EP1278949B1 - Verfahren zum betreiben eines kraftstoffversorgungssystems für eine brennkraftmaschine insbesondere eines kraftfahrzeugs - Google Patents

Verfahren zum betreiben eines kraftstoffversorgungssystems für eine brennkraftmaschine insbesondere eines kraftfahrzeugs Download PDF

Info

Publication number
EP1278949B1
EP1278949B1 EP01935970A EP01935970A EP1278949B1 EP 1278949 B1 EP1278949 B1 EP 1278949B1 EP 01935970 A EP01935970 A EP 01935970A EP 01935970 A EP01935970 A EP 01935970A EP 1278949 B1 EP1278949 B1 EP 1278949B1
Authority
EP
European Patent Office
Prior art keywords
pressure
control valve
internal combustion
combustion engine
supply system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01935970A
Other languages
English (en)
French (fr)
Other versions
EP1278949A1 (de
Inventor
Thomas Frenz
Hansjoerg Bochum
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1278949A1 publication Critical patent/EP1278949A1/de
Application granted granted Critical
Publication of EP1278949B1 publication Critical patent/EP1278949B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3863Controlling the fuel pressure by controlling the flow out of the common rail, e.g. using pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/221Safety or indicating devices for abnormal conditions relating to the failure of actuators or electrically driven elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D2041/224Diagnosis of the fuel system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D2041/389Controlling fuel injection of the high pressure type for injecting directly into the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • F02D2200/0604Estimation of fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/31Control of the fuel pressure

Definitions

  • the invention relates to a method for operating a fuel supply system for an internal combustion engine, in particular of a motor vehicle in which fuel is pumped by a pump in a pressure accumulator, wherein the pressure in the pressure accumulator is measured, and wherein the pressure in the pressure accumulator by the control of a Pressure control valve is changeable.
  • a method for operating a fuel supply system for an internal combustion engine in particular of a motor vehicle in which fuel is pumped by a pump in a pressure accumulator, wherein the pressure in the pressure accumulator is measured, and wherein the pressure in the pressure accumulator by the control of a Pressure control valve is changeable.
  • a method is known from US 5,727,515.
  • the invention relates to a corresponding fuel supply system for an internal combustion engine and a control device for such a fuel supply system.
  • US-A-5 727 515 discloses a pressure control valve 40 which is associated with the accumulator 35 for control purposes, since it can adjust the pressure in the pressure accumulator 35; and this document discloses the detection of a failure of the pressure control valve (remaining in the closed or partially closed position, i.e. it is clogged) when the measured pressure deviates more than a threshold (delta1 / 2) from the (variable) expected pressure PI.
  • an internal combustion engine for example, a motor vehicle ever higher demands are made in terms of reducing fuel consumption and the exhaust gases generated at the same time desired increased performance.
  • modern internal combustion engines are provided with a fuel supply system, in which the supply of fuel in the combustion chamber of the internal combustion engine electronically, in particular with a computer-aided control device, controlled and / or regulated. It is possible to use the fuel in one Inject air intake pipe of the internal combustion engine or directly into the combustion chamber of the internal combustion engine.
  • the so-called direct injection it is necessary that the fuel is injected under pressure into the combustion chamber.
  • an accumulator is provided, in which the fuel is pumped by means of a pump and placed under a high pressure. From there, the fuel is then injected via injection valves into the combustion chambers of the internal combustion engine.
  • the pressure control valve Due, inter alia, to the high pressure, it is possible for components to damage the fuel supply system, e.g. due to aging change. Thus, it is possible that the pressure control valve, with which the pressure in the pressure accumulator can be controlled and / or regulated, gradually changes its functionality. It is also possible that the pressure control valve abruptly fails due to contamination. Such changes in the function of the pressure control valve can. Misfires or other faulty running of the internal combustion engine result.
  • the object of the invention is to provide a method for operating a fuel supply system for an internal combustion engine, with which an error of the pressure control valve is detected quickly and safely.
  • the diagnostic method of the pressure control valve according to the invention can be carried out quickly and safely without much effort.
  • the diagnostic method also has no negative influences on the running behavior of the internal combustion engine or on their pollutant emissions.
  • the expected pressure is determined as a function of operating variables of the internal combustion engine, in particular as a function of the rotational speed of the internal combustion engine. This ensures that the dependence of the pressure in the pressure accumulator, e.g. is taken into account by the speed of the internal combustion engine. The higher the speed of the internal combustion engine, the higher the delivery of fuel and thus the pressure in the pressure accumulator. Such a consideration of the operating variables of the internal combustion engine thus substantially improves the diagnostic method according to the invention.
  • a pressure difference is determined from the expected pressure and the measured pressure
  • a pressure gradient is determined from the pressure difference
  • the pressure difference and / or the pressure gradient are compared with a threshold value
  • the pressure control valve is detected as defective if the pressure difference and the pressure gradient exceeds the threshold.
  • the pressure control valve is opened in a linear manner or is closed, so that the pressure difference and / or the pressure gradient are approximately constant.
  • a fuel supply system 1 is shown, which is provided for use in an internal combustion engine of a motor vehicle.
  • the fuel supply system 1 is a so-called common rail system which is used in particular in a direct injection internal combustion engine comes.
  • Such common rail systems are known from gasoline, 1 as well as diesel internal combustion engines.
  • the fuel supply system 1 has a pressure accumulator 2, which is provided with a pressure sensor 3 and a pressure control valve 4.
  • the accumulator 2 is connected via a pressure line 5 with a high-pressure pump 6.
  • the high-pressure pump 6 is connected via a pressure line 8 to the pressure control valve 4.
  • Via a pressure line 9 and a filter, the pressure control valve 4 and thus also the high pressure pump 6 is connected to a preferably electric fuel pump 10, which is adapted to suck fuel from a fuel tank 11.
  • the fuel supply system 1 has four injection valves 13, which are connected via pressure lines 14 to the pressure accumulator 2.
  • the injection valves 13 are suitable for injecting fuel into corresponding combustion chambers of the internal combustion engine.
  • the pressure sensor 3 is connected to a control unit 16, to which further a plurality of other signal lines are connected as input lines.
  • a signal line 17 the fuel pump 10 and a signal line 18, the pressure control valve 4 is connected to the control unit 16.
  • the injection valves 13 are connected by means of signal lines 19 to the control unit 16.
  • the fuel is pumped by the fuel pump 10 from the fuel tank 11 to the high-pressure pump 6.
  • a pressure is generated in the accumulator 2, which is measured by the pressure sensor 3 and can be adjusted by a corresponding actuation of the pressure control valve 4 to a desired value.
  • the fuel is then injected into the combustion chamber of the internal combustion engine.
  • the pressure in the pressure accumulator 2 is essential for the dimensioning of the fuel quantity or fuel mass injected into the combustion chamber.
  • This pressure in the pressure accumulator 2 can be adjusted and adjusted by the control unit 16.
  • control unit 16 controls the pressure control valve 4 in its closed state, so that the high-pressure pump 6 and the fuel pump 10 generate an ever increasing pressure in the pressure accumulator 2. This increasing pressure can be measured by the pressure sensor 3.
  • the pressure control valve 4 is driven by a pulse width modulated signal.
  • a duty cycle TV of 0% results in a completely closed pressure control valve 4, and at a duty cycle TV of 100%, the pressure control valve 4 is fully open.
  • the output of the control is monitored. If the value of the manipulated variable present at this controller output exceeds a predetermined threshold value, the fuel supply system 1 is identified as "possibly defective". This leads to starting a diagnostic procedure, which is described below.
  • the pressure control valve 4 is actuated with a pulse-width-modulated signal whose duty cycle TV has a first value. Thereafter, the duty ratio TV is changed from the first to a second value.
  • the limited by the first and the second value range is selected such that the internal combustion engine does not have deteriorated driving behavior or even misfires of the internal combustion engine occur.
  • the change in the duty cycle TV has a change in the pressure in the accumulator 2 result.
  • FIG. 2 An embodiment of the diagnostic method is shown in FIG.
  • the signals resulting from this process are shown in FIGS. 3a and 3b.
  • 3 a relates to an intact pressure control valve 4 and FIG. 3 b to a defective pressure control valve 4.
  • the method illustrated in FIG. 2 is carried out by the control unit 16,
  • the duty cycle TV is set, for example, to a first value TV1 of 35%. It is then measured in a block 21 of the currently measured by the pressure sensor 3 pressure prist in the pressure accumulator 2. This pressure prist is shown in Figures 3a and 3b.
  • a modeled pressure prbk is determined in a block 22, which takes into account the current operating variables of the internal combustion engine, such as their current speed, their engine temperature and the like. This pressure prbk is shown in FIGS. 3a and 3b.
  • control unit 16 checks whether the amount of the pressure difference dpr exceeds a threshold value S1. If this is not the case, it is concluded that the pressure control valve 4 is not defective.
  • the duty cycle TV is then increased by one increment, for example by 1%. Thereafter, the controller 16 checks in a block 27 whether the duty ratio TV has reached a second value TV2 of, for example, 45%. If this is not the case, the diagnostic procedure is continued with the block 21 and the re-measurement of the pressure prist. If the second value TV2 of the duty cycle TV is reached, the diagnostic procedure is ended.
  • FIG. 3a is based on an intact pressure control valve 4.
  • the pressure difference dpr between the measured pressure prist and the modeled pressure prbk is relatively small.
  • the amount of Pressure difference dpr less than the threshold S1. This has the consequence that the diagnostic method of Figure 2, the blocks 21 to 27 passes through successively.
  • control unit 16 checks whether the magnitude of the pressure gradient grddpr exceeds a threshold value S2. If this is the case, then closed by the controller 16 to an error of the pressure control valve 4 and the diagnostic method of Figure 2 is completed.
  • FIG. 3b This case of the defective pressure control valve 4 is shown in FIG. 3b.
  • the course of the measured pressure prist in the pressure accumulator 2 to a significant burglary which is identified by the reference numeral 40.
  • This break-in may result, for example, from jamming of the pressure control valve 4 due to contamination.
  • the break-in 40 has the consequence that also the pressure difference dpr has a relatively large deflection, which is identified by the reference numeral 41.
  • the amount of the pressure difference dpr is greater than the threshold value S1 in the region of the deflection 41.
  • the block 28 of the method of Figure 2 is achieved.
  • the magnitude of the pressure gradient in the region of the deflection 42 is also greater than the threshold value S2. This is recognized by the block 29 of Figure 2, that the pressure control valve 4 is defective.
  • the control unit 16 checks whether the observation time Z has reached a maximum value ZM.
  • the method of FIG. 2 is continued with the block 26 and thus ultimately with the repetitions of the blocks 21 to 27.
  • This case may occur when not with an intact pressure control valve 4 comprehensible reasons the amount of pressure difference dpr has exceeded the threshold S1 and thus at least the appearance of a defective pressure control valve 4 has been generated.
  • block 29 is then checked whether an error of the pressure control valve 4 actually exists. If this is not the case until the expiration of the maximum value ZM of the observation period Z, the return to the above-described test of the pressure control valve 4 with the aid of the block 25 is again returned.
  • the controller 16 determines that the maximum value ZM has not yet been reached, then in a block 32 the duty cycle is increased, e.g. incremented by 1%. Thereafter, it is checked in a block 33 whether the second value TV2 of the duty ratio TV has been reached. If this is the case, then the method of Figure 2 is completed.
  • the blocks 32 and 33 correspond to the extent blocks 26 and 27th
  • the current pressure prist in the pressure accumulator 2 is successively measured in block 34 with the aid of the pressure sensor 3, the modeled pressure prbk is determined as a function of the current operating variables of the internal combustion engine, and Pressure difference dpr and the pressure gradient grddpr calculated.
  • the block 34 represents a summary of the blocks 21, 22, 23, 24 in this respect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Es wird ein Kraftstoffversorgungssystem (1) für eine Brennkraftmaschine insbesondere eines Kraftfahrzeugs beschrieben. Bei dem Kraftstoffversorgungssystem (1) kann Kraftstoff von einer Pumpe (6, 10) in einen Druckspeicher (2) gepumpt werden. Der Druck in dem Druckspeicher (2) kann gemessen werden und der Druck in dem Druckspeicher (2) kann derart angesteuert werden, dass sich ein erwarteter Druck (prbk) in dem Druckspeicher (2) ergeben müsste. Durch ein Steuergerät (16) ist das Drucksteuerventil (2) auf einen vorgegebenen Wert steuerbar. Durch das Steuergerät (16) ist ein erwarteter Druck in dem Druckspeicher (2) ermittelbar. Und es kann durch das Steuergerät (16) aus dem erwarteten Druck und aus dem gemessenen Druck auf die Funktionsfähigkeit des Drucksteuerventils (4) geschlossen werden.

Description

    Stand der Technik
  • Die Erfindung betrifft ein Verfahren zum Betreiben eines Kraftstoffversorgungssystems für eine Brennkraftmaschine insbesondere eines Kraftfahrzeugs, bei dem Kraftstoff von einer Pumpe in einen Druckspeicher gepumpt wird, bei dem der Druck in dem Druckspeicher gemessen wird, und bei dem der Druck in dem Druckspeicher durch die Ansteuerung eines Drucksteuerventils veränderbar ist. Ein derartiges Verfahren ist aus der US 5,727,515 bekannt. Des weiteren betrifft die Erfindung ein entsprechendes Kraftstoffversorgungssystem für eine Brennkraftmaschine sowie ein Steuergerät für ein derartiges Kraftstoffversorgungssystem.
  • Die US-A-5 727 515 offenbart ein Drucksteuerventil 40, das steuerungstechnisch dem Druckspeicher 35 zugeordnet ist, denn es kann den Druck im Druckspeicher 35 einstellen ; und diese Schrift offenbart die Feststellung eines Fehlers des Drucksteuerventils (Verbleiben in geschlossener oder teilweise geschlossener Stellung, d.h. es ist verstopft), wenn der gemessene Druck mehr als einen Schellwert (delta1/2) vom (variablen) erwarteten Druck PI abweicht.
  • An eine Brennkraftmaschine beispielsweise eines Kraftfahrzeugs werden immer höhere Anforderungen im Hinblick auf eine Reduzierung des Kraftstoffverbrauchs und der erzeugten Abgase bei einer gleichzeitig erwünschten erhöhten Leistung gestellt. Zu diesem Zweck sind moderne Brennkraftmaschinen mit einem Kraftstoffversorgungssystem versehen, bei dem die Zuführung von Kraftstoff in den Brennraum der Brennkraftmaschine elektronisch, insbesondere mit einem rechnergestützten Steuergerät, gesteuert und/oder geregelt wird. Dabei ist es möglich, den Kraftstoff in ein Luftansaugrohr der Brennkraftmaschine oder direkt in den Brennraum der Brennkraftmaschine einzuspritzen.
  • Insbesondere bei der zuletzt genannten Art, der sogenannten Direkteinspritzung, ist es erforderlich, daß der Kraftstoff unter Druck in den Brennraum eingespritzt wird. Zu diesem Zweck ist ein Druckspeicher vorgesehen, in den der Kraftstoff mittels einer Pumpe gepumpt und unter einen hohen Druck gesetzt wird. Von dort wird der Kraftstoff dann über Einspritzventile in die Brennräume der Brennkraftmaschine eingespritzt.
  • Unter anderem aufgrund des hohen Drucks ist es möglich, daß Bauteile das Kraftstoffversorgungssystams z.B. alterungsbedingt sich verändern. So ist es möglich, daß das Drucksteuerventil, mit dem der Druck in dem Druckspeicher gesteuert und/oder geregelt werden kann, langsam seine Funktionsfähigkeit varändert. Ebenfalls ist es möglich, daß das Drucksteuerventil aufgrund von Verschmutzungen schlagartig ausfällt. Derartige Veränderungen der Funktion des Drucksteuerventils können. Aussetzer oder einen sonstigen fehlerhaften Lauf der Brennkraftmaschine zur Folge haben.
  • Aufgabe und Vorteile der Erfindung
  • Aufgabe der Erfindung ist es, ein Verfahren zum Betreiben eines Kraftstoffversorgungssystems für eine Brennkraftmaschine zu schaffen, mit dem ein Fehler des Drucksteuerventils schnell und sicher erkannt wird.
  • Diese Aufgabe wird bei einem Verfahren der eingangs genannten Art durch die Merkmale des Anspruchs 1 gelöst.
  • Zwischen der Ansteuerung das Drucksteuerventils und dem daraus resultierenden Druck in dem Druckspeicher besteht ein definierter Zusammenhang. Dieser Zusammenhang kann vorab für ein intaktes Drucksteuerventil ermittelt werden. Damit ist für jede Ansteuerung ein erwarteter Druck bekannt, der sich bei einem intakten Drucksteuerventil einstellen müßte. Dieser erwartete Druck und der tatsächlich gemessene Druck werden erfindungsgemäß dazu verwendet, auf die Funktionsfähigkeit des Drucksteuerventils zu schließen.
  • Mit der Erfindung ist es somit möglich, einen Defekt des Drucksteuerventils zu erkennen. Das erfindungsgemäße Diagnoseverfahren des Drucksteuerventils kann dabei ohne größeren Aufwand schnell und sicher durchgeführt werden. Das Diagnoseverfahren hat auch keine negativen Einflüsse auf das Laufverhalten der Brennkraftmaschine oder auf deren Schadstoffausstoß.
  • Bei der Erfindung wird der erwartete Druck in Abhängigkeit von Betriebsgrößen der Brennkraftmaschine, insbesondere in Abhängigkeit von der Drehzahl der Brennkraftmaschine ermittelt. Damit wird erreicht, daß bei dem Diagnoseverfahren auch die Abhängigkeit des Drucks in dem Druckspeicher z.B. von der Drehzahl der Brennkraftmaschine berücksichtigt wird. Je höher die Drehzahl der Brennkraftmaschine ist, desto höher ist auch die Förderung von Kraftstoff und damit der Druck in dem Druckspeicher. Durch eine derartige Berücksichtigung der Betriebsgrößen der Brennkraftmaschine wird somit das erfindungsgemäße Diagnoseverfahren wesentlich verbessert.
  • Weiterhin wird aus dem erwarteten Druck und dem gemessenen Druck eine Druckdifferenz ermittelt, es wird aus der Druckdifferenz ein Druckgradient ermittelt, es wird die Druckdifferenz und/oder der Druckgradient mit einem Schwellwert verglichen, und es wird das Drucksteuerventil als defekt erkannt, wenn die Druckdifferenz und der Druckgradient den Schwellwert übersteigt.
  • Besonders vorteilhaft ist es dabei, wenn das Drucksteuerventil in einer linearen Weise geöffnet oder geschlossen wird, so daß die Druckdifferenz und/oder der Druckgradient etwa konstant sind.
  • Weitere Anwendungsmöglichkeiten und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen der Erfindung, die in den Figuren der Zeichnung dargestellt sind.
  • Ausführungsbeispiele der Erfindung
  • Figur 1
    zeigt eine schematische Darstellung eines Ausführungsbeispiels eines erfindungsgemäßen Kraftstoffversorgungssystems,
    Figur 2
    zeigt ein schematisches Blockdiagramm eines Ausführungsbeispiels eines erfindungsgemäßen verfahrens zum Betreiben des Kraftstoffversorgungssystems der Figur 1, und
    Figuren 3a und 3b
    zeigen schematische Schaubilder mit Signalen des Verfahrens der Figur 2 bei intaktem und defektem Kraftstoffversorgungssystem
  • In der Figur 1 ist ein Kraftstoffversorgungssystem 1 dargestellt, das für die Verwendung in einer Brennkraftmaschine eines Kraftfahrzeugs vorgesehan ist. Bei dem Kraftstoffversorgungssystem 1 handelt es sich um ein sogenanntes Common-Rail-System, das insbesondere bei einer Brennkraftmaschine mit Direkteinspritzung zur Anwendung kommt. Derartige Common-Rail-Systeme sind von Benzin-, 1 wie auch von Diesel-Brennkraftmaschinen bekannt.
  • Das Kraftstoffversorgungssystem 1 weist einen Druckspeicher 2 auf, der mit einem Drucksensor 3 und einem Drucksteuerventil 4 versehen ist. Der Druckspeicher 2 ist über eine Druckleitung 5 mit einer Hochdruckpumpe 6 verbunden. Die Hochdruckpumpe 6 ist über eine Druckleitung 8 an das Drucksteuerventil 4 angeschlossen. Über eine Druckleitung 9 und ein Filter ist das Drucksteuerventil 4 und damit auch die Hochdruckpumpe 6 mit einer vorzugsweise elektrischen Kraftstoffpumpe 10 verbunden, die dazu geeignet ist, Kraftstoff aus einem Kraftstoffbehälter 11 anzusaugen.
  • Das Kraftstoffversorgungssystem 1 weist vier Einspritzventile 13 auf, die über Druckleitungen 14 mit dem Druckspeicher 2 verbunden sind. Die Einspritzventile 13 sind dazu geeignet, Kraftstoff in entsprechende Brennräume der Brennkraftmaschine einzuspritzen.
  • Mittels einer Signalleitung 15 ist der Drucksensor 3 mit einem Steuergerät 16 verbunden, an das des weiteren eine Mehrzahl anderer Signalleitungen als Eingangsleitungen angeschlossen sind. Mittels einer Signalleitung 17 ist die Kraftstoffpumpe 10 und über eine Signalleitung 18 ist das Drucksteuerventil 4 mit dem Steuergerät 16 verbunden. Des weiteren sind die Einspritzventile 13 mittels Signalleitungen 19 an das Steuergerät 16 angeschlossen.
  • Der Kraftstoff wird von der Kraftstoffpumpe 10 aus dem Kraftstoffbehälter 11 zu der Hochdruckpumpe 6 gepumpt. Mit Hilfe der Hochdruckpumpe 6 wird in dem Druckspeicher 2 ein Druck erzeugt, der von dem Drucksensor 3 gemessen wird und durch eine entsprechende Betätigung des Drucksteuerventils 4 auf einen gewünschten Wert eingestellt werden kann. Über die Einspritzventile 13 wird dann der Kraftstoff in den Brennraum der Brennkraftmaschine eingespritzt.
  • Für die Bemessung der in den Brennraum eingespritzten Kraftstoffmenge bzw. Kraftstoffmasse ist unter anderem der Druck in dem Druckspeicher 2 wesentlich. Je größer der Druck in dem Druckspeicher 2 ist, desto mehr Kraftstoff wird während derselben Einspritzzeit in den Brennraum eingespritzt. Dieser Druck in dem Druckspeicher 2 kann von dem Steuergerät 16 eingestellt und verstellt werden.
  • Hierzu steuert das Steuergerät 16 das Drucksteuerventil 4 in seinen geschlossenen Zustand, so daß die Hochdruckpumpe 6 und die Kraftstoffpumpe 10 einen immer weiter ansteigenden Druck in dem Druckspeicher 2 erzeugen. Dieser ansteigende Druck kann von dem Drucksensor 3 gemessen werden.
  • Das Drucksteuerventil 4 wird mit einem pulsweitenmodulierten Signal angesteuert. Ein Tastverhältnis TV von 0% hat dabei ein vollständig geschlossenes Drucksteuerventil 4 zur Folge, und bei einem Tastverhältnis TV von 100% ist das Drucksteuerventil 4 vollständig geöffnet.
  • Zwischen dem Tastverhältnis TV des Drucksteuerventils 4 und dem Druck im dem Druckspeicher 2 besteht ein definierter Zusammenhang. Dieser Zusammenhang ergibt sich aus dem Öffnungsquerschnitt des Drucksteuerventils 4, der sich bei einem bestimmten Tastverhältnis TV einstellt. Der Zusammenhang kann vorab für ein fehlerfrei arbeitendes Drucksteuerventil 4 ermittelt werden und ist in der Form einer Kennlinie oder eines Kennfelds im Steuergerät 16 abgespeichert. Zur Erzeugung eines erwünschten Drucks in dem Druckspeicher 2 wird das Drucksteuerventil 4 auf der Grundlage dieses Zusammenhangs angesteuert. Ergeben sich zwischen dem erwünschten Druck und dem von dem Drucksensor 3 gemessenen tatsächlichen Druck Abweichungen, so werden diese Abweichungen ausgeregelt.
  • Zusätzlich zu dieser Regelung des Drucks in dem Druckspeicher 2 wird der Ausgang der Regelung überwacht. Überschreitet der Wert der an diesem Reglerausgang vorhandenen Stellgröße einen vorgegebenen Schwellwert, so wird das Kraftstoffversorgungssystem 1 als "möglicherweise fehlerhaft" erkannt. Dies führt zum Starten eines Diagnoseverfahrens, das nachfolgend beschrieben ist.
  • Nachdem das Diagnoseverfahren gestartet ist, wird das Drucksteuerventil 4 mit einem pulsweitenmodulierten Signal angesteuert, dessen Tastverhältnis TV einen ersten wert aufweist. Danach wird das Tastverhältnis TV von dem ersten auf einen zweiten wert verändert. Der von dem ersten und dem zweiten Wert begrenzte Bereich ist derart gewählt, daß die Brennkraftmaschine noch kein verschlechtertes Fahrverhalten aufweist oder gar Aussetzer der Brennkraftmaschine auftreten.
  • Aufgrund des definierten Zusammenhangs zwischen dem Tastverhältnis TV des Drucksteuerventils 4 und dem Druck in dem Druckspeicher 2 hat die Veränderung des Tastverhältnisses TV eine Veränderung des Drucks in dem Druckspeicher 2 zur Folge.
  • Eine Ausführungsform des Diagnoseverfahrens ist in der Figur 2 dargestellt. Die aus diesem Verfahren resultierenden Signale sind in den Figuren 3a und 3b dargestellt. Dabei bezieht sich die Figur 3a auf ein intaktes Drucksteuerventil 4 und die Figur 3b auf ein defektes Drucksteuerventil 4. Das in der Figur 2 dargestellte Verfahren wird von dem Steuergerät 16 durchgeführt,
  • Nachdem das Diagnoseverfahren gestartet ist, wird in einem Block 20 das Tastverhältnis TV beispielsweise auf einen ersten wert TV1 von 35% gesetzt. Es wird dann in einem Block 21 der von dem Drucksensor 3 aktuell gemessene Druck prist in dem Druckspeicher 2 gemessen. Dieser Druck prist ist in den Figuren 3a und 3b dargestellt.
  • Von dem Steuergerät 16 wird in einem Block 22 ein modellierter Druck prbk ermittelt, der die aktuellen Betriebsgrößen der Brennkraftmaschine, wie deren aktuelle Drehzahl, deren Motortemperatur und dergleichen berücksichtigt. Dieser Druck prbk ist in den Figuren 3a und 3b dargestellt.
  • In einem nachfolgenden Block 23 wird von dem Steuergerät 16 eine Druckdifferenz dpr berechnet, für die gilt: dpr = prbk - prist. Danach wird von dem Steuergerät 16 in einem Block 24 ein Druckgradient grddpr für die Druckdifferenz dpr berechnet. Auch diese Druckdifferenz dpr und dieser Druckgradient grddpr sind in den Figuren 3a und 3b dargestellt.
  • Nunmehr wird in einem Block 25 von dem Steuergerät 16 überprüft, ob der Betrag der Druckdifferenz dpr einen Schwellwert S1 übersteigt. Ist dies nicht der Fall, so wird darauf geschlossen, daß das Drucksteuerventil 4 nicht defekt ist.
  • Es wird dann in einem nachfolgenden Block 26 das Tastverhältnis TV um ein Inkrement, beispielsweise um 1% erhöht. Danach überprüft das Steuergerät 16 in einem Block 27, ob das Tastverhältnis TV einen zweiten Wert TV2 von beispielsweise 45% erreicht hat. Ist dies nicht der Fall, so wird das Diagnoseverfahren mit dem Block 21 und der erneuten Messung des Drucks prist fortgesetzt. Ist der zweite Wert TV2 des Tastverhältnisses TV erreicht, so wird das Diagnoseverfahren beendet.
  • Der Figur 3a liegt ein intaktes Drucksteuerventil 4 zugrunde. Damit ist z.B. für den Wert TV1 des Tastverhältnisses TV die Druckdifferenz dpr zwischen dem gemessenen Druck prist und dem modellierten Druck prbk relativ klein. In jedem Fall ist der Betrag der Druckdifferenz dpr kleiner als der Schwellwert S1. Dies hat zur Folge, daß das Diagnoseverfahren der Figur 2 die Blöcke 21 bis 27 nacheinander durchläuft.
  • Wird daraufhin das Tastverhältnis TV inkrementiert, so ändert sich an der vorstehenden Druckdifferenz dpr nichts Wesentliches. Weiterhin bleibt der Betrag der Druckdifferenz dpr kleiner als der Schwellwert S1 und es werden weiterhin die Blöcke 21 bis 27 durchlaufen. Dies wird so lange wiederholt, bis der Wert TV2 des Tastverhältnisses TV erreicht wird.
  • In der Figur 3a ergibt dies einen linear ansteigenden gemessenen Druck prist und einen linear ansteigenden modellierten Druck prbk. Aufgrund der Berücksichtung der aktuellen Betriebsgrößen der Brennkraftmaschine ist die Steigung des modellierten Drucks prbk etwa gleich der Steigung des gemessenen Drucks prist. Damit bleibt die Druckdifferenz dpr relativ klein. In jedem Fall bleibt die Druckdifferenz dpr bei dem intakten Drucksteuerventil 4 der Figur 3a immer kleiner als der Schwellwert S1.
  • Damit kann von dem Steuergerät 16 mit Hilfe des Verfahrens der Figur 2 bei der Figur 3a korrekterweise auf ein intaktes Drucksteuerventil 4 geschlossen werden.
  • Übersteigt bei einer der Wiederholungen des Druchlaufs durch die Blöcke 21 bis 27 der Betrag der Druckdifferenz dpr den Schwellwert S1, so wird dies im Block 25 von dem Steuergerät 16 festgestellt. Das Verfahren der Figur 2 wird dann mit einem Block 28 fortgesetzt, mit dem eine Beobachtungszeitdauer, Z gestartet wird.
  • In einem nachfolgenden Block 29 wird von dem Steuergerät 16 überprüft, ob der Betrag des Druckgradienten grddpr einen Schwellwert S2 überschreitet. Ist dies der Fall, so wird von dem Steuergerät 16 auf einen Fehler des Drucksteuerventils 4 geschlossen und das Diagnoseverfahren der Figur 2 ist beendet.
  • Dieser Fall des defekten Drucksteuerventils 4 ist in der Figur 3b dargestellt. Dort weist der Verlauf des gemessenen Drucks prist in dem Druckspeicher 2 einen wesentlichen Einbruch auf, der mit dem Bezugszeichen 40 gekennzeichnet ist. Dieser Einbruch kann zum Beispiel aus einem Klemmen des Drucksteuerventils 4 aufgrund einer Verschmutzung resultieren. Der Einbruch 40 hat zur Folge, daß auch die Druckdifferenz dpr einen relativ großen Ausschlag aufweist, der mit dem Bezugszeichen 41 gekennzeichnet ist. Entsprechendes gilt für den Druckgradienten grddpr, der ebenfalls einen relativ großen Ausschlag 42 aufweist.
  • Der Betrag der Druckdifferenz dpr ist in dem Bereich des Ausschlags 41 größer als der Schwellwert S1. Damit wird der Block 28 des Verfahrens der Figur 2 erreicht. Der Betrag des Druckgradienten ist in dem Bereich des Ausschlags 42 ebenfalls größer als der Schwellwert S2. Damit wird von dem Block 29 der Figur 2 erkannt, daß das Drucksteuerventil 4 defekt ist.
  • Ist nun der Betrag der Druckdifferenz dpr größer als der Schwellwert S1, der Betrag des Druckgradienten grddpr jedoch kleiner als der Schwellwert S2, so wird in einem Block 30 die Beobachtungszeitdauer Z erhöht, z.B. inkrementiert. In einem nachfolgenden Block 31 wird von dem Steuergerät 16 geprüft, ob die Beobachtungszeitdauer Z einen Maximalwert ZM erreicht hat.
  • Ist dies der Fall, so wird das Verfahren der Figur 2 mit dem Block 26 und damit letztlich mit den Wiederholungen der Blöcke 21 bis 27 fortgesetzt. Dieser Fall kann eintreten, wenn bei einem intakten Drucksteuerventil 4 durch nicht nachvollziehbare Gründe der Betrag der Druckdifferenz dpr den Schwellwert S1 überschritten hat und damit zumindest der Anschein eines defekten Drucksteuerventils 4 erzeugt worden ist. Durch den Block 29 wird dann geprüft, ob tatsächlich ein Fehler des Drucksteuerventils 4 vorliegt. Ist dies bis zum Ablauf des Maximalwerts ZM der Beobachtungszeitdauer Z nicht der Fall, so wird wieder zu der eingangs beschriebenen Prüfung des Drucksteuerventils 4 mit Hilfe des Blocks 25 zurückgekehrt.
  • Wird in dem Block 31 der Figur 2 von dem Steuergerät 16 festgestellt, daß der Maximalwert ZM noch nicht erreicht ist, so wird in einem Block 32 das Tastverhältnis erhöht, z.B. um 1% inkrementiert. Danach wird in einem Block 33 überprüft, ob der zweite Wert TV2 des Tastverhältnisses TV erreicht ist. Ist dies der Fall, so ist das Verfahren der Figur 2 beendet. Die Blöcke 32 und 33 entsprechen insoweit den Blöcken 26 und 27.
  • Ist der zweite Wert TV2 des Tastverhältnisses TV noch nicht erreicht, so werden nacheinander in dem Block 34 der aktuelle Druck prist in dem Druckspeicher 2 mit Hilfe des Drucksensors 3 gemessen, der modellierte Druck prbk in Abhängigkeit von den aktuellen Betriebsgrößen der Brennkraftmaschine ermittelt, und die Druckdifferenz dpr und der Druckgradient grddpr errechnet. Der Block 34 stellt insoweit eine Zusammenfassung der Blöcke 21, 22, 23, 24 dar.
  • Nach dem Block 34 wird das Verfahren der Figur 2 mit dem Block 29 und damit mit dem Vergleich des Betrags des Druckgradienten grddpr mit dem Schwellwert S2 fortgesetzt. Die Blöcke 29 bis 34 werden dann solange wiederholt, bis entweder ein Fehler des Drucksteuerventils 4 von dem Steuergerät 16 erkannt wird, oder der Maximalwert ZM der Beobachtungszeitdauer Z erreicht wird oder der zweite Wert TV2 des Tastverhältnisses TV erreicht wird.
  • Insgesamt wird damit mit dem Diagnoseverfahren der Figur 2 genau dann ein Fehler des Drucksteuerventils 4 erkannt, wenn der Betrag der Druckdifferenz dpr und der Betrag des Druckgradienten grddpr jeweils zugehörige Schwellwerte S1, S2 überschreiten. Wird einer der Schwellwerte S1, S2 nicht überschritten, so wird von dem Steuergerät 16 auf die Funktionsfähigkeit des Drucksteuerventils 4 geschlossen.

Claims (6)

  1. Verfahren zum Betreiben eines Kraftstoffversorgungssystems (1) für eine Brennkraftmaschine insbesondere eines Kraftfahrzeugs, bei dem Kraftstoff von einer Pumpe (6, 10) in einen Druckspeicher (2) gepumpt wird, bei dem der Druck (prist) in dem Druckspeicher (2) gemessen wird, und bei dem der Druck (prist) in dem Druckspeicher (2) durch die Ansteuerung eines Drucksteuerventils (4) veränderbar ist, dadurch gekennzeichnet, dass das Drucksteuerventil (2) derart angesteuert wird, dass sich ein erwarteter Druck (prbk) in dem Druckspeicher (2) ergeben müsste, dass der erwartete Druck (prbk) in Abhängigkeit von Betriebsgrößen der Brennkraftmaschine, insbesondere in Abhängigkeit von der Drehzahl der Brennkraftmaschine ermittelt wird, dass aus dem erwarteten Druck (prbk) und dem gemessenen Druck (prist) eine Druckdifferenz (dpr) ermittelt wird, dass die Druckdifferenz (dpr) mit einem ersten Schwellwert (S1) verglichen wird, dass das Drucksteuerventil (4) als defekt erkannt wird, wenn die Druckdifferenz (dpr) den ersten Schwellwert (S1) übersteigt, dass aus der Druckdifferenz (dpr) ein Druckgradient (grddpr) ermittelt wird, dass der Druckgradient (grddpr) mit einem zweiten Schwellwert (S2) verglichen wird, und dass das Drucksteuerventil (4) als defekt erkannt wird, wenn der Druckgradient (grddpr) den zweiten Schwellwert (S2) übersteigt.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Drucksteuerventil (4) in einer linearen Weise geöffnet oder geschlossen wird, und dass die Druckdifferenz (dpr) und/oder der Druckgradient (grddpr) etwa konstant sind.
  3. Computerprogramm, dadurch gekennzeichnet, dass es zur Anwendung in einem Verfahren nach einem der vorhergehenden Ansprüche programmiert ist.
  4. Elektrisches Speichermedium für ein Steuergerät (16), dadurch gekennzeichnet, dass auf ihm ein Computerprogramm zur Anwendung in einem Verfahren nach einem der Ansprüche 1 oder 2 abgespeichert ist.
  5. Steuergerät (16) für ein Kraftstoffversorgungssystem (1), dadurch gekennzeichnet, dass es zur Anwendung in einem Verfahren nach einem der Ansprüche 1 oder 2 hergerichtet ist.
  6. Kraftstoffversorgungssystem (1), insbesondere für ein Kraftfahrzeug, mit einem Steuergerät (16), das zur Anwendung in einem Verfahren nach einem der Ansprüche 1 oder 2 hergerichtet ist.
EP01935970A 2000-04-27 2001-04-14 Verfahren zum betreiben eines kraftstoffversorgungssystems für eine brennkraftmaschine insbesondere eines kraftfahrzeugs Expired - Lifetime EP1278949B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE2000120627 DE10020627A1 (de) 2000-04-27 2000-04-27 Verfahren zum Betreiben eines Kraftstoffversorgungssystems für eine Brennkraftmaschine insbesondere eines Kraftfahrzeugs
DE10020627 2000-04-27
PCT/DE2001/001467 WO2001081746A1 (de) 2000-04-27 2001-04-14 Verfahren zum betreiben eines kraftstoffversorgungssystems für eine brennkraftmaschine insbesondere eines kraftfahrzeugs

Publications (2)

Publication Number Publication Date
EP1278949A1 EP1278949A1 (de) 2003-01-29
EP1278949B1 true EP1278949B1 (de) 2006-06-21

Family

ID=7640094

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01935970A Expired - Lifetime EP1278949B1 (de) 2000-04-27 2001-04-14 Verfahren zum betreiben eines kraftstoffversorgungssystems für eine brennkraftmaschine insbesondere eines kraftfahrzeugs

Country Status (5)

Country Link
EP (1) EP1278949B1 (de)
JP (1) JP2003531998A (de)
AU (1) AU2001262037A1 (de)
DE (3) DE10020627A1 (de)
WO (1) WO2001081746A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10357158B4 (de) * 2003-12-06 2013-02-07 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Korrigieren der Einspritzdauer eines Injektors für eine Brennkraftmaschine
JP4207010B2 (ja) 2005-03-15 2009-01-14 株式会社デンソー 燃料噴射装置
DE102006053950B4 (de) * 2006-11-15 2008-11-06 Continental Automotive Gmbh Verfahren zur Funktionsüberprüfung einer Druckerfassungseinheit eines Einspritzsystems einer Brennkraftmaschine
DE102008001444A1 (de) * 2008-04-29 2009-11-05 Robert Bosch Gmbh Verfahren zum Bestimmen eines Überdrucks in einem Kraftstoffspeicher eines Einspritzsystems einer Brennkraftmaschine
DE102008021581B3 (de) * 2008-04-30 2009-11-26 Continental Automotive Gmbh Verfahren zur Bestimmung des Raildruckes in einem Common-Rail-System und Common-Rail-Einspritzsystem
JP4609524B2 (ja) * 2008-05-09 2011-01-12 株式会社デンソー 燃圧制御装置、及び燃圧制御システム
DE102010013602B4 (de) 2010-03-31 2015-09-17 Continental Automotive Gmbh Verfahren zur Erkennung eines Fehlverhaltens eines elektronisch geregelten Kraftstoffeinspritzsystems eines Verbrennungsmotors
DE102016220123B4 (de) * 2016-10-14 2018-05-09 Continental Automotive Gmbh Verfahren und Vorrichtung zur Plausibilierung der Funktionsfähigkeit eines Hochdrucksensors eines Kraftstoffeinspritzsystems eines Kraftfahrzeugs

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19513158A1 (de) * 1995-04-07 1996-10-10 Bosch Gmbh Robert Einrichtung zur Erkennung eines Lecks in einem Kraftstoffversorgungssystem
DE19548280A1 (de) * 1995-12-22 1997-06-26 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
JP3849175B2 (ja) * 1996-06-24 2006-11-22 日産自動車株式会社 筒内直噴式内燃機関の燃料圧力調整弁の故障診断装置
DE19757655C2 (de) * 1997-12-23 2002-09-26 Siemens Ag Verfahren und Vorrichtung zur Funktionsüberwachung eines Drucksensors
DE19937962A1 (de) * 1999-08-11 2001-02-15 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung eines Einspritzsystems

Also Published As

Publication number Publication date
AU2001262037A1 (en) 2001-11-07
JP2003531998A (ja) 2003-10-28
WO2001081746A1 (de) 2001-11-01
EP1278949A1 (de) 2003-01-29
DE50110266D1 (de) 2006-08-03
DE10020627A1 (de) 2001-11-08
DE10191563D2 (de) 2003-04-17

Similar Documents

Publication Publication Date Title
DE10147189A1 (de) Verfahren zum Betreiben eines Kraftstoffversorgungssystems für einen Verbrennungsmotor eines Kraftfahrzeugs
DE102007053406B3 (de) Verfahren und Vorrichtung zur Durchführung sowohl einer Adaption wie einer Diagnose bei emissionsrelevanten Steuereinrichtungen in einem Fahrzeug
DE102010013602A1 (de) Verfahren zur Erkennung eines Fehlverhaltens eines elektronisch geregelten Kraftstoffeinspritzsystems eines Verbrennungsmotors
EP2449238A1 (de) Verfahren und vorrichtung zum betreiben einer brennkraftmaschine
DE19726756C2 (de) System zum Betreiben einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs
DE102010039841B4 (de) Verfahren zum Anpassen der Einspritzcharakteristik eines Einspritzventils
EP3033513A1 (de) Verfahren zur injektorindividuellen diagnose einer kraftstoff-einspritzeinrichtung und brennkraftmaschine mit einer kraftstoff-einspritzeinrichtung
DE102009009270A1 (de) Kalibrierverfahren eines Injektors einer Brennkraftmaschine
EP1688606A1 (de) Verfahren zur Vergrößerung des Regelbereichs für die Gleichstellung von Einspritzmengenunterschieden
EP1278949B1 (de) Verfahren zum betreiben eines kraftstoffversorgungssystems für eine brennkraftmaschine insbesondere eines kraftfahrzeugs
DE102009007365A1 (de) Fehleranalyseverfahren und Fehleranalysevorrichtung für einen Verbrennungsmotor
DE19903272A1 (de) Kraftstoffversorgungssystem für eine Brennkraftmaschine insbesondere eines Kraftfahrzeugs
DE102004006554B3 (de) Verfahren zur Zylindergleichstellung bezüglich der Kraftstoff-Einspritzmengen bei einer Brennkraftmaschine
DE102010042852A1 (de) Verfahren zur Überwachung einer Adaption einer Verzugszeit eines Einspritzventils einer Brennkraftmaschine
DE10302058B4 (de) Verfahren zum Betreiben einer Brennkraftmaschine
DE102011075876A1 (de) Verfahren zum Betreiben einer Einspritzdüse
DE10305525B4 (de) Verfahren und Vorrichtung zur Adaption der Druckwellenkorrektur in einem Hochdruck-Einspritzsystem eines Kraftfahrzeuges im Fahrbetrieb
EP1278950B1 (de) Verfahren zum betreiben eines kraftstoffversorgungssystems für eine brennkraftmaschine insbesondere eines kraftfahrzeugs
DE19856203A1 (de) Kraftstoffversorgungssystem für eine Brennkraftmaschine insbesondere eines Kraftfahrzeugs
EP1618296B1 (de) Verfahren zur ermittlung der benötigten aktorenergie für die verschiedenen einspritzarten eines aktors einer brennkraftmaschine
DE10338775B4 (de) Diagnoseeinrichtung für einen Verbrennungsmotor
DE102011100108A1 (de) Bestimmung einer Einspritzventilkennlinie undVerringerung eines Einspritzmengenunterschieds beieinem Verbrennungsmotor
WO2004016927A1 (de) Verfahren und vorrichtung zur ansteuerung eines aktors
DE102006015968B3 (de) Adaptionsverfahren und Adaptionsvorrichtung einer Einspritzanlage einer Brennkraftmaschine
WO2013156377A1 (de) Verfahren und vorrichtung zum betreiben einer brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021127

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RBV Designated contracting states (corrected)

Designated state(s): DE FR IT

17Q First examination report despatched

Effective date: 20050418

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060621

REF Corresponds to:

Ref document number: 50110266

Country of ref document: DE

Date of ref document: 20060803

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070322

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090420

Year of fee payment: 9

Ref country code: IT

Payment date: 20090429

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20101230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130627

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50110266

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141101

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50110266

Country of ref document: DE

Effective date: 20141101