EP1327254B1 - Verfahren und vorrichtung zur reduzierung des kontaktabbrandes eines schaltgerätes - Google Patents

Verfahren und vorrichtung zur reduzierung des kontaktabbrandes eines schaltgerätes Download PDF

Info

Publication number
EP1327254B1
EP1327254B1 EP01987939A EP01987939A EP1327254B1 EP 1327254 B1 EP1327254 B1 EP 1327254B1 EP 01987939 A EP01987939 A EP 01987939A EP 01987939 A EP01987939 A EP 01987939A EP 1327254 B1 EP1327254 B1 EP 1327254B1
Authority
EP
European Patent Office
Prior art keywords
phase
angle
command
main contacts
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01987939A
Other languages
English (en)
French (fr)
Other versions
EP1327254A1 (de
Inventor
Norbert Elsner
Gerd Griepentrog
Reinhard Maier
Diethard Runggaldier
Bernhard Streich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1327254A1 publication Critical patent/EP1327254A1/de
Application granted granted Critical
Publication of EP1327254B1 publication Critical patent/EP1327254B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/56Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere for ensuring operation of the switch at a predetermined point in the ac cycle
    • H01H9/563Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere for ensuring operation of the switch at a predetermined point in the ac cycle for multipolar switches, e.g. different timing for different phases, selecting phase with first zero-crossing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/0015Means for testing or for inspecting contacts, e.g. wear indicator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H11/00Apparatus or processes specially adapted for the manufacture of electric switches
    • H01H11/0062Testing or measuring non-electrical properties of switches, e.g. contact velocity

Definitions

  • the invention relates to a method for reducing the contact erosion of a switching device, in particular a contactor. It further relates to an apparatus for carrying out the method.
  • the main contacts designated as the main contacts switch a three-phase system
  • a uniform burn in the usually three main contacts can be achieved, whereby the service life is increased.
  • the wiring of the switching device or contactor coil has already been proposed with a capacity.
  • a desired equalization of the contact erosion can be increased by avoiding the so-called autosynchronization of the switching device.
  • switching commands can be delayed by certain methods such that a uniform distribution of the switching angle is caused.
  • the main contact arrangement most affected by the current burn-up could be relieved of the burn-up by suitably selecting the switching instant.
  • the two other main contact assemblies would be more heavily loaded, which also causes a leveling.
  • the invention has for its object to provide a method for reducing the contact erosion of a switching device, in particular a contactor, with the one hand, in particular caused by the switching synchronism, divergent burnup of the main contacts and on the other hand, the total burnup of all three main contact arrangements of the switching device is reduced. Furthermore, a device which is particularly suitable for carrying out the method should be specified.
  • this object is achieved according to the invention by the features of claim 1.
  • the command or Einschaltkommandowinkel is a specific, related to the phase position of the control or coil voltage for the electromagnetic actuation of the main contacts time.
  • the Einschaltkommandowinkel takes into account the dependent of this contact closing time between the application of the coil or control voltage coupled to the main contacts magnetic system of the switching device and the contact of the contact elements of the respective main contacts.
  • the invention is based on the consideration that in each half network period three preferred times or command angles exist, to which a switching operation causes a statistically average lower total burnup of all three main contacts than any other time or any other equally distributed command angle.
  • each of the preferred time points or command angles can be associated with exactly one main contact, which has, on a statistical average, a lower burn-up than the other two main contacts at a switching operation initiated at this time or at this command angle.
  • This association between the preferred times or command angles and the main contacts is unambiguous, so that each main contact or each main contact arrangement is assigned exactly a preferred command angle.
  • Each preferred command angle are two essential properties, namely on the one hand, a minimal burn-off for a particular main contact. On the other hand, when choosing this preferred and only one of the main contacts associated command angle for all main contacts of the burn-off in the statistical mean less than at any other command angle.
  • the delay can be accomplished for example by a discretely implemented delay element or by a microcontroller. Since a total of three preferred command angles or times exist for each half network period, the delay is at most 180 °, which corresponds to a delay time of 10 ms at a network frequency of 50 Hz. In this way, on the one hand the avoidance of any switching synchronization is ensured. On the other hand, a reduction of the cumulative contact erosion in all three main contacts or main contact arrangements is achieved.
  • the current burnup of the three main contacts is preferably determined by a time interval measurement during the turn-off operation.
  • the time span between a separation of the magnetic system provided for the electromagnetic actuation of the main contacts and the separation of the main contacts is detected.
  • the separation of the magnet system can be detected by a characteristic voltage pulse at the associated magnetic coil.
  • the separation of the main contacts also results in a voltage pulse whose height corresponds at least to the anode-cathode voltage of a resulting arc.
  • Such a time interval measurement is described for example in DE 196 03 310 A1 and DE 196 03 319 A1.
  • the time interval measurement uses the knowledge that the burnup of the main contacts primarily in a reduction in the thickness of the contact pad and thus expressed in a shortened way.
  • Document US-A-5440180 discloses a method for reducing the contact erosion of a switching device in which a turn-on command pending for electromagnetic actuation of its main contacts is delayed for initiating a switching operation.
  • the device comprises a number of Ausretegliedern for determining the burnup of each main contact of the switching device.
  • each evaluation element carries out a time interval measurement on the basis of the voltage across the respective main contact and the voltage of the magnet coil of the magnet system.
  • the three preferred command angles which are the three phases of the three-phase network associated phase angle of the coil or control voltage for the magnet system of the switching device are expediently stored as a table in a memory module.
  • a phase comparator generates based on a comparison of the main contact with the currently strongest burnout associated command or phase angle with the phase angle of the currently detected control voltage of the magnet system, a pulse to initiate the switching operation.
  • the pulse train of the pulse generated expediently corresponds to half a network period.
  • a flip-flop which is connected downstream of the phase comparator, transmits, with the pulse generated by the phase comparator, the turn-on command to a switch for applying the control or coil voltage to the magnet system.
  • the phase comparator is connected to a phase output of the switching device, to which one of the phases of the three-phase network is connected.
  • FIG. 1 shows a contactor as a switching device 1 with three hereinafter referred to as main contacts K1 to K3 main contact arrangements whose stationary contact elements K1a, K2a and K3a are connected on the one hand to phase terminals 2 of a three-phase network L1, L2, L3, N and on the other hand with a load 3.
  • the movable contact elements K1b, K2b and K3b of the main contacts K1 to K3 are actuated by a common magnet system with a magnetic coil 4.
  • the magnet coil 4, with which the main contacts K1 to K3 are mechanically coupled, is connected via a control line 5 on the one hand to the phase terminal 2 of the phase conductor L3 and on the other hand to the terminal 2 of the neutral conductor N.
  • In the control line 5 is a switch 6 for driving the solenoid 4 and thus for actuating, ie for switching on and off of the magnet system of the switching device.
  • Each main contact K1 to K3 is assigned an evaluation element A L3 , A L2 , A L1 for determining the contact erosion of the respective main contact K1 to K3.
  • Each of these evaluation elements A L3 , A L2 , A L1 is on the one hand via a measuring line 7, the voltage U 1 , U 2 , U 3 on the respective main contact K1 to K3 and on the other hand via measuring lines 8, the control or coil voltage U s to the solenoid coil 4th fed.
  • the evaluation elements A L3 , A L2 , A L1 perform a time interval measurement and thus determine the current burnup values ⁇ m 1 , ⁇ m 2 , ⁇ m 3 of the main contacts K1 to K3, ie respective thickness of the remaining contact pads of the main contacts K1 to K3.
  • the phase comparator 11 continuously compares the phase angle ⁇ of the coil or control voltage U s with the preferred command angle ⁇ KV and, if coincident, outputs a short pulse S, which is for example about 100 ⁇ s long.
  • the phase comparator 11 is connected via a control line 12 to the terminal 2 of the neutral conductor N and one of the phase terminals 2, in the embodiment of the phase L3, the three-phase network.
  • the polarity of the coil voltage U s remains unconsidered, so that the pulses S are output at intervals of half the grid period T / 2.
  • the pulse S is fed to an input E 1 of a flip-flop 13, at the other input E 2 an external switching command, ie the external switch-on command ES, is present.
  • the output side connected to the switch 6 flip-flop 13 accepts the pending at the input E 1 pulse S at the input E 2 pending switching command ES and thus initiates the switch-on via the delay-free switch 6 a.
  • the derivation of the preferred command angle ⁇ KV from the switching behavior of the electromagnetically actuated switching device or contactor 1 is described below with reference to FIGS 2 to 6 in more detail.
  • the switch-on process of a 37kW contactor verified by measurements is used as an example.
  • FIG. 2 shows the closing time t s dependent on the switch-on command angle ⁇ K.
  • the Einschaltkommandowinkel ⁇ K is in this case based on the phase position of the sinusoidal control or protection coil voltage U s phase angle. It can be seen from the graph that the closing time t s dependent on the switch-on command angle ⁇ K is not constant but subject to a fluctuation of more than 10 ms. This corresponds to a network frequency of 50 Hz an angle ⁇ K of more than 180 °.
  • the switching time t s is minimal. The reason for this is that there when switching on the almost exclusively inductive contactor or solenoid 4, a maximum transient DC link is caused, which in total has a higher tightening force result.
  • the closing time t s is subject to virtually no statistical fluctuations.
  • FIG. 3 shows the closing speed v s which is dependent on the switching-on command angle ⁇ K , ie the speed with which the main contacts K1, K2, K3 meet one another.
  • the closing time t s is also the closing speed v s depending on Einschaltkommandowinkel ⁇ K.
  • the course of the closing speed v s is significantly dependent on the structural conditions of the respective contactor or switching device 1, so that generally valid statements can not be made practically.
  • the closing speed v s at constant Einschaltkommandowinkel ⁇ K is subjected to a statistical dispersion, which emerges from the determined according to the measured standard deviation error band. Nevertheless, the closing speed v s of all three main contacts K1, K2, K3 is approximately the same, which is reflected in the single graph.
  • the lift-off time t ab is the cumulative time during which the main contacts K1, K2, K3 are again separated from each other after the first touch. This is an authoritative for the burn arc between the contact elements 1a to 3b of the main contacts K1 to K3 caused.
  • the amount of flowing current i during the bounce lifts of the main contacts K1 to K3 is also important for the burnup. It can be assumed that the burnup is proportional to the integral of the arc current i over time.
  • ⁇ m are the contact erosion and C 'and k, in particular of the properties of the main contact K1 to K3, z.
  • B its geometry and material, dependent constants.
  • T is the network period with usually 20 ms period duration.
  • ⁇ s is the closing angle related to the respective phase or phase line L1, L2, L3.
  • C is a dependent of the load to be switched 3 and the mains voltage constant.
  • the control voltage U s is in turn coherent with the external or phase conductor L3.
  • the mean value of the three relative bounce charges Q is drawn there in the form of a line marked with crosses.
  • the switch-on of an AC-driven, electromagnetically actuated contactor 1 is influenced by taking advantage of its specific properties such that on the one hand the switching synchronization effect avoided and on the other hand, the burning of the main contacts K1, K2, K3 is reduced overall.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Keying Circuit Devices (AREA)
  • Relay Circuits (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)

Description

  • Die Erfindung bezieht sich auf ein Verfahren zur Reduzierung des Kontaktabbrandes eines Schaltgerätes, insbesondere eines Schütz. Sie bezieht sich weiter auf eine Vorrichtung zur Durchführung des Verfahrens.
  • Bei einem mit Wechselstrom angesteuerten und elektromagnetisch betätigten Schaltgerät, dessen nachfolgend als Hauptkontakte bezeichneten Hauptkontaktanordnungen ein Drehstromsystem schalten, besteht das Bestreben, durch geeignete Betriebsführung den Kontaktabbrand zu reduzieren und damit die Funktionsdauer des Schaltgerätes zu erhöhen. So kann durch Vermeidung des sogenannten Schaltsynchronisationseffektes ein gleichmäßiger Abbrand in den üblicherweise drei Hauptkontakten erreicht werden, wodurch die Funktionsdauer erhöht wird. Dazu ist bereits die Beschaltung der Schaltgeräte- bzw. Schützspule mit einer Kapazität vorgeschlagen worden. Darüber hinaus kann eine angestrebte Vergleichmäßigung des Kontaktabbrandes durch Vermeidung der sogenannten Autosynchronisation des Schaltgerätes erhöht werden. Dazu können beispielsweise Schaltbefehle nach bestimmten Methoden derart verzögert werden, dass eine gleichmäßige Verteilung der Schaltwinkel hervorgerufen wird.
  • Um sowohl den Autosynchronisationseffekt als auch den z.B. durch Fertigungstoleranzen hervorgerufen mechanischen Synchronisationseffekt auszugleichen, könnte durch geeignete Wahl des Schaltzeitpunktes die vom aktuellen Abbrand am stärksten betroffene Hauptkontaktanordnung bezüglich des Abbrandes entlastet werden. Dadurch würden die beiden anderen Hauptkontaktanordnungen stärker belastet, wodurch ebenfalls eine Nivellierung herbeigeführt wird.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Reduzierung des Kontaktabbrandes eines Schaltgerätes, insbesondere eines Schützes, anzugeben, mit dem einerseits ein, insbesondere durch den Schaltsynchronismus hervorgerufener, divergierender Abbrand der Hauptkontakte und andererseits der summarische Abbrand aller drei Hauptkontaktanordnungen des Schaltgerätes reduziert wird. Des Weiteren soll eine zur Durchführung des Verfahrens besonders geeignete Vorrichtung angegeben werden.
  • Bezüglich des Verfahrens wird diese Aufgabe erfindungsgemäß gelöst durch die Merkmale des Anspruches 1. Dazu wird bei einem Schaltgerät nach Erhalt eines Einschaltbefehles dieser bis zum Erreichen eines bevorzugten Phasen- oder Kommandowinkels verzögert, der demjenigen Hauptkontakt mit dem aktuell stärksten Abbrand zugeordnet ist. Der Kommando- oder Einschaltkommandowinkel ist dabei ein bestimmter, auf die Phasenlage der Steuer- oder Spulenspannung zum elektromagnetischen Betätigen der Hauptkontakte bezogener Zeitpunkt. Der Einschaltkommandowinkel berücksichtigt dabei die von diesem abhängige Kontaktschließzeit zwischen dem Anlegen der Spulen- oder Steuerspannung des mit den Hauptkontakten gekoppelten Magnetsystems des Schaltgerätes und der Berührung der Kontaktelemente der jeweiligen Hauptkontakte.
  • Die Erfindung geht dabei von der Überlegung aus, dass in jeder halben Netzperiode drei bevorzugte Zeitpunkte oder Kommandowinkel existieren, zu denen ein Schaltvorgang einen im statistischen Mittel geringeren summarischen Abbrand aller drei Hauptkontakte verursacht als ein beliebiger anderer Zeitpunkt oder ein beliebiger anderer gleich verteilter Kommandowinkel. Dabei kann jedem der bevorzugten Zeitpunkte oder Kommandowinkel genau ein Hauptkontakt zugeordnet werden, der einem zu diesem Zeitpunkt bzw. zu diesem Kommandowinkel eingeleiteten Schaltvorgang im statistischen Mittel einen gegenüber den anderen beiden Hauptkontakten geringeren Abbrand aufweist. Diese Zuordnung zwischen den bevorzugten Zeitpunkten oder Kommandowinkeln und den Hauptkontakten ist eineindeutig, so dass jedem Hauptkontakt oder jeder Hauptkontaktanordnung auch exakt ein bevorzugter Kommandowinkel zugeordnet ist. Jedem bevorzugten Kommandowinkel sind dabei zwei wesentliche Eigenschaften, nämlich einerseits ein minimaler Abbrand für einen bestimmten Hauptkontakt. Andererseits ist bei Wahl dieses bevorzugten und nur einem der Hauptkontakte zugeordneten Kommandowinkels für alle Hauptkontakte der Abbrand im statistischen Mittel kleiner als bei einem beliebigen anderen Kommandowinkel.
  • Die Verzögerung kann beispielsweise durch ein diskret realisiertes Verzögerungsglied oder durch einen Mikrokontroller bewerkstelligt werden. Da insgesamt drei bevorzugte Kommandowinkel oder Zeitpunkte für jede halbe Netzperiode existieren, beträgt die Verzögerung höchstens 180°, was bei einer Netzfrequenz von 50 Hz einer Verzögerungszeit von 10 ms entspricht. Auf diese Weise ist einerseits die Vermeidung jeglicher Schaltsynchronisation sichergestellt. Andererseits wird eine Reduzierung des kumulierten Kontaktabbrandes in allen drei Hauptkontakten oder Hauptkontaktanordnungen erreicht.
  • Der aktuelle Abbrand der drei Hauptkontakte wird vorzugsweise durch eine Zeitintervallmessung während des Ausschaltvorgangs bestimmt. Hierbei wird die Zeitspanne zwischen einer Trennung des zur elektromagnetischen Betätigung der Hauptkontakte vorgesehenen Magnetsystems und der Trennung der Hauptkontakte erfasst. Die Trennung des Magnetsystems kann hierbei durch einen charakteristischen Spannungsimpuls an der zugeordneten Magnetspule detektiert werden. Die Trennung der Hauptkontakte resultiert ebenfalls in einem Spannungsimpuls, dessen Höhe mindestens der Anoden-Kathoden-Spannung eines entstehenden Lichtbogens entspricht. Eine derartige Zeitintervallmessung ist beispielsweise beschrieben in der DE 196 03 310 A1 und der DE 196 03 319 A1. Die Zeitintervallmessung nutzt die Erkenntnis, dass sich der Abbrand der Hauptkontakte primär in einer Verringerung der Dicke der Kontaktauflage und damit in einem verkürzten Weg äußert.
  • Dokument US-A-5440180 offenbart ein Verfahren zur Reduzierung des Kontaktabbrandes eines Schaltgerätes, bei dem ein zum elektromagnetischen Betätigen dessen Hauptkontakte anstehender Einschaltbefehl zur Einleitung eines Schaltvorgangs verzögert wird.
  • Bezüglich der Vorrichtung wird die genannte Aufgabe erfindungsgemäß gelöst durch die Merkmale des Anspruches 5. Vorteilhafte Ausgestaltungen sind Gegenstand der auf diesen rückbezogenen Unteransprüche.
  • So umfasst die Vorrichtung eine Anzahl von Auswertegliedern zur Bestimmung des Abbrandes jedes Hauptkontaktes des Schaltgerätes. Dazu führt jedes Auswerteglied anhand der Spannung über dem jeweiligen Hauptkontakt und der Spannung der Magnetspule des Magnetsystems eine Zeitintervallmessung durch. Die drei bevorzugten Kommandowinkel, die den drei Phasen des Drehstromnetzes zugeordnete Phasenwinkel der Spulen- oder Steuerspannung für das Magnetsystem des Schaltgerätes sind, sind zweckmäßigerweise als Tabelle in einem Speicherbaustein hinterlegt.
  • Ein Phasenkomparator erzeugt anhand eines Vergleichs des dem Hauptkontakt mit dem aktuell stärksten Abbrand zugeordneten Kommando- oder Phasenwinkels mit dem Phasenwinkel der aktuell erfaßten Steuerspannung des Magnetsystems einen Impuls zur Einleitung des Schaltvorgangs. Dabei entspricht die Impulsfolge des erzeugten Impulses zweckmäßigerweise einer halben Netzperiode. Eine dem Phasenkomparator nachgeschaltete Kippstufe, vorzugsweise ein Flipflop, übergibt mit dem vom Phasenkomparator erzeugten Impuls den Einschaltbefehl an einen Schalter zum Anlegen der Steuer- oder Spulenspannung an das Magnetsystem. Zur Ermittlung des Phasenwinkels der vorzugsweise kontinuierlich erfassten Steuerspannung ist der Phasenkomparator mit einem Phasenausgang des Schaltgerätes verbunden, an den eine der Phasen des Drehstromnetzes angeschlossen ist.
  • Die mit der Erfindung erzielten Vorteile bestehen insbesondere darin, dass durch Verzögerung und damit durch gezielte
  • Beeinflussung des Einschaltvorgangs eines mit Wechselstrom angesteuerten, elektromagnetisch betätigten Schaltgerätes, insbesondere eines Schützes, unter Nutzung dessen spezifischer Eigenschaften einerseits der Synchronisationseffekt vermieden und andererseits der Abbrand der Hauptkontakte insgesamt reduziert wird. Dabei wird eine Veränderung sowohl des durch die Hauptkontakte zu schaltenden Hauptstromkreises als auch des Schaltgerätes selbst vermieden.
  • Nachfolgend wird ein Ausführungsbeispiel der Erfindung anhand einer Zeichnung näher erläutert. Darin zeigen:
  • FIG 1
    ein Prinzipschaltbild eines Schaltgerätes mit einer Anordnung zur Reduzierung des Kontaktabbrandes,
    FIG 2
    in einem Winkel/Zeit-Diagramm die vom Einschaltkommandowinkel abhängige Schließzeit,
    FIG 3
    in einem Winkel/Geschwindigkeits-Diagramm die vom Einschaltkommandowinkel abhängige Schließgeschwindigkeit,
    FIG 4
    in einem Winkel/Zeit-Diagramm die vom Einschaltkommandowinkel abhängige Abhebedauer von Hauptkontakten des Schaltgerätes,
    FIG 5
    in einem Winkel/Winkel-Diagramm die vom Einschaltkommandowinkel abhängigen Schließwinkel der Hauptkontakte, und
    FIG 6
    in einem weiteren Diagramm die vom Einschaltkommandowinkel abhängige relative Prellladung.
  • Einander entsprechende Teile sind in allen Figuren mit den gleichen Bezugszeichen versehen.
  • FIG 1 zeigt ein Schütz als Schaltgerät 1 mit drei nachfolgend als Hauptkontakte K1 bis K3 bezeichneten Hauptkontaktanordnungen, deren unbeweglichen Kontaktelemente K1a,K2a bzw. K3a einerseits mit Phasenanschlüssen 2 eines Drehstromnetzes L1, L2, L3, N und andererseits mit einer Last 3 verbunden sind. Die beweglichen Kontaktelemente K1b,K2b und K3b der Hauptkontakte K1 bis K3 werden von einem gemeinsamen Magnetsystem mit einer Magnetspule 4 betätigt. Die Magnetspule 4, mit der die Hauptkontakte K1 bis K3 mechanisch gekoppelt sind, ist über eine Steuerleitung 5 einerseits mit dem Phasenanschluss 2 des Phasenleiters L3 und andererseits mit dem Anschluss 2 des Neutralleiters N verbunden. In der Steuerleitung 5 liegt ein Schalter 6 zum Ansteuern der Magnetspule 4 und somit zum Betätigen, d. h. zum Ein- und Ausschalten des Magnetsystems des Schaltgerätes 1.
  • Jedem Hauptkontakt K1 bis K3 ist ein Auswerteglied AL3,AL2,AL1 zur Ermittlung des Kontaktabbrandes des jeweiligen Hauptkontaktes K1 bis K3 zugeordnet. Jedem dieser Auswerteglieder AL3,AL2,AL1 wird einerseits über eine Messleitung 7 die Spannung U1,U2,U3 über dem jeweiligen Hauptkontakt K1 bis K3 und andererseits über Messleitungen 8 die Steuer- oder Spulenspannung Us an der Magnetspule 4 zugeführt. Anhand dieser Spannungen U1, U2, U3 und US führen die Auswerteglieder AL3,AL2, AL1 eine Zeitintervallmessung durch und bestimmen damit die aktuellen Abbrandwerte Δm1,Δm2,Δm3 der Hauptkontakte K1 bis K3, d. h. die jeweilige Dicke der verbleibenden Kontaktauflagen der Hauptkontakte K1 bis K3.
  • Aus den dadurch ermittelten aktuellen Abbrandwerten Δm1,Δm2, Δm3 wird in einem Funktionsbaustein 9 nach einem vorgegebenen funktionalen Zusammenhang, z. B. nach einer sogenannten maxindex-Funktion, der Hauptkontakt K1,K2 oder K3 mit dem größten Abbrand bestimmt. Mittels eines Speicherbausteins 10, in dem tabellarisch drei bevorzugte Einschaltkommandowinkel ΨK1, ΨK2K3 hinterlegt sind, wird der für den folgenden Schaltvorgang maßgebliche Kommandowinkel ΨKV entnommen und an einen Phasenkomparator 11 weitergeleitet.
  • Der Phasenkomparator 11 vergleicht kontinuierlich den Phasenwinkel Ψ der Spulen- oder Steuerspannung Us mit dem bevorzugten Kommandowinkel ΨKV und gibt bei Übereinstimmung einen kurzen Impuls S aus, der beispielsweise etwa 100 µs lang ist.
  • Dazu ist der Phasenkomparator 11 über eine Steuerleitung 12 mit dem Anschluß 2 des Nullleiters N und einem der Phasenanschlüsse 2, im Ausführungsbeispiel der Phase L3, des Drehstromnetzes verbunden. Im Phasenkomparator 11 bleibt dabei die Polarität der Spulenspannung Us unberücksichtigt, so dass die Impulse S im Abstand von einer halben Netzperiode T/2 ausgegeben werden. Der Impuls S wird an einen Eingang E1 eines Flipflops 13 geführt, an dessen weiteren Eingang E2 ein externer Schaltbefehl, d.h. der externe Einschaltbefehl ES, ansteht. Das ausgangsseitig mit dem Schalter 6 verbundene Flipflop 13 übernimmt mit dem am Eingang E1 anstehenden Impuls S den am Eingang E2 anstehenden Schaltbefehl ES und leitet somit über den verzögerungsfreien Schalter 6 den Einschaltvorgang ein.
  • Die Ableitung der bevorzugten Kommandowinkel ΨKV aus dem Schaltverhalten des elektromagnetisch betätigten Schaltgerätes oder Schützes 1 wird nachfolgend anhand der FIG 2 bis 6 näher beschrieben. Beispielhaft wird hierzu der durch Messungen verifizierte Einschaltvorgang eines 37kW-Schützes herangezogen.
  • FIG 2 zeigt die vom Einschaltkommandowinkel ΨK abhängige Schließzeit ts. Diese gibt die Zeit vom Anlegen der Steuer- oder Spulenspannung Us bis zur Berührung der Kontaktelemente K1a bis K3b der Hauptkontakte K1 bis K3 an. Der Einschaltkommandowinkel ΨK ist hierbei der auf die Phasenlage der sinusförmigen Steuer- bzw. Schutzspulenspannung Us bezogene Phasenwinkel. Aus dem Verlauf ist ersichtlich, dass die vom Einschaltkommandowinkel ΨK abhängige Schließzeit ts nicht konstant, sondern einer Schwankung von mehr als 10 ms unterworfen ist. Dies entspricht bei einer Netzfrequenz von 50 Hz einem Winkel ΨK von mehr als 180°.
  • Für ΨK ≈ n · 180°, mit n ∈ N, ist die Schaltzeit ts minimal. Grund hierfür ist, dass dort bei Einschaltung der fast ausschließlich induktiven Schütz- oder Magnetspule 4 ein maximales transientes Gleichstromglied hervorgerufen wird, was insgesamt eine höhere Anzugskraft zur Folge hat. Bei konstantem Einschaltkommandowinkel ΨK ist die Schließzeit ts nahezu keinen statistischen Schwankungen unterworfen. Somit kann in Kenntnis des Kommandowinkels ΨK die Schließzeit ts und damit auch der Schließzeitpunkt der Hauptkontakte K1,K2,K3 sehr genau bestimmt werden. Wesentlich dabei ist, dass zwar die Schließzeit ts aller drei Hauptkontakte K1,K2,K3 konstant ist, der auf die jeweilige Netzspannung bezogene Schließwinkel jedoch in den drei Hauptkontakten K1,K2,K3 bei einem Schaltvorgang aufgrund der Phasenverschiebung im Drehstromsystem jeweils um 120° versetzt ist.
  • FIG 3 zeigt die vom Einschaltkommandowinkel ΨK abhängige Schließgeschwindigkeit vs, d.h. die Geschwindigkeit, mit der die Hauptkontakte K1,K2,K3 aufeinander treffen. Ebenso wie die Schließzeit ts ist auch die Schließgeschwindigkeit vs abhängig vom Einschaltkommandowinkel ΨK. Im Gegensatz zur Schließzeit ts ist jedoch der Verlauf der Schließgeschwindigkeit vs erheblich von den konstruktiven Gegebenheiten des jeweiligen Schützes oder Schaltgerätes 1 abhängig, so dass allgemein gültige Aussagen praktisch nicht gemacht werden können. Darüber hinaus ist die Schließgeschwindigkeit vs bei konstantem Einschaltkommandowinkel ΨK einer statistischen Streuung unterworfen, was aus dem entsprechend der gemessenen Standardabweichung ermittelten Fehlerband hervorgeht. Dennoch ist die Schließgeschwindigkeit vs aller drei Hauptkontakte K1,K2,K3 näherungsweise gleich, was sich in dem einzigen Graphen widerspiegelt.
  • FIG 4 zeigt die vom Einschaltkommandowinkel ΨK abhängige Abhebedauer tab aller drei Hauptkontakte K1,K2,K3 während des sogenannten Einschaltprellens. Die Abhebedauer tab ist hierbei die kumulierte Zeit, während derer die Hauptkontakte K1, K2,K3 nach der ersten Berührung erneut voneinander getrennt sind. Hierbei wird ein für den Abbrand maßgeblicher Lichtbogen zwischen den Kontaktelementen 1a bis 3b der Hauptkontakte K1 bis K3 hervorgerufen.
  • Aus einem Vergleich der Graphen gemäß den FIG 3 und 4 ist ein deutlicher Zusammenhang zwischen der Schließzeit ts und der Abhebedauer tab ersichtlich. Demnach ruft eine hohe Schließgeschwindigkeit vs auch eine vergleichsweise lange Abhebedauer tab hervor. Daher sowie auch aus einfachen Überlegungen zum elastischen Stoß und zu Feder-Masse-Systemen kann bei Mittlung über viele Schaltungen bei gleicher Schließgeschwindigkeit vs für alle drei Hauptkontakte K1 bis K3 auch von etwa gleicher Abhebedauer tab ausgegangen werden. Dies lässt sich durch die Beziehung t a b = C v s Ψ K
    Figure imgb0001
    audrücken, wobei C eine schaltgerätespezifische Konstante ist.
  • Zusätzlich zur Schließgeschwindigkeit vs und damit zur Abhebedauer tab ist für den Abbrand auch die Höhe des fließenden Stromes i während der Prellabhebungen der Hauptkontakte K1 bis K3 von Bedeutung. Dabei kann davon ausgegangen werden, dass der Abbrand proportional zum Integral des Lichtbogenstromes i über die Zeit ist. Dabei wird zusätzlich der Lichtbogenstrom i in der Regel mit einer kontaktspezifischen Konstante k potenziert gemäß der Beziehung: Δ m = i k t t
    Figure imgb0002
  • Dabei sind Δm der Kontaktabbrand und C' und k insbesondere von den Eigenschaften des Hauptkontaktes K1 bis K3, z. B. dessen Geometrie und Material, abhängige Konstanten.
  • Obwohl die erste Berührung der Kontaktelemente 1a bis 3b der Hauptkontakte K1 bis K3 im absoluten, zeitlichen Maßstab nahezu gleichzeitig stattfindet, ist der auf die jeweilige Netzspannung bezogene elektrische Schließwinkel der Hauptkontakte K1,K2,K3 nicht gleich, sondern aufgrund der um 120° versetzten Spannungen im Dreiphasen-System ebenfalls um 120° versetzt. Dieser Zusammenhang ist in FIG 5 verdeutlicht, in der die auf 360° normierten Schließwinkel in den drei Hauptkontaktanordnungen K1,K2,K3 in Abhängigkeit des Einschaltkommandowinkels ΨK gezeigt sind. Der in FIG 5 gezeigte Verlauf lässt sich unter Nutzung der Schließzeit ts mit Hilfe der nachfolgenden Gleichungen formulieren, wobei die Ansteuerung der Schütz- oder Magnetspule 4 kohärent zum Außen- oder Phasenleiter L3 ist und an den Hauptkontakten K1,K2,K3 ein rechtsdrehendes Dreileitersystem geschaltet wird: Ψ S L 1 = ( Ψ K + t s Ψ K T 360 ° + 240 ° ) mod 360 °
    Figure imgb0003
    Ψ S L 2 = ( Ψ K + t s Ψ K T 360 ° + 240 ° ) mod 360 °
    Figure imgb0004
    Ψ S L 3 = ( Ψ K + t s Ψ K T 360 ° + 240 ° ) mod 360 °
    Figure imgb0005
  • Dabei ist T die Netzperiode mit in der Regel 20 ms Periodendauer. Ψs ist der auf die jeweilige Phase oder Phasenleitung L1,L2,L3 bezogene Schließwinkel. Mod 360° bezeichnet den Modulu-Operator, dessen Anwendung den Divisionsrest bei einer Division durch 360° ergibt. Beispielsweise würde sich bei einem Winkel von 540° = 1,5 · 360° und einer Division durch 360° der Faktor 1,5 ergeben. Aus dem numerischen Rest von 0,5 würde sich somit eine Divisionsrest von 180° ergeben.
  • Daraus folgt, dass zwar die Abhebedauer tab der Hauptkontakte K1 bis K3 etwa gleich ist, der fließende Strom bei diesen Abhebungen prinzipiell aber unterschiedlich ist. In Näherung kann für den fließenden Strom in den Hauptkontaktanordnungen K1,K2,K3 während der Prellabhebung angesetzt werden: i L 1 = C " sin Ψ K + t s Ψ K T 360 ° + 120 °
    Figure imgb0006
    i L 2 = C " sin Ψ K + t s Ψ K T 360 ° + 120 °
    Figure imgb0007
    i L 3 = C " sin Ψ K + t s Ψ K T 360 °
    Figure imgb0008
  • Dabei ist C" eine von der zu schaltenden Last 3 und der Netzspannung abhängige Konstante.
  • Somit sind am Abbrand der Hauptkontakte K1,K2,K3 zwei Prozesse beteiligt, nämlich einerseits die für alle Hauptkontakte K1 bis K3 jeweils gleiche Abhebedauer tab und andererseits die für alle Hauptkontakte K1 bis K3 jeweils unterschiedliche Höhe des Lichtbogenstromes i. Dies wird auch anhand des in FIG 6 dargestellten experimentell bestimmten Verlaufs der vom Einschaltkommandowinkel ΨK abhängigen relativen Prellladung Q der drei Hauptkontakte K1,K2,K3 deutlich. Als relative Prellladung Q wird hierbei die auf den Effektivwert des Nennstroms bezogene tatsächliche Prellladung bezeichnet.
  • Bei der in FIG 6 dargestellten Abhängigkeit der relativen Prellladung Q vom Einschaltkommmandowinkel ΨK ist die Steuerspannung Us wiederum kohärent zum Außen- oder Phasenleiter L3. Zusätzlich ist dort der Mittelwert der drei relativen Prellladungen Q eingezeichnet in Form einer mit Kreuzen markierten Linie. Diese mit Kreuzen markierte Linie weist im Bereich um etwa ΨK = 50° und ΨK = 85° jeweils Minima auf, die deutlich unter dem durchschnittlichen Wert der Prellladung Q liegen. Die Bereiche um diese Minima sind demnach potenzielle Bereiche für bevorzugte Einschaltkommandowinkel ΨK.
  • Daraus ergibt sich, dass die bevorzugten Einschaltkommandowinkel bei ΨK1 = 55° für den Phasenleiter L1, bei ΨK2 = 80° für den Phasenleiter L2 und bei ΨK3 = 65° für den Phasenleiter L3 liegen. Grund hierfür ist, dass zu diesen Einschaltkommandowinkeln ΨK die relative Prellladung Q eines zugeordneten Hauptkontaktes K1,K2,K3 jeweils ein lokales Minimum aufweist und auch der Mittelwert der Prellladungen Q aller drei Hauptkontakte K1,K2,K3 niedriger als der Durchschnitt ist. Wird die Steuerphase gewechselt, so dass die Steuer- oder Spulenspannung Us phasensynchron z. B. zur Phasen- oder Außenleitung L1 ist, so sind auch die bevorzugten Einschaltkommandowinkel ΨK entsprechend zu rotieren.
  • Insgesamt wird somit der Einschaltvorgang eines mit Wechselstrom angesteuerten, elektromagnetisch betätigten Schützes 1 unter Ausnutzung seiner spezifischen Eigenschaften derart beeinflusst, dass einerseits der Schaltsynchronisationseffekt vermieden und andererseits der Abbrand der Hauptkontakte K1, K2,K3 insgesamt reduziert wird.

Claims (10)

  1. Verfahren zur Reduzierung des Kontaktabbrandes eines Schaltgerätes (1), bei dem ein zum elektromagnetischen Betätigen dessen Hauptkontakte (K1 bis K3) anstehender Einschaltbefehl (ES) zur Einleitung eines Schaltvorgangs bis zum Erreichen desjenigen auf den Phasenwinkel (Ψ) der Steuerspannung (US) eines mit den Hauptkontakten (K1 bis K3) gekoppelten Magnetsystems (4) bezogenen Kommandowinkels (ΨKV) verzögert wird, der dem Hauptkontakt (K1,K2,K3) mit dem aktuell stärksten Abbrand zugeordnet ist.
  2. Verfahren nach Anspruch 1, bei dem der aktuelle Abbrand jedes Hauptkontaktes (K1,K2,K3) durch eine Zeitintervallmessung während eines Ausschaltvorgangs bestimmt wird.
  3. Verfahren nach Anspruch 2, bei dem als Zeitintervall die Zeitspanne zwischen einer Trennung eines zur elektromagnetischen Betätigung der Hauptkontakte (K1,K2,K3) dienenden Magnetsystems (4) und der Trennung der Hauptkontakte (K1,K2,K3) erfasst wird.
  4. Verfahren nach einem der Ansprüche 1 bis 3, bei dem bei Übereinstimmung des dem Hauptkontakt (K1,K2,K3) mit dem aktuell stärksten Abbrand zugeordneten Kommandowinkels (ΨKV) mit dem Phasenwinkel (Ψ) der kontinuierlich erfaßten Steuerspannung (US) des Magnetsystems (4) ein Impuls (S) zur Einleitung des Schaltvorgangs erzeugt wird.
  5. Vorrichtung zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 3,
    - mit einer Anzahl von Auswertegliedern (ALn) zur Bestimmung des Abbrandes jedes Hauptkontaktes (K1,K2,K3) des Schaltgerätes,
    - mit einem Speicherbaustein (10), in dem ein Anzahl von auf den Phasenwinkel (Ψ) einer Steuerspannung (US) für ein Magnetsystem (4) des Schaltgerätes (1) bezogenen Kommandowinkeln (ΨKV) hinterlegt ist, und
    - mit einem Phasenkomparator (11), der anhand eines Vergleichs des dem Hauptkontakt (K1,K2,K3) mit dem aktuell stärksten Abbrand zugeordneten Kommandowinkels (ΨKV) mit dem Phasenwinkel (Ψ) der erfaßten Steuerspannung (US) des Magnetsystems (4) einen Impuls (S) zur Einleitung des Schaltvorgangs erzeugt.
  6. Vorrichtung nach Anspruch 5, mit einer dem Phasenkomparator (11) nachgeschalteten Kippstufe (13), die mit dem vom Phasenkomparator (11) erzeugten Impuls (S) den Einschaltbefehl (ES) an einen in einer Steuerleitung (5) des Magnetsystems (4) angeordneten Schalter (6) übergibt.
  7. Vorrichtung nach Anspruch 5 oder 6, wobei der Phasenkomparator (11) zur Ermittlung des Phasenwinkels (Ψ) der kontinuierlich erfassten Steuerspannung (US) mit einem an eine der Phasen (L1,L2,L3) eines Drehstromnetzes angeschlossenen Phasenausgang (2) des Schaltgerätes (1) verbunden ist.
  8. Vorrichtung nach einem der Ansprüche 5 bis 7, bei der jedes Auswerteglied (ALn) einerseits über eine Messleitung (7) zur Erfassung der Spannung (Un) über dem jeweiligen Hauptkontakt (K1,K2,K3) und andererseits mit einer Messleitung (8) zur Erfassung der Steuerspannung (US) des Magnetsystems (4) verbunden ist.
  9. Vorrichtung nach einem der Ansprüche 5 bis 8, mit einem mit den Auswertegliedern (ALn) verbundenen Funktionsbaustein (9) zur Ermittlung des Hauptkontaktes (K1,K2,K3) mit dem aktuell stärksten Abbrand.
  10. Vorrichtung nach einem der Ansprüche 5 bis 8, wobei die Impulsfolge (T/2) des vom Phasenkomparator (11) erzeugten Impulses (S) einer halben Netzperiode entspricht.
EP01987939A 2000-10-16 2001-10-04 Verfahren und vorrichtung zur reduzierung des kontaktabbrandes eines schaltgerätes Expired - Lifetime EP1327254B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE2000151161 DE10051161C1 (de) 2000-10-16 2000-10-16 Verfahren und Vorrichtung zur Reduzierung des Kontaktabbrandes eines Schaltgerätes
DE10051161 2000-10-16
PCT/DE2001/003814 WO2002033716A1 (de) 2000-10-16 2001-10-04 Verfahren und vorrichtung zur reduzierung des kontaktabbrandes eines schaltgerätes

Publications (2)

Publication Number Publication Date
EP1327254A1 EP1327254A1 (de) 2003-07-16
EP1327254B1 true EP1327254B1 (de) 2007-05-09

Family

ID=7659915

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01987939A Expired - Lifetime EP1327254B1 (de) 2000-10-16 2001-10-04 Verfahren und vorrichtung zur reduzierung des kontaktabbrandes eines schaltgerätes

Country Status (5)

Country Link
EP (1) EP1327254B1 (de)
JP (1) JP3828866B2 (de)
CN (1) CN1214421C (de)
DE (2) DE10051161C1 (de)
WO (1) WO2002033716A1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005035658B3 (de) * 2005-07-29 2007-04-12 Siemens Ag Betriebsverfahren für ein Schaltgerät und hiermit korrespondierendes Schaltgerät
DE102005043895B4 (de) * 2005-09-14 2007-07-26 Siemens Ag Verfahren zum Betreiben eines elektromechanisch betätigten Schaltgerätes und nach diesem Verfahren betriebenes Schaltgerät
DE102006014914B3 (de) * 2006-03-30 2007-10-04 Siemens Ag Verfahren zum Betreiben eines elektromechanisch betätigten Schaltgerätes und nach diesem Verfahren betriebenes Schaltgerät
EP1986203A1 (de) * 2007-04-26 2008-10-29 Siemens Aktiengesellschaft Verfahren zur Feststellung des Vorhandenseins einer Kontaktisolierschicht bei einem kontaktbehafteten Schaltelement sowie Schaltgerät mit einem derartigen Schaltelement
US20110062960A1 (en) * 2009-09-15 2011-03-17 Lenin Prakash Device and method to monitor electrical contact status
WO2012072810A1 (de) * 2010-12-02 2012-06-07 Abb Research Ltd Verfahren und vorrichtung zur überwachung von schaltgeräten
WO2012152793A1 (en) 2011-05-09 2012-11-15 Abb Technology Ag Automatic acquisition of circuit breaker operating times for controlled switching
US10141143B2 (en) * 2014-11-06 2018-11-27 Rockwell Automation Technologies, Inc. Wear-balanced electromagnetic motor control switching
JP7049183B2 (ja) * 2018-05-23 2022-04-06 三菱電機株式会社 電力量計および電気機器
DE102021212854A1 (de) * 2021-11-16 2023-05-17 Siemens Aktiengesellschaft Verfahren und Anordnung zur Zustandsbestimmung eines Schalters

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5440180A (en) * 1992-09-28 1995-08-08 Eaton Corporation Microprocessor based electrical contactor with distributed contactor opening
DE4427006A1 (de) * 1994-07-29 1996-02-01 Siemens Ag Verfahren zur Bestimmung der Restlebensdauer von Kontakten in Schaltgeräten und zugehörige Anordnung
DE4434074A1 (de) * 1994-09-23 1996-03-28 Siemens Ag Mehrpoliges Schütz
DE19603319A1 (de) * 1996-01-31 1997-08-07 Siemens Ag Verfahren zur Bestimmung der Restlebensdauer von Kontakten in Schaltgeräten und zugehörige Anordnung
DE19603310A1 (de) * 1996-01-31 1997-08-07 Siemens Ag Verfahren zur Bestimmung der Restlebensdauer von Kontakten in Schaltgeräten und zugehörige Anordnung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE10051161C1 (de) 2002-03-07
JP2004512637A (ja) 2004-04-22
CN1214421C (zh) 2005-08-10
WO2002033716A1 (de) 2002-04-25
EP1327254A1 (de) 2003-07-16
JP3828866B2 (ja) 2006-10-04
CN1446367A (zh) 2003-10-01
DE50112489D1 (de) 2007-06-21

Similar Documents

Publication Publication Date Title
EP1911058B1 (de) Sicherheitsschaltgerät zum steuern einer sicherheitstechnischen einrichtung in einen sicheren zustand
EP0878015A1 (de) Verfahren zur bestimmung der restlebensdauer von kontakten in schaltgeräten und zugehörige anordnung
EP1327254B1 (de) Verfahren und vorrichtung zur reduzierung des kontaktabbrandes eines schaltgerätes
DE3622293A1 (de) Festkoerper-nebenschlussschaltkreis fuer leckstromleistungssteuerung
EP4091184B1 (de) Schutzschaltgerät und verfahren
EP0575715B1 (de) Verfahren und Vorrichtung zur Einschaltstromstoss-Vermeidung
WO2022135808A1 (de) Verfahren zum ansteuern eines leistungshalbleiterschalters, ansteuerschaltung für einen leistungshalbleiterschalter sowie elektronischer schutzschalter
EP0997921A1 (de) Verfahren und Einrichtung zur Steuerung eines elektromechanischen Relais
EP1078432B1 (de) Schutzschaltgerät
DE10128502A1 (de) Schaltvorrichtung
DE102020100838A1 (de) Verfahren und schaltungsanordnung zur detektion eines lichtbogens und photovoltaik (pv) - wechselrichter mit einer entsprechenden schaltungsanordnung
DE19702094B4 (de) Leistungsschaltvorrichtung
DE3026125C2 (de)
DE19956698C1 (de) Anordnung mit zwei Schützen in Reihenschaltung
EP1986203A1 (de) Verfahren zur Feststellung des Vorhandenseins einer Kontaktisolierschicht bei einem kontaktbehafteten Schaltelement sowie Schaltgerät mit einem derartigen Schaltelement
EP0866480A2 (de) Verfahren zum Betreiben einer in einen Stromkreis geschalteten, elektrischen Last
DE3535512A1 (de) Stromsteuerkreis fuer eine elektrische entladungsvorrichtung
EP3758214B1 (de) Motorstarter und verfahren zum starten eines elektromotors
DE102005043895B4 (de) Verfahren zum Betreiben eines elektromechanisch betätigten Schaltgerätes und nach diesem Verfahren betriebenes Schaltgerät
EP1351267B1 (de) Verfahren fur ein netzsynchrones Schalten von Leistungsschaltern und Vorrichtung zur Durchfuhrung dieses Verfahrens
EP0313542B1 (de) Einrichtung zum gesteuerten Einschalten von induktiven Elementen im Hochspannungsnetz
DE19606503C2 (de) Verfahren und Schaltungsanordnungen zum Erzielen phasensynchronen Schaltens in der Nähe der Spannungsnulldurchgänge von in Wechselspannungsanlagen liegenden Kontakten
EP1318533A1 (de) Verfahren zur Ermittlung des durch Lichtbogenabbrand hervorgerufenen Zustands eines Leistungsschalters
DE102019218919B3 (de) Erfassen eines Schaltzustands eines elektromechanischen Schaltelements
WO1990003656A1 (de) Verfahren zum betrieb eines elektrischen leistungsschalters

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021113

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RBV Designated contracting states (corrected)

Designated state(s): DE FR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR

REF Corresponds to:

Ref document number: 50112489

Country of ref document: DE

Date of ref document: 20070621

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080212

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20191017

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20191219

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50112489

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210501

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031