture from the nitrogen circuit.
  • the valves 26 and 28 are closed.
  • the nitrogen cycle is then flushed with warm nitrogen gas.
  • warm nitrogen gas For this liquid nitrogen is withdrawn from the storage container 1 via line 14, in the air evaporator 15 evaporates against ambient air and to about Ambient temperature warmed up.
  • the gaseous nitrogen is then heated to approximately 330 K. After opening the valves 22 and 28 this warm gas flows via line 14 and the bypass line 27 into the cooling channels 4, 5 and is then via the exhaust pipe 29 into the atmosphere blown off.
  • the system is cooled in a defined manner to mechanical stresses to avoid.
  • a cold and hot gas generation unit is provided, which a defined, gradual cooling or heating with gas temperatures between 100 K and 330 K possible.
  • the gas throughput is also wide Limits adjustable.
  • the size of the temperature steps is preferably 20 to 40 K.
  • the metering valve 17 is opened for this, so that liquid nitrogen flows out of line 18.
  • the liquid nitrogen is in the Venturi mixing tube 19 mixed with the gaseous nitrogen.
  • the metering valve 17 is regulated so that the gas stream flowing in line 14 downstream of the Venturi mixing tube 19 reaches the desired temperature.
  • the temperature measurement takes place by means of a temperature sensor 24, which is arranged in the exhaust pipe 12. In this way it is ensured that the complete superconducting cable has reached the desired temperature.
  • the next temperature step is initiated.
  • the Flow through the metering valve 17 is increased accordingly to a further Achieve temperature reduction.
  • the total flow of the Nitrogen circuit supplied gas is constant by means of the control valve 22 held. In this way, the temperature of the nitrogen cycle gradually increases to lowered to about 100 K.
  • the heat exchanger bath 9 is usually already with Liquid nitrogen filled, so that a pre-cooling of this part of the nitrogen cycle is not necessary.
  • valve 21 As soon as the thermometer 24 in the exhaust line 12 shows 100 K, the entire Nitrogen cooling circuit filled with liquid nitrogen. This is done by valve 21 slowly opened and the valves 17 and 22 are closed accordingly. The This prevents inflow of gaseous nitrogen and liquid nitrogen flows via line 20 from the storage container 1 directly into the feed line 14 Valves 28 and 30 are closed, so that the bypass 27 and the exhaust pipe 29 are shut off, and valve 26 is opened to the nitrogen circuit in operation put.
  • the flow connection between the expansion tank 2 and the The nitrogen cycle is then opened.
  • the expansion tank 2 is with a Provide tank pressure control, which is preferably adjustable remotely. About these Tank pressure control can be the pressure in the expansion tank 2 and in the nitrogen cycle adjusted and automatically regulated. A pressure between 2 and set and maintain 9 bar.
  • the flow rate of the liquid nitrogen in the closed circuit can by the centrifugal pump 8 and a circuit on the pump pressure side arranged control valve 31 can be controlled.
  • the rough setting of the Flow rate takes place by regulating the speed of the pump 8.
  • the centrifugal pump 8 ensures that the liquid nitrogen is turbulent through the circuit and the high-temperature superconductor cable 4, 5 flows around turbulently and thereby the power loss arising in the cable 4, 5 receives.
  • Control valve 23 the distribution of liquid nitrogen to the two cooling channels 4, 5th can be set.
  • the heated in the cooling channels 4, 5 then flows through the Heat exchanger 7, which is located in the unpressurized liquid nitrogen bath 9.
  • the Heat exchanger 7 which is located in the unpressurized liquid nitrogen bath 9.
  • the temperature of the nitrogen is thereby reduced even further, which means the current transfer rate of the HTSL cable to be cooled can be increased.
  • the cycle nitrogen gives the absorbed heat to the Nitrogen bath 9 and becomes approximately at the temperature of bath 9 supercooled, which makes the circulating nitrogen bubble-free. Then the Circulating nitrogen sucked in by the centrifugal pump 8 and accelerated and through the second heat exchanger 6 pressed. In the second heat exchanger 6 there are Circulating nitrogen from the power loss of the pump 8 also from the nitrogen bath 9 and is optionally further cooled in order to then cool the cooling channels 4, 5 again to be fed.
  • the gaseous nitrogen resulting from the heat input into the nitrogen bath 9 is through corresponding openings, not shown in the drawing, to the Dissipated atmosphere or preferably fed to other consumers or liquefied back.
  • the bath 9 is evaporated via line 10 Nitrogen is replaced by liquid nitrogen from the storage container 1. This is a Usual level monitoring provided in the container 9, the valve 25 at a The level falls below and opens again after reaching the maximum level closes.
  • the expansion tank 2 becomes the storage tank if necessary 1 refilled.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Kühlung von Elementen durch Wärmeaustausch mit einer kryogenen Flüssigkeit. Die kryogene Flüssigkeit wird durch eine gleiche in einem Ausgleichsbehälter (2) gespeicherte kryogene Flüssigkeit mit Druck beaufschlagt, in einem geschlossenen Kreislauf geführt und in indirektem Wärmeaustausch mit einem Kälteträger gekühlt. <IMAGE>

Description

Die Erfindung betrifft ein Verfahren zur Kühlung von Elementen durch Wärmeaustausch mit einer kryogenen Flüssigkeit, wobei die kryogene Flüssigkeit mit Druck beaufschlagt, in einem geschlossenen Kreislauf geführt und in indirektem Wärmeaustausch mit einem Kälteträger gekühlt wird. Ferner bezieht sich die Erfindung auf eine entsprechende Vorrichtung zur Kühlung von Elementen, die eine Ringleitung zur Führung einer kryogenen Flüssigkeit in einem geschlossenen Kreislauf aufweist, wobei in der Ringleitung ein Wärmetauscher und Mittel zur Beförderung der kryogenen Flüssigkeit in dem geschlossenen Kreislauf vorgesehen sind.
Hochtemperatursupraleitende Kabel (HTSL-Kabel) müssen im Betrieb immer unterhalb der Sprungtemperatur des verwendeten supraleitenden Materials gehalten werden. In der Praxis wird dies bisher dadurch erreicht, dass die HTSL-Kabel in direktem Wärmeaustausch mit flüssigem Stickstoff gekühlt werden. Dabei nimmt der flüssige Stickstoff die in den HTSL-Kabeln entstehende Verlustleistung auf und erwärmt sich beziehungsweise verdampft zum Teil. Bei einer Kreislaufführung des als Kühlmedium verwendeten Stickstoffs muss dieser daher ebenfalls wieder abgekühlt bzw. rückverflüssigt werden. Dies wird nach dem Stand der Technik durch indirekten Wärmeaustausch mit flüssigem Helium erreicht, wobei aus Kostengründen verdampftes Helium wieder rückverflüssigt wird. Dieses bekannte Verfahren ist jedoch aufwändig und teuer.
Aufgabe vorliegender Erfindung ist es daher, ein kostengünstiges Verfahren und eine entsprechende Vorrichtung der eingangs genannten Art zu entwickeln, wobei die kryogene Flüssigkeit verlustarm in einem Kreislauf geführt wird und die Einphasigkeit der Flüssigkeit möglichst über den gesamten Kreislauf erhalten bleibt.
Diese Aufgabe wird erfindungsgemäß durch ein Verfahren gelöst, bei dem die Elemente durch Wärmeaustausch mit einer kryogenen Flüssigkeit gekühlt werden, wobei die kryogene Flüssigkeit mit Druck beaufschlagt, in einem geschlossenen Kreislauf geführt und in indirektem Wärmeaustausch mit einem Kälteträger gekühlt wird, wobei die im geschlossenen Kreislauf geführte kryogene Flüssigkeit durch eine gleiche in einem Ausgleichsbehälter gespeicherte kryogene Flüssigkeit mit Druck beaufschlagt wird.
Eine Vorrichtung der eingangs genannten Art zeichnet sich dadurch aus, dass mit der Ringleitung ein Ausgleichsbehälter für unter erhöhtem Druck gespeicherte kryogene Flüssigkeit verbunden ist.
Erfindungsgemäß wird eine kryogene Flüssigkeit als Kälteträger in einem geschlossenen Kreislauf geführt und zur Kühlung von Bauteilen, Anlagenteilen oder sonstigen Elementen eingesetzt. Die kryogene Flüssigkeit wird dabei unter erhöhtem Druck durch die Kreislaufleitung gefördert und mit einem Kühlmedium in indirektem Wärmeaustausch abgekühlt. Die Beaufschlagung der kryogenen Flüssigkeit mit Druck als auch die Druckhaltung und Druckregelung erfolgen mittels eines Ausgleichsbehälters, der mit der gleichen kryogenen Flüssigkeit unter erhöhtem Druck befüllt und mit dem Kreislauf direkt verbunden ist. Weiterhin hat der Ausgleichsbehälter die Aufgabe, große, plötzlich entstehende Gasbildungen im geschlossenen Kreislauf sowie Leckageverluste zu kompensieren.
Vorzugsweise wird die im geschlossenen Kreislauf geführte kryogene Flüssigkeit mit kryogener Flüssigkeit gleicher chemischer Zusammensetzung, welche unter geringerem Druck als die im Kreislauf geführte Flüssigkeit steht, gekühlt. Besonders bevorzugt wird als kryogene Flüssigkeit flüssiger Stickstoff verwendet. Dieser wird mit einem über dem Atmosphärendruck liegenden Druck im geschlossenen Kreislauf geführt und mit flüssigem Stickstoff als Kühlmedium gekühlt, welcher mit einem niedrigeren Druck als der Kreislaufstickstoff vorliegt.
Als besonders günstig hat es sich erwiesen, die im geschlossenen Kreislauf geführte Flüssigkeit mit einem Druck zwischen 1 und 36 bar, bevorzugt zwischen 2 und 20 bar, besonders vorzugsweise zwischen 2 und 9 bar, zu beaufschlagen. Bei der Kühlung von HTSL-Kabeln wird der Druck im Kühlkreislauf in Abhängigkeit von der Kabellänge und dessen Isolationsverlusten gewählt.
Die Förderung der kryogenen Flüssigkeit im geschlossenen Kreislauf wird von Vorteil mittels einer Pumpe, vorzugsweise einer Kreiselpumpe, erreicht, wobei besonders vorteilhaft, der Massenstrom der im Kreislauf geführten kryogenen Flüssigkeit stufenlos regelbar ist. Bei der Verwendung von flüssigem Stickstoff hat sich ein einstellbarer Massendurchsatz im Kreislauf zwischen 60 g/s und 2 kg/s bewährt, wobei der Durchsatz je nach Bedarf variieren kann.
Die Erfindung eignet sich insbesondere zur Kühlung von hochtemperatursupraleitenden Teilen oder Maschinen, insbesondere Kabeln, Starkstromkabeln, Motoren, Generatoren, Strombegrenzem, Transformatoren, wie Leistungstransformatoren oder Bahntransformatoren, Energiespeichem oder Kurzschlussstrombegrenzem. Die Erfindung ermöglicht erstmals die kostengünstige Kühlung von Hochtemperatursupraleitem im großtechnischen Maßstab. Energieversorgungsunternehmen steht damit eine Möglichkeit zur verlustarmen Energieübertragung zur Verfügung.
Die Erfindung sowie weitere Einzelheiten der Erfindung werden im Folgenden anhand von dem in der Zeichnung dargestellten Ausführungsbeispiel näher erläutert. Hierbei zeigt
die Figur
das Verfahrensschema einer erfindungsgemäßen Anlage zur Kühlung von hochtemperatursupraleitenden Kabeln.
Die in der Figur gezeigte Anlage zur Kühlung eines hochtemperatursupraleitenden Kabels umfasst einen Speicherbehälter 1 sowie einen Ausgleichsbehälter 2 für flüssigen Stickstoff. Die beiden Behälter 1, 2 sind über eine Leitung 3 so miteinander verbunden, dass bei Bedarf flüssiger Stickstoff aus dem Speicherbehälter 1 in den Ausgleichsbehälter 2 geleitet werden kann.
Das zu kühlende Hochtemperatursupraleiterkabel wird in direktem Wärmeaustausch mit flüssigem Stickstoff gekühlt, der in einem geschlossenen Stickstoffkreislauf zirkuliert. Das Hochtemperatursupraleiterkabel besteht aus einer Vielzahl von auf einem flexiblen Innenrohr aufgewickelten supraleitenden Drähten. Das Innenrohr bildet einen ersten Kühlkanal 4, durch den flüssiger Stickstoff als Kühlmedium geleitet wird und das Hochtemperatursupraleiterkabel von innen kühlt. Das gesamte Kabel ist von einem isolierten Mantel umhüllt, wobei der ringförmige Zwischenraum zwischen dem Kabel und dem Mantel einen zweiten Kühlkanal 5 bildet, durch den ebenfalls flüssiger Stickstoff zur Außenkühlung des Kabels fließt. Die Endverschlüsse, d.h. die Anschlüsse des supraleitenden Kabels an ein normalleitendes Kabel, werden ebenfalls mit dem in dem geschlossenen Kreislauf zirkulierenden flüssigen Stickstoff gekühlt.
Der Stickstoffkreislauf umfasst neben den beiden parallel geschalteten Kühlkanälen 4, 5 für das supraleitende Kabel zwei Wärmetauscherschlangen 6, 7 und eine Kreiselpumpe 8. Anstelle der Wärmetauscherschlangen ist es ebenso möglich, andere Typen von Wärmetauschem, wie zum Beispiel Rippenrohrwärmetauscher oder Plattenwärmetauscher, einzusetzen. Die Zuführung zur Kühleinheit 5 weist ferner noch ein Regelventil 23 auf, welches die Aufgabe hat, die Teilströme für die Innenkühlung 4 und die Außenkühlung 5 zu regeln. Parallel zu den beiden Kühlkanälen 4, 5 ist noch eine mit einem Ventil 28 versehene Bypass-Leitung 27 vorgesehen.
Die Wärmetauscherschlangen 6, 7 befinden sich in einem drucklosen Flüssigstickstoffbad 9, welches über Leitung 10 aus dem Speicherbehälter 1 nachgefüllt werden kann. Mit dem Stickstoffkreislauf ist ferner eine mit einem Abgasventil 30 verschließbare Abgasleitung 29 verbunden. Außerdem ist eine Evakuierungsleitung 11 vorgesehen, die ebenfalls mittels eines Ventils 12 geöffnet bzw. geschlossen werden kann, und an die eine Vakuumpumpe 13 angeschlossen ist. Stromabwärts der Abzweigung der Evakuierungs- und der Abgasleitung 11 bzw. 29 ist ein Ventil 26 in den Stickstoffkreislauf geschaltet.
Der Speicherbehälter 1 ist über eine erste Zuleitung 14 zur Zuführung gasförmigen Stickstoffs mit dem Stickstoffkreislauf verbunden. In die Zuleitung 14 sind ein luftbeheizter Verdampfer 15 sowie ein elektrisch beheizter Anwärmer 16 integriert. Stromabwärts des Anwärmers 16 mündet eine mit einem Regelventil 17 versehene Flüssigstickstoffleitung 18 in die Leitung 14. An der Mündungsstelle der Leitungen 18 und 14 ist ein Venturimischrohr 19 vorgesehen, um die über die Flüssigstickstoffleitung 18 zugeführte Flüssigkeit dem in Leitung 14 strömenden Gas zuzumischen.
Von der Flüssigstickstoffleitung 18 zweigt stromaufwärts des Regelventils 17 eine weitere Leitung 20 ab, die mit einem Ventil 21 versehen ist und die ebenfalls in die Zuleitung 14 mündet. In die Zuleitung 14 ist zwischen dem Venturimischrohr 19 und der Mündung von Leitung 20 ein weiteres Regelventil 22 geschaltet.
Alle Rohrleitungen und Armaturen im Flüssigstickstoffkreislauf sind in vakuumisolierter Bauart ausgeführt. Auch die Vorrichtungen zur Durchflussmessung und Temperaturmessung sind vakuumisoliert. Druckmessungen werden dagegen am warmen unisolierten Teil des jeweiligen Rohrstutzens, in dem die Temperaturmesseinheit untergebracht ist, vorgenommen. Selbstverständlich sind aus Sicherheitsgründen alle Anlagenteile, in denen Flüssigkeit eingesperrt werden kann, mit entsprechenden Sicherheitsablässen oder Überströmklappen gegen Beschädigung oder Zerstörung abgesichert.
Zur Inbetriebnahme der in der Figur gezeigten Anlage wird der Stickstoffkreislauf zunächst durch Öffnen des Ventils 12 und Starten der Vakuumpumpe 13 über die Evakuierungsleitung 11 evakuiert. Hierbei wird eventuell in den Rohrleitungen des Stickstoffkreislaufs vorhandene Feuchtigkeit entfernt. Die Ventile 26 und 28 sind geschlossen.
Der Stickstoffkreislauf wird anschließend mit warmem Stickstoffgas gespült. Hierzu wird über Leitung 14 flüssiger Stickstoff aus dem Speicherbehälter 1 abgezogen, in dem Luftverdampfer 15 gegen Umgebungsluft verdampft und auf etwa Umgebungstemperatur angewärmt. In dem nachgeschalteten elektrischen Anwärmer 16 wird der gasförmige Stickstoff dann auf ungefähr 330 K angewärmt. Nach Öffnen der Ventile 22 und 28 strömt dieses warme Gas über Leitung 14 und die Bypassleitung 27 in die Kühlkanäle 4, 5 und wird dann über die Abgasleitung 29 in die Atmosphäre abgeblasen.
Erfindungsgemäß wird die Anlage definiert abgekühlt, um mechanische Spannungen zu vermeiden. Hierzu ist eine Kalt- und Warmgaserzeugungseinheit vorgesehen, die eine definierte, schrittweise Abkühlung bzw. Erwärmung mit Gastemperaturen zwischen 100 K und 330 K ermöglicht. Der Gasdurchsatz ist ebenfalls in weiten Grenzen einstellbar. Die Größe der Temperaturschritte beträgt vorzugsweise 20 bis 40 K.
Ausgehend von der oben beschriebenen Spülphase mit warmem Stickstoffgas wird die Temperatur des über Zuleitung 14 in den Bypass 27 und die Kühlkanäle 4, 5 eingeleiteten Gases allmählich abgesenkt. Das Dosierventil 17 wird hierzu geöffnet, so dass aus Leitung 18 flüssiger Stickstoff ausströmt. Der flüssige Stickstoff wird in dem Venturimischrohr 19 dem gasförmigen Stickstoff zugemischt. Das Dosierventil 17 wird dabei so geregelt, dass der in Leitung 14 fließende Gasstrom stromabwärts des Venturimischrohres 19 die gewünschte Temperatur erreicht. Die Temperaturmessung erfolgt mittels eines Temperatursensors 24, der in der Abgasleitung 12 angeordnet ist. Auf diese Weise wird sichergestellt, dass das komplette supraleitende Kabel die gewünschte Temperatur angenommen hat.
Nach Erreichen der Solltemperatur wird der nächste Temperaturschritt eingeleitet. Der Durchfluss durch das Dosierventil 17 wird entsprechend erhöht, um eine weitere Temperaturabsenkung zu erzielen. Die Gesamtdurchflussmenge des dem Stickstoffkreislauf zugeführten Gases wird dabei mittels des Regelventils 22 konstant gehalten. Auf diese Weise wird die Temperatur des Stickstoffkreislaufes allmählich bis auf etwa 100 K abgesenkt. Das Wärmetauscherbad 9 ist üblicherweise bereits mit Flüssigstickstoff gefüllt, so dass eine Vorkühlung dieses Teils des Stickstoffkreislaufes nicht notwendig ist.
Sobald das Thermometer 24 in der Abgasleitung 12 100 K anzeigt, wird der gesamte Stickstoffkühlkreislauf mit flüssigem Stickstoff gefüllt. Dies geschieht, indem Ventil 21 langsam geöffnet und die Ventile 17 und 22 entsprechend geschlossen werden. Der Zustrom an gasförmigem Stickstoff wird hierdurch unterbunden und flüssiger Stickstoff strömt über Leitung 20 aus dem Speicherbehälter 1 direkt in die Zuleitung 14. Die Ventile 28 und 30 werden geschlossen, so dass der Bypass 27 und die Abgasleitung 29 abgesperrt sind, und Ventil 26 geöffnet, um den Stickstoffkreislauf in Betrieb zu setzen.
Die Strömungsverbindung zwischen dem Ausgleichsbehälter 2 und dem Stickstoffkreislauf wird dann geöffnet. Der Ausgleichsbehälter 2 ist mit einer Tankdruckregelung versehen, die vorzugsweise ferneinstellbar ist. Über diese Tankdruckregelung kann der Druck im Ausgleichsbehälter 2 und im Stickstoffkreislauf eingestellt und automatisch geregelt werden. Vorzugsweise wird ein Druck zwischen 2 und 9 bar eingestellt und aufrechterhalten.
Die Durchflussmenge des im geschlossenen Kreislauf geführten flüssigen Stickstoffs kann durch die Kreiselpumpe 8 und ein im Kreislauf auf der Pumpendruckseite angeordnetes Regelventil 31 geregelt werden. Die Grobeinstellung der Durchflussmenge erfolgt durch Regelung der Drehzahl der Pumpe 8. Ferner ist ein mit einem Ventil 33 versehener Pumpenbypass 32 vorgesehen, durch den ein Teilstrom des von der Pumpe 8 geförderten Stroms zur Ansaugseite der Pumpe 8 zurückgefördert wird, so dass auch bei geringen Durchflüssen im Stickstoffkreislauf stets die für eine ordnungsgemäße Funktion der Pumpe 8 erforderliche Mindestmenge an Flüssigkeit ansteht. Die Kreiselpumpe 8 sorgt dafür, dass der flüssige Stickstoff turbulent durch den Kreislauf geführt wird und das Hochtemperatursupraleiterkabel 4, 5 turbulent umströmt und dabei die in dem Kabel 4, 5 entstehende Verlustleistung aufnimmt.
Die Feinregelung des Durchsatzes an flüssigem Stickstoff durch den geschlossenen Kreislauf erfolgt mittels des Regelventils 31. Außerdem kann noch mittels des Regelventils 23 die Verteilung des flüssigen Stickstoffs auf die beiden Kühlkanäle 4, 5 eingestellt werden.
Der in den Kühlkanälen 4, 5 angewärmte Stickstoff strömt anschließend durch den Wärmetauscher 7, der sich in dem drucklosen Flüssigstickstoffbad 9 befindet. Je nach Ausführung der Wärmetauscher 6 und 7, der im Kreislauf geführten Stickstoffmenge und der aufzunehmenden Verlustleistung ist es auch günstig, im Behälter 9 einen Unterdruck vorzusehen, um eine höhere Temperaturdifferenz zwischen dem im Kreislauf geführten Stickstoff und dem im Behälter 9 befindlichen Flüssigstickstoff zu erzielen. Die Temperatur des Stickstoffs wird dadurch noch weiter abgesenkt, wodurch sich die Stromübertragungsrate des zu kühlenden HTSL-Kabels erhöhen lässt.
Im Wärmetauscher 7 gibt der Kreislaufstickstoff die aufgenommene Wärme an das Stickstoffbad 9 ab und wird dabei annähemd auf die Temperatur des Bades 9 unterkühlt, wodurch der Kreislaufstickstoff blasenfrei wird. Danach wird der Kreislaufstickstoff von der Kreiselpumpe 8 angesaugt und beschleunigt und durch den zweiten Wärmetauscher 6 gedrückt. In dem zweiten Wärmetauscher 6 gibt der Kreislaufstickstoff die Verlustleistung der Pumpe 8 ebenfalls an das Stickstoffbad 9 ab und wird gegebenenfalls noch weiter abgekühlt, um dann wieder den Kühlkanälen 4, 5 zugeführt zu werden.
Der durch den Wärmeeintrag in das Stickstoffbad 9 entstehende gasförmige Stickstoff wird durch entsprechende, in der Zeichnung nicht dargestellte Öffnungen an die Atmosphäre abgeführt oder bevorzugt anderen Verbrauchern zugeführt beziehungsweise rückverflüssigt. Über Leitung 10 wird aus dem Bad 9 verdampfter Stickstoff durch flüssigen Stickstoff aus dem Speicherbehälter 1 ersetzt. Hierzu ist eine übliche Füllstandsüberwachung in dem Behälter 9 vorgesehen, die Ventil 25 bei einer Niveauunterschreitung öffnet und nach Erreichen des maximalen Füllstandes wieder schließt.
In analoger Weise wird der Ausgleichsbehälter 2 bei Bedarf aus dem Speicherbehälter 1 nachgefüllt.
Zusammenfassend weist die Erfindung die folgenden Vorteile auf:
  • Die im geschlossenen Kreislauf geführte kryogene Flüssigkeit bleibt auf der gesamten Kreislaufstrecke einphasig.
  • Der Druck im Kreislauf ist stufenlos regelbar.
  • Der im Kreislauf geführte Massenstrom ist, beispielsweise mittels einer drehzahlgeregelten Kreiselpumpe, einem Regelventil auf der Pumpendruckseite und einer Pumpen-Bypass-Regelung, ebenfalls in weiten Grenzen stufenlos regelbar.
  • Der Kühlkreislauf kann langsam und gezielt abgekühlt und angewärmt werden.
  • Der Kühlkreislauf kann kontrolliert mit der kryogenen Flüssigkeit, insbesondere flüssigem Stickstoff, befüllt bzw. entleert werden.
  • Der Kühlkreislauf ist evakuierbar, um Verunreinigungen abziehen zu können.

Claims (10)

  1. Verfahren zur Kühlung von Elementen durch Wärmeaustausch mit einer kryogenen Flüssigkeit, wobei die kryogene Flüssigkeit mit Druck beaufschlagt, in einem geschlossenen Kreislauf geführt und in indirektem Wärmeaustausch mit einem Kälteträger gekühlt wird, dadurch gekennzeichnet, dass die im Kreislauf geführte kryogene Flüssigkeit durch eine gleiche in einem Ausgleichsbehälter (2) gespeicherte kryogene Flüssigkeit mit Druck beaufschlagt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die im Kreislauf geführte kryogene Flüssigkeit mit kryogener Flüssigkeit gleicher chemischer Zusammensetzung, welche unter geringerem Druck als die im Kreislauf geführte Flüssigkeit steht, gekühlt wird.
  3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass als kryogene Flüssigkeit flüssiger Stickstoff verwendet wird.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die im Kreislauf geführte Flüssigkeit mit einem Druck zwischen 1 und 36 bar, bevorzugt zwischen 1 und 20 bar, besonders bevorzugt zwischen 2 und 9 bar, beaufschlagt wird.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die kryogene Flüssigkeit mittels einer Pumpe (8) im Kreislauf umgewälzt wird.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Massenstrom der im Kreislauf geführten kryogenen Flüssigkeit stufenlos regelbar ist.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass verdampfte kryogene Flüssigkeit rückverflüssigt wird.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Elemente (4, 5) durch direkten Wärmeaustausch mit der kryogenen Flüssigkeit gekühlt werden.
  9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass Hochtemperatursupraleiter, insbesondere hochtemperatursupraleitende Kabel (4, 5), mit der kryogenen Flüssigkeit gekühlt werden.
  10. Vorrichtung zur Kühlung von Elementen mit einer Ringleitung zur Führung einer kryogenen Flüssigkeit in einem geschlossenen Kreislauf, wobei in der Ringleitung ein Wärmetauscher und Mittel zur Beförderung der kryogenen Flüssigkeit in dem geschlossenen Kreislauf vorgesehen sind, dadurch gekennzeichnet, dass mit der Ringleitung ein Ausgleichsbehälter (2) für unter erhöhtem Druck gespeicherte kryogene Flüssigkeit verbunden ist.
EP03008648A 2002-04-17 2003-04-15 Kühlung von Hochtemperatursupraleitern Withdrawn EP1355114A3 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10217092 2002-04-17
DE2002117092 DE10217092A1 (de) 2002-04-17 2002-04-17 Kühlung von Hochtemperatursupraleitern

Publications (2)

Publication Number Publication Date
EP1355114A2 true EP1355114A2 (de) 2003-10-22
EP1355114A3 EP1355114A3 (de) 2005-03-09

Family

ID=28458891

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03008648A Withdrawn EP1355114A3 (de) 2002-04-17 2003-04-15 Kühlung von Hochtemperatursupraleitern

Country Status (2)

Country Link
EP (1) EP1355114A3 (de)
DE (1) DE10217092A1 (de)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1621830A2 (de) 2000-01-18 2006-02-01 The Boc Group, Inc. Gerät zum Kühlen und Gefrieren von Waren
WO2007005091A1 (en) * 2005-06-30 2007-01-11 General Electric Company System and method for cooling superconducting devices
US7263845B2 (en) 2004-09-29 2007-09-04 The Boc Group, Inc. Backup cryogenic refrigeration system
WO2009109505A1 (de) * 2008-03-07 2009-09-11 Messer Group Gmbh Vorrichtung und verfahren zum entnehmen von gas aus einem behälter
WO2015000708A1 (de) * 2013-07-04 2015-01-08 Messer Group Gmbh Vorrichtung zum kühlen eines verbrauchers mit einer unterkühlten flüssigkeit in einem kühlkreislauf
DE102016010752A1 (de) 2016-09-06 2018-03-08 Linde Aktiengesellschaft Verfahren und Vorrichtung zum Kühlen eines Bauteils
EP3361187A1 (de) 2017-02-08 2018-08-15 Linde Aktiengesellschaft Verfahren und vorrichtung zum kühlen eines verbrauchers sowie system mit entsprechender vorrichtung und verbraucher
EP3376133A1 (de) 2017-03-14 2018-09-19 Linde Aktiengesellschaft Verfahren und vorrichtung zum kühlen einer anordnung mit einer stromführung sowie system mit entsprechender vorrichtung
DE102017003105A1 (de) 2017-03-30 2018-10-04 Linde Aktiengesellschaft Verfahren und Vorrichtung zum Kühlen eines Bauteils
EP3511650A1 (de) 2018-01-12 2019-07-17 Linde Aktiengesellschaft Verfahren und vorrichtung zum kühlen eines verbrauchers sowie system mit entsprechender vorrichtung und verbraucher
EP3511649A1 (de) 2018-01-12 2019-07-17 Linde Aktiengesellschaft Verfahren und vorrichtung zum kühlen eines verbrauchers sowie system mit entsprechender vorrichtung und verbraucher
EP3943833A1 (de) 2020-07-23 2022-01-26 Linde GmbH Verfahren und vorrichtung zur kühlung eines supraleitenden kabels und entsprechendes system
RU2767668C1 (ru) * 2021-06-22 2022-03-18 Российская Федерация, от имени которой выступает ФОНД ПЕРСПЕКТИВНЫХ ИССЛЕДОВАНИЙ Криосистема авиационной интегрированной электроэнергетической установки на основе ВТСП

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3364687A (en) * 1965-05-03 1968-01-23 Massachusetts Inst Technology Helium heat transfer system
US3932158A (en) * 1973-08-10 1976-01-13 Linde Aktiengesellschaft System for cooling an object with coolant cycle
US4116017A (en) * 1975-12-06 1978-09-26 Linde Ag. Method of and apparatus for the cooling of articles with a circulated cooling gas
JPS61214403A (ja) * 1985-03-19 1986-09-24 Mitsubishi Electric Corp 極低温装置
US4625521A (en) * 1985-05-13 1986-12-02 Pittsburgh-Des Moines Corporation Liquid nitrogen distribution system
US5193349A (en) * 1991-08-05 1993-03-16 Chicago Bridge & Iron Technical Services Company Method and apparatus for cooling high temperature superconductors with neon-nitrogen mixtures
FR2736423A1 (fr) * 1995-06-08 1997-01-10 Air Liquide Procede et dispositif de refrigeration d'ecran(s) thermique(s)
US5848532A (en) * 1997-04-23 1998-12-15 American Superconductor Corporation Cooling system for superconducting magnet
EP1026755A1 (de) * 1998-05-22 2000-08-09 Sumitomo Electric Industries, Ltd. Verfahren und vorrichtung zum kühlen eines supraleiters

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3364687A (en) * 1965-05-03 1968-01-23 Massachusetts Inst Technology Helium heat transfer system
US3932158A (en) * 1973-08-10 1976-01-13 Linde Aktiengesellschaft System for cooling an object with coolant cycle
US4116017A (en) * 1975-12-06 1978-09-26 Linde Ag. Method of and apparatus for the cooling of articles with a circulated cooling gas
JPS61214403A (ja) * 1985-03-19 1986-09-24 Mitsubishi Electric Corp 極低温装置
US4625521A (en) * 1985-05-13 1986-12-02 Pittsburgh-Des Moines Corporation Liquid nitrogen distribution system
US5193349A (en) * 1991-08-05 1993-03-16 Chicago Bridge & Iron Technical Services Company Method and apparatus for cooling high temperature superconductors with neon-nitrogen mixtures
FR2736423A1 (fr) * 1995-06-08 1997-01-10 Air Liquide Procede et dispositif de refrigeration d'ecran(s) thermique(s)
US5848532A (en) * 1997-04-23 1998-12-15 American Superconductor Corporation Cooling system for superconducting magnet
EP1026755A1 (de) * 1998-05-22 2000-08-09 Sumitomo Electric Industries, Ltd. Verfahren und vorrichtung zum kühlen eines supraleiters

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN Bd. 011, Nr. 051 (E-480), 17. Februar 1987 (1987-02-17) -& JP 61 214403 A (MITSUBISHI ELECTRIC CORP), 24. September 1986 (1986-09-24) *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1621830A2 (de) 2000-01-18 2006-02-01 The Boc Group, Inc. Gerät zum Kühlen und Gefrieren von Waren
US7263845B2 (en) 2004-09-29 2007-09-04 The Boc Group, Inc. Backup cryogenic refrigeration system
WO2007005091A1 (en) * 2005-06-30 2007-01-11 General Electric Company System and method for cooling superconducting devices
JP2009500587A (ja) * 2005-06-30 2009-01-08 ゼネラル・エレクトリック・カンパニイ 超伝導装置を冷却するためのシステム及び方法
US8511100B2 (en) 2005-06-30 2013-08-20 General Electric Company Cooling of superconducting devices by liquid storage and refrigeration unit
WO2009109505A1 (de) * 2008-03-07 2009-09-11 Messer Group Gmbh Vorrichtung und verfahren zum entnehmen von gas aus einem behälter
RU2648312C2 (ru) * 2013-07-04 2018-03-23 Мессер Груп Гмбх Устройство для охлаждения потребителя холода переохлажденной жидкостью в контуре охлаждения
US10422554B2 (en) 2013-07-04 2019-09-24 Messer Group Gmbh Device for cooling a consumer with a super-cooled liquid in a cooling circuit
DE102013011212B4 (de) * 2013-07-04 2015-07-30 Messer Group Gmbh Vorrichtung zum Kühlen eines Verbrauchers mit einer unterkühlten Flüssigkeit in einem Kühlkreislauf
KR20160030192A (ko) * 2013-07-04 2016-03-16 메써 그룹 게엠베하 냉각 회로 내의 과냉 액체를 이용한 소비자 냉각 장치
JP2016524117A (ja) * 2013-07-04 2016-08-12 メッサー グループ ゲーエムベーハーMesser Group Gmbh 冷却回路において過冷却液によって被冷却体を冷却する装置
WO2015000708A1 (de) * 2013-07-04 2015-01-08 Messer Group Gmbh Vorrichtung zum kühlen eines verbrauchers mit einer unterkühlten flüssigkeit in einem kühlkreislauf
DE102013011212A1 (de) 2013-07-04 2015-01-08 Messer Group Gmbh Vorrichtung zum Kühlen eines Verbrauchers mit einer unterkühlten Flüssigkeit in einem Kühlkreislauf
DE102016010752A1 (de) 2016-09-06 2018-03-08 Linde Aktiengesellschaft Verfahren und Vorrichtung zum Kühlen eines Bauteils
EP3361187A1 (de) 2017-02-08 2018-08-15 Linde Aktiengesellschaft Verfahren und vorrichtung zum kühlen eines verbrauchers sowie system mit entsprechender vorrichtung und verbraucher
WO2018145816A1 (de) 2017-02-08 2018-08-16 Linde Aktiengesellschaft Verfahren und vorrichtung zum kühlen eines verbrauchers sowie system mit entsprechender vorrichtung und verbraucher
JP2020507051A (ja) * 2017-02-08 2020-03-05 リンデ・アクツィエンゲゼルシャフトLinde Aktiengesellschaft 負荷を冷却する方法および装置ならびに相応する装置と負荷とを備えたシステム
CN110366664A (zh) * 2017-02-08 2019-10-22 林德股份公司 用于冷却负载的方法和设备以及包括对应的设备和负载的***
EP3376133A1 (de) 2017-03-14 2018-09-19 Linde Aktiengesellschaft Verfahren und vorrichtung zum kühlen einer anordnung mit einer stromführung sowie system mit entsprechender vorrichtung
DE102017002475A1 (de) 2017-03-14 2018-09-20 Linde Aktiengesellschaft Verfahren und Vorrichtung zum Kühlen einer Anordnung mit einer Stromführung sowie System mit entsprechender Vorrichtung
DE102017003105A1 (de) 2017-03-30 2018-10-04 Linde Aktiengesellschaft Verfahren und Vorrichtung zum Kühlen eines Bauteils
EP3511649A1 (de) 2018-01-12 2019-07-17 Linde Aktiengesellschaft Verfahren und vorrichtung zum kühlen eines verbrauchers sowie system mit entsprechender vorrichtung und verbraucher
EP3511650A1 (de) 2018-01-12 2019-07-17 Linde Aktiengesellschaft Verfahren und vorrichtung zum kühlen eines verbrauchers sowie system mit entsprechender vorrichtung und verbraucher
EP3943833A1 (de) 2020-07-23 2022-01-26 Linde GmbH Verfahren und vorrichtung zur kühlung eines supraleitenden kabels und entsprechendes system
RU2767668C1 (ru) * 2021-06-22 2022-03-18 Российская Федерация, от имени которой выступает ФОНД ПЕРСПЕКТИВНЫХ ИССЛЕДОВАНИЙ Криосистема авиационной интегрированной электроэнергетической установки на основе ВТСП

Also Published As

Publication number Publication date
EP1355114A3 (de) 2005-03-09
DE10217092A1 (de) 2003-11-06

Similar Documents

Publication Publication Date Title
EP1355114A2 (de) Kühlung von Hochtemperatursupraleitern
EP2067940B2 (de) Verfahren zum Betrieb eines Kombikraftwerks sowie Kombikraftwerk zur Durchführung des Verfahrens
DE60029621T2 (de) Vorrichtung und verfahren zur kühlung von leistungstransformatoren
EP2608223B1 (de) Verfahren zum Kühlen einer Anlage für supraleitfähige Kabel
EP3240945B1 (de) Druckluftspeicherkraftwerk sowie verfahren zum betreiben eines druckluftspeicherkraftwerks
DE3642683C2 (de)
DE19938986A1 (de) Supraleitungseinrichtung mit einer Kälteeinheit für eine rotierende, supraleitende Wicklung
WO2013110375A2 (de) Vorrichtung und verfahren zum erzeugen elektrischer energie
DE102014215645A1 (de) Kühlvorrichtung und Kühlverfahren zur Kühlung einer Energieumwandlungsvorrichtung mit einem Rotor und wenigstens einer Turbine
EP2326800A2 (de) Dampfkraftanlage zur erzeugung elektrischer energie
DE102005039033B3 (de) Turbomaschine für Tieftemperaturanwendungen
DE10339048A1 (de) Tieftemperaturkühlsystem für Supraleiter
DE102006012679A1 (de) Verfahren zum Betrieb eines Energiesystems sowie Energiesystem
DE2453182B2 (de) Anordnung zur kuehlung einer elektrischen maschine
EP3749903B1 (de) Verfahren und vorrichtung zum kühlen eines supraleitenden stromträgers
DE2114538A1 (de) Verfahren zur Kühlung eines elektrischen Organes in einer durch Wärmeschilder thermisch isolierten Kammer
DE102011111384A1 (de) Vorrichtung und Verfahren zur Energiewandlung
DE1601653B1 (de) Gasturbinenanlage in verbindung mit einem kernreaktor und mit co tief 2 als reaktorkuehl und arbeitsmittel
DE2724812B2 (de) Verfahren zum Betreiben einer Kernenergieanlage mit in einem Hochtemperaturreaktor erhitzten Arbeitsgas und Kernenergieanlage zur Durchführung des Verfahrens
EP0849550B1 (de) Verfahren zur Kühlung eines Verbrauchers auf Tieftemperatur und Flüssiggas-Kühlungssystem zur Durchführung des Verfahrens
DE3936940A1 (de) Verfahren und vorrichtung zur erzeugung der gasfoermigen phase aus einem in seiner fluessigen phase gelagerten gasvorrat
DE19645492C1 (de) System und Verfahren zum Aufrechterhalten oder Erhöhen des Drucks in einem Kryotank
DE2454129C3 (de) Vorrichtung zum Umwandeln von Umgebungswärme in elektrische Energie
EP4004349A1 (de) Druckregelung für geschlossene joule-kreisprozesse
DE112005002769T5 (de) Wasserstoffkühlsystem für supraleitende Einrichtungen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20050830

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20070115

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LINDE AKTIENGESELLSCHAFT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HOLZBERGER, HORST

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20090623