EP1242304A1 - Nanostructures, leurs applications et leur procede d'elaboration - Google Patents

Nanostructures, leurs applications et leur procede d'elaboration

Info

Publication number
EP1242304A1
EP1242304A1 EP00974609A EP00974609A EP1242304A1 EP 1242304 A1 EP1242304 A1 EP 1242304A1 EP 00974609 A EP00974609 A EP 00974609A EP 00974609 A EP00974609 A EP 00974609A EP 1242304 A1 EP1242304 A1 EP 1242304A1
Authority
EP
European Patent Office
Prior art keywords
sample
nanostructures
compounds
enclosure
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00974609A
Other languages
German (de)
English (en)
Inventor
Thomas Laude
Bernard Jouffrey
Alain Marraud
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Original Assignee
Centre National de la Recherche Scientifique CNRS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP1242304A1 publication Critical patent/EP1242304A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/901Manufacture, treatment, or detection of nanostructure having step or means utilizing electromagnetic property, e.g. optical, x-ray, electron beamm
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber

Definitions

  • the present invention relates to a process for the preparation of nanostructures from compounds having a hexagonal crystal form.
  • It relates more particularly to a process for the preparation of ' nanobeams, nanofilaments, nanotubes, nanotube bundles, twists, nanoribbons, onions, hollow spheres, clusters, compounds of pure boron nitride or loaded with certain elements.
  • the invention also relates to the nanostructures obtained by such a process.
  • Structures and nanostructures are known which take the form of fullerenes, hollow nanospheres, or carbon nanotubes or assemblies of such nanotubes called strings or bundles. These carbon nanostructures are in fact anisotropic forms developed from graphite. It will be recalled that the carbon nanotubes are in fact one or more planes of graphene wound on themselves, with a more or less pronounced character of helicity (the latter may also be zero).
  • boron nitride has completely different physical and chemical properties from that of carbon; it will be noted in particular that the melting temperature of boron nitride is approximately 1000 ° C. lower than that of carbon. Furthermore, it is much more electrically and chemically insulating in nature more ionic than carbon, and less reactive with a certain number of elements. These differences in the physicochemical properties between these two elements make the known techniques of the prior art ineffective, such as that of using hafnium diboride as an electrode in the electric arc method for example.
  • the present invention aims to overcome the drawbacks of the processes known from the prior art, by proposing a process which makes it possible to develop nanostructures in large quantities and which exhibits, if desired, a high degree of purity.
  • the process according to the invention for developing nanostructures under controlled atmosphere, from compounds having a hexagonal crystal shape, subjected to a laser bombardment of a gas is characterized in that a sample of compound is used which is compacted and that one operates under a residual gas pressure between about 5.10 to 8.10 Pa.
  • the vacuum can be dynamic or not.
  • Figures 2 to 7 are views obtained by scanning electron microscopy or transmission illustrating geometries of nanostructures.
  • the process which is the subject of the invention consists in providing a compound having a crystal structure of hexagonal shape, such as for example zinc, zirconium, titanium, magnesium, cadmium, beryllium or boron nitride, packaged in a compacted sample within an enclosure.
  • this process could also be used for obtaining other materials, in the possible presence of a catalyst.
  • these may be transition metals such as iron, nickel, cobalt, binary compounds (WS2 1 M0S2 • •) # of lamellar compounds.
  • the sample used is subjected to a prior annealing operation, for example in the enclosure.
  • this enclosure is made hermetic by known means, is emptied, then filled with a dynamic atmosphere controlled or not.
  • the sample of compacted powder compounds is placed within this enclosure on a support advantageously made of a material similar to that of the sample.
  • boron nitride powder sample this will be positioned on a support shaped as a bar, also made of boron nitride, in order to avoid
  • the sample of compounds is not in a form with a sufficient purity index, it should then undergo a purification phase which can essentially consist in degassing the sample.
  • the sample is positioned within the enclosure, then the latter is hermetically sealed from the external environment.
  • the enclosure is then connected to a vacuum source so as to create a pressure of the order of 10 " 5 mbar (approximately • 1.10 -3 Pa), or better if desired.
  • the sample of the sintered or compacted compound is then subjected to heating by non-focused continuous illumination of a laser beam.
  • the wavelength of the laser radiation is chosen according to the type of sample and in fact corresponds to the wavelength which is best absorbed by the sample.
  • boron nitride it is possible to use a ⁇ 2 laser whose wavelength is close to 10.6 ⁇ m.
  • the energy supply necessary for heating the sample can come from another origin (heating by Joule effect, by induction, by ion bombardment or equivalent ).
  • the degassing phase is not necessarily carried out.
  • the surface quality of the heated material is involved in particular in terms of the yields of product obtained.
  • preheating for example of the order of a minute to a few minutes under
  • the residual gas pressure in the enclosure will be between 0.5 and 8-1G 4 Pa, or even more depending on the material treated.
  • a pressure of 1.10 4 Pa of nitrogen gives satisfactory results, and an increase in pressure leads to more diversified structures, with more clusters and even trees.
  • the laser beam passes through an optical device, in particular a lens, making it possible to focus said beam at a precise point of an enclosure and particularly at a determined area of the sample.
  • the radiation coming from a CO2 laser with a power of the order of 50 to 80 W approximately, or more depending on the material treated, is focused through an optical device so as to obtain a density of optimal energy.
  • a power density is of the order of 6 to 8 GW / m 2 over a diameter of 100 to 200 ⁇ m.
  • the sample is continuously bombarded in order to bring its temperature to a surface temperature higher than the dissociation temperature of said sample. For example, in the case of boron nitride, this temperature is substantially close to 2400 ° C. 'Alternatively, one can increase the amount of material treated sample or relative movement of the laser beam.
  • This process for manufacturing and developing nanostructures uses the a technique analogous to chemical vapor deposition assisted by laser.
  • the latter is used to locally heat the sample to a temperature above the dissociation temperature, the gas contained in the enclosure (nitrogen) will then help germination and growth from the surface of the sample, dissociate, combine with the compound (boron), then accumulate to lead to the formation of a growth of nanostructures on the surface of the target.
  • the overall loss of material is slow enough that the temperature gradient in the sample is stable during the growth of the structures.
  • the sample is left to cool before the enclosure is opened to the outside environment in order to avoid possible oxidation.
  • boron nitride nanostructures (cf. FIGS. 2, 3, 4 and 5) made up of entangled filaments, of diameter on the order of a nanometer to a few tens of nanometers, and of micrometric length (up to several tens of microns).
  • Figure 6 shows nanoribbons with clusters and Figure 7 a structure with trees.
  • these boron nitride nanostructures can be pure or present impurities or doping elements in more or less high concentration, such as in particular carbon, these impurities or these doping elements acting or not acting as catalyst, these impurities or these elements are present either in the sample or in the controlled atmosphere. This doping can change the conduction properties of the material.
  • the operating conditions power of the laser, duration of heating, nature of the gas constituting the residual pressure within the enclosure, etc.
  • the enclosure 1 comprising an enclosure 1 which can be hermetically closed with respect to the external environment, this enclosure 1 being provided moreover, on the one hand, with a first orifice 2 connected to a pumping source 3, and on the other hand a second orifice 4 connected to a source of controlled atmosphere 5, said enclosure 1 being further provided with an optical device 6, in particular of the lens type, making it possible to converge on a sample 7 placed inside said enclosure 1, a laser beam 8.
  • the laser is preferably a continuous laser of type ⁇ 2.
  • the boron nitride nanostructures have very high chemical inertness, even at high temperature, which can make them in particular less reactive to molten metals and very resistant to oxidation.
  • the nanostructures of the invention can also be used in field emission if a conductive or semiconductor compound is deposited on it.
  • the twisted shapes can serve as supports for other molecules and that the nanotubes can be used as nanocapacitors to detect very low charges.
  • the invention has made it possible to develop a means of annihilating the positive charges which remain under the impact of an electron beam during the observation in electron microscopies of the nanostructures of the material, and in particular of boron nitride.
  • This method will then be used in transmission or scanning electron microscopy.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Catalysts (AREA)
  • Laser Beam Processing (AREA)
  • Inorganic Fibers (AREA)

Abstract

Procédé d'élaboration de nanostructures sous atmosphère contrôlée, à partir de composés ayant une forme cristalline hexagonale, soumis à un bombardement focalisé laser d'un gaz, caractérisé en ce qu'on utilise un échantillon de composé compacté et qu'on opère sous une pression résiduelle de gaz entre environ 1 à 3.10<4> Pa.

Description

NANOSTRUCTURES , LEURS APPLICATIONS ET LEUR PROCEDE D ' ELABORATION
La présente invention est relative à un procédé d'élaboration de nanostructures à partir de composés se présentant sous une forme cristalline hexagonale.
Elle vise plus particulièrement un procédé d'élaboration de 'nanopoutres, nanofilaments, nanotubes, faisceaux de nanotubes, torsades, nanorubans, oignons, sphères creuses, amas, composés de nitrure de bore pur ou chargé en certains éléments .
L'invention vise également les nanostructures obtenues par un tel procédé .
On connaît des structures et des nanostructures se présentant sous la forme de fullerenes, nanosphères creuses, ou nanotubes de carbone ou d'assemblées de tels nanotubes appelées cordes ou faisceaux. Ces nanostructures de carbone sont en fait des formes anisotropes développées à partir du graphite. On rappellera que les nanotubes de carbone sont en fait un ou plusieurs plans de graphene enroulés sur eux-mêmes, avec un caractère plus ou moins prononcé d'hêlicité (celle-ci pouvant être également nulle) .
De nombreuses méthodes d'élaboration ont été développées pour obtenir des nanostructures de carbone, telles que notamment l'utilisation d'un arc électrique, la décomposition catalytique de gaz, par exemple des hydrocarbures, l'ablation laser, ou le bombardement laser d'un gaz. La méthode la plus généralement employée, compte tenu de son efficacité et des propriétés intrinsèques du graphite (particulièrement son caractère bon conducteur), est celle de l'arc électrique. Elle demande généralement à être suivie de procédés d'épuration ou de filtrage pour obtenir une même espèce de nanotubes . Etant donné que le nitrure de bore présente une struccure cristalline similaire à celle du graphite, on a recherché à obtenir des nanostructures de ce composé. Bien entendu, il est clair que le nitrure de bore possède des propriétés physiques et chimiques totalement différentes de celles du carbone ; on notera notamment que la température de fusion du nitrure de bore est environ 1000°C plus faible que celle du carbone. Par ailleurs, il est beaucoup plus isolant du point de vue électrique et chimiquement de nature plus ionique que le carbone, et moins réactif avec un certain nombre d'éléments. Ces différences quant aux propriétés physico-chimiques entre ces deux éléments rendent peu opérantes les techniques connues de l'art antérieur, comme celle consistant à utiliser le diborure d'hafnium comme électrode dans la méthode à arc électrique par exemple.
C'est pourquoi la présente invention vise à pallier les inconvénients des procédés connus de l'art antérieur, en proposant un procédé qui permette d'élaborer des nanostructures en grande quantité et qui présente, si souhaité, un degré de pureté élevé .
Le procédé selon l'invention d'élaboration de nanostructures sous atmosphère contrôlée, à partir de composés ayant une forme cristalline hexagonale, soumis à un bombardement laser d'un gaz, est caractérisé en ce qu'on utilise un échantillon de composé 'compacté et qu'on opère sous une pression résiduelle de gaz entre environ 5.10 à 8.10 Pa . Le vide peut être dynamique ou non.
D'autres caractéristiques et avantages de la présente invention ressortiront de la description faite ci-après, en référence aux dessins annexés qui en illustrent un exemple de réalisation dépourvu de tout caractère limitatif . Sur les figures : - la figure i est une vue schématique des divers composants permettant la mise en oeuvre du procédé objet de l'invention ;
- les figures 2 à 7 sont des vues obtenues par microscopie •électronique à balayage ou en transmission illustrant des géométries de nanostructures.
Selon un mode de réalisation permettant la mise en oeuvre du procédé objet de l'invention, celui-ci consiste à disposer un composé présentant une structure cristalline de forme hexagonale, tel que par exemple du zinc, du zirconium, du titane, du magnésium, du cadmium, du béryllium ou encore du nitrure de bore, conditionnée en un échantillon compacté au sein d'une enceinte. En variante, ce procédé pourrait être également utilisé pour l'obtention d'autres matériaux, en présence éventuelle de catalyseur. Par exemple, il peut s'agir de métaux de transition comme le fer, le nickel, le cobalt, de composés binaires (WS21M0S2 • • ) # de composés lamellaires.
L'échantillon utilisé est soumis à une opération préalable de recuit par exemple dans l'enceinte.
Par ailleurs, cette enceinte est rendue hermétique par des moyens connus, est vidée, puis remplie d'une atmosphère contrôlée dynamique ou non.
Préférentiellement, l'échantillon de composés en poudre compacté est placé au sein de cette enceinte sur un support élaboré avantageusement dans un matériau similaire à celui de l'échantillon.
Ainsi, par exemple, dans le cas d'un échantillon de poudre de nitrure de bore, celui-ci sera positionné sur un support conformé en barreau, également en nitrure de bore, afin d'éviter
•une éventuelle réaction chimique entre ledit support et ledit échantillon.
Dans l'éventualité où l'échantillon de composés ne se présenterait pas sous une forme avec un indice de pureté suffisant, il devrait alors subir une phase d'épuration qui peut consister essentiellement à effectuer un dégazage de 1 ' échantillon.
A cette fin, l'échantillon est positionné au sein de l'enceinte, puis celle-ci est hermétiquement fermée par rapport à l'environnement extérieur.
On raccorde ensuite l'enceinte à une source de vide de manière à créer une pression de l'ordre de 10"5 mbar (environ •1.10-3 Pa) , ou mieux si désirée.
On soumet ensuite l'échantillon du composé fritte ou compacté à un échauffement par éclairement continu non focalisé d'un faisceau laser. La longueur d'onde du rayonnement laser est choisie en fonction du type d'échantillon et correspond en fait à la longueur d'onde qui est la mieux absorbée par l'échantillon. Ainsi, dans le cas du nitrure de bore, on peut utiliser un laser ∞2 dont la longueur d'onde est voisine de 10,6 μm.
Selon un autre mode de réalisation, l'apport énergétique nécessaire au chauffage de l'échantillon peut provenir d'une autre origine (chauffage par effet Joule, par induction, par bombardement ionique ou équivalent ... ) .
Si l'échantillon du composé présente un indice de pureté sensiblement voisin de 100%, la phase de dégazage n'est pas obligatoirement mise en oeuvre.
On procède alors directement à la mise en place de l'échantillon compacté sur son support, de même nature chimique dans l'enceinte. Celle-ci est pompée au vide et remplie d'une atmosphère de gaz à basse pression.
On notera que la qualité de surface du matériau chauffé intervient notamment au niveau des rendements en produit obtenu. Ainsi, avec un matériau se présentant sous forme de poudre compactée, on aura avantageusement recours à un préchauffage, par exemple de l'ordre de la minute à quelques minutes sous
•vide, pour augmenter la quantité de nanostructures. La pression résiduelle de gaz dans l'enceinte sera comprise entre 0,5 et 8-1G4 Pa, voire plus selon le matériau traité. Ainsi, pour la nitrure de bore, une pression de 1.104 Pa d'azote donne des résultats satisfaisants, et une augmentation de pression conduit à des structures plus diversifiées, avec plus d ' amas et même des arborescences .
Selon un mode préféré de réalisation, le faisceau laser traverse un dispositif optique, notamment une lentille, permettant de focaliser ledit faisceau en un point précis d'une enceinte et particulièrement au niveau d'une zone déterminée de 1 'échantillon.
Ainsi, le rayonnement provenant d'un laser CO2 , d'une puissance de l'ordre de 50 à 80 W environ, ou plus selon le matériau traité, est focalisé au travers d'un dispositif optique de façon à obtenir une densité d'énergie optimale. Pour des conditions de densité de puissance plus élevées, on peut produire des composés de structures très différentes, notamment des plaquettes étendues, notamment de nitrure de bore. La densité de puissance est de l'ordre de 6 à 8 GW/m2 sur un diamètre de 100 à 200 μm. On bombarde de manière continue l'échantillon, afin de porter sa température à une température de surface supérieure à la température de dissociation dudit échantillon. Par exemple, dans le cas du nitrure de bore, cette température est sensiblement voisine de 2400°C. ' En variante, on peut augmenter la quantité de matière traitée par mouvement relatif de l'échantillon ou du faisceau laser .
Dans les premières secondes du chauffage, un trou, partiellement rempli de composés fondus (notamment du bore) , se forme à la surface de l'échantillon, sous l'effet de la dissociation.
Ce procédé de fabrication et d'élaboration de nanostructures, notamment en nitrure de bore, utilise la technique analogue au dépôt chimique en phase gazeuse assisté par laser. Ce dernier est utilisé pour chauffer localement l'échantillon à une température supérieure à la température de dissociation, le gaz contenu dans l'enceinte (l'azote) va alors aider à la germination et à la croissance à partir de la surface de l'échantillon, se dissocier, se combiner avec le composé (le bore), puis s'accumuler pour conduire à la formation d'une croissance de nanostructures à la surface de la cible.
La perte globale de matériau est suffisamment lente pour que le gradient de température dans l'échantillon soit stable pendant la croissance des structures. L'échantillon est laissé à refroidir avant l'ouverture de l'enceinte au milieu extérieur afin d'éviter une éventuelle oxydation.
Des clichés de la surface de l'échantillon effectués par des techniques de microscopie optique, de microscopie électronique à balayage ( EB) et/ou en transmission, ainsi que des techniques d'analyse (spectroscopie de perte d'énergie d'électrons (EELS) permettent de caractériser les différentes structures obtenues.
On peut ainsi obtenir des nanostructures de nitrure de bore (cf. figures 2, 3, 4 et 5) constituées de filaments enchevêtrés, de diamètre de l'ordre du nanomètre à quelques dizaines de nanomètres, et de longueur micrométrique (jusqu'à plusieurs dizaines de microns) . La figure 6 montre des nanorubans avec des amas et la figure 7 une structure avec des arborescences. Qualitativement, ces nanostructures de nitrure de bore peuvent être pures ou présenter des impuretés ou des éléments de dopage en concentration plus ou moins forte, tels que notamment du carbone, ces impuretés ou ces éléments de dopage agissant ou non à titre de catalyseur, ces impuretés ou ces éléments sont présents soit dans l'échantillon, soit dans l'atmosphère contrôlée. Ce dopage peut changer les propriétés de conduction du matériau. On peut aussi obtenir des filaments, des cordes, des rubans, des enchevêtrements, conformés en nanotubes, en nanopoutres etc..., et se présentant sous une morphologie notamment angulaire, torsadée ou pseudo-sphérique . Bien entendu, en fonction de la nature chimique de la nanostructure à élaborer, il convient d'adapter les conditions •opératoires (puissance du laser, durée du chauffage, nature du gaz constituant la pression résiduelle au sein de l'enceinte...) du procédé objet de l'invention. On décrira maintenant une installation permettant la mise en oeuvre du procédé objet de l'invention. Il s'agit notamment d'une installation (cf. figure 1) comportant une enceinte 1 pouvant être fermée hermétiquement par rapport au milieu extérieur, cette enceinte 1 étant pourvue par ailleurs, d'une part d'un premier orifice 2 relié à une source de pompage 3, et d'autre part d'un second orifice 4 relié à une source d'atmosphère contrôlée 5, ladite enceinte 1 étant en outre munie d'un dispositif optique 6, notamment du type lentille, permettant de faire converger sur un échantillon 7 placé à l'intérieur de ladite enceinte 1, un faisceau laser 8. Le laser est préférentiellement un laser continu de type ∞2.
On prévoit par ailleurs de disposer à l'intérieur de ladite enceinte 1 un support 9, éventuellement animé d'un mouvement de balayage, pour l'échantillon 7. L'invention telle que décrite précédemment offre de multiples avantages, car ce procédé permet d'obtenir notamment des nanostructures de nitrure de bore qui sont essentiellement des isolants (d'où leur intérêt par exemple dans la furtivité), et plus généralement dans les questions d'adaptation de conductivité électrique. Ces nanostructures qui peuvent prendre des conformations variées (en hélice, en poutre, en tube, en
-ruban), peuvent par exemple être utilisées dans la fabrication de matériaux composites, possédant des propriétés de résistance mécanique très élevées. On peut noter également que les nanostructures de nitrure de bore présentent une très grande inertie chimique, même à haute température, ce qui peut les rendre notamment moins réactifs aux métaux fondus et très résistant à l'oxydation.
Les nanostructures de l'invention sont également utilisables en émission sous champ si un composé conducteur ou semi- conduteur est déposé dessus .
Parmi d'autres applications, on mentionnera que les formes torsadées peuvent servir de supports pour d'autres molécules et que les nanotubes sont utilisables comme nanocondensateurs pour détecter des charges très faibles.
L'invention a permis de mettre au point un moyen d'annihiler les charges positives qui restent sous l'impact d'un faisceau d'électrons durant l'observation en microscopies électroniques des nanostructures du matériau, et notamment du nitrure de bore.
Une émission d'électrons secondaires sous l'impact du faisceau d'électrons alors étendu, qui est utilisé pour l'observation, ou l'utilisation d'un autre faisceau d'électrons sur une partie conductrice (grille ou plaque métallique) , assez proche de l'objet observé, permet d'annihiler les charges positives laissées sur l'isolant. Dans ce cas ou des cas analogues, les effets de charge peuvent être évités.
On utilisera alors ce procédé en microscopie électronique en transmission ou à balayage.
Il demeure bien entendu que la présente invention n'est pas limitée aux exemples de réalisation décrits et représentés ci- dessus, mais qu'elle en englobe toutes les variantes.

Claims

REVENDICATIONS 1 - Procédé d'élaboration de nanostructures sous atmosphère contrôlée, à partir de composés ayant une forme cristalline hexagonale, soumis à un bombardement focalisé laser d'un gaz, caractérisé en ce qu'on utilise un échantillon de composé compacté et qu'on opère sous une pression résiduelle de gaz entre environ 5.103 à 8.104Pa. 2 - Procédé selon la revendication 1, caractérisé en ce que la puissance du faisceau laser est de 50 à 80 environ. 3 - Procédé selon la revendication 1 ou 2 , caractérisé en ce que l'échantillon a été préalablement recuit. 4 - Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce qu'on effectue à un dégazage préalable de l'échantillon de composés, si ce dernier comporte des impuretés, par bombardement non focalisé d'un faisceau laser, l'échantillon ayant été au préalable placé dans une enceinte hermétiquement fermée et vidée . 5 - Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce qu'on dispose l'échantillon de composés sur un support de même nature chimique que l'échantillon. 6 - Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que le mouvement de balayage de l'échantillon par rapport au faisceau laser est obtenu par déplacement du support . 7 - Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que le mouvement de balayage de l'échantillon 'par rapport au faisceau laser est obtenu par déplacement du laser. 8 - Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce qu'on soumet l'échantillon a un faisceau laser continu CO2 • S - Procédé selon l'une quelconque des revendications 1 à 8, caractérisé en ce qu'il est appliqué aux composés de nitrure de bore . 10 - Procédé selon l'une quelconque des revendications 1 à 9, caractérisé en ce qu'il est appliqué aux composés choisis notamment parmi le zinc, le zirconium, le titane, le magnésium, 'le cadmium, le béryllium, le cobalt:, les composés binaires, les composés lamellaires. 11 - Procédé selon l'une quelconque des revendications 1 à 10, caractérisé en ce que la fusion locale de l'échantillon est suffisamment importante pour que le gradient de température dans l'échantillon se stabilise. 12 - Installation pour la mise en oeuvre du procédé selon l'une quelconque des revendications 1 à 11, caractérisée en ce qu'elle comporte une enceinte (1) pouvant être fermée hermétiquement par rapport au milieu extérieur, cette enceinte
(1) étant pourvue par ailleurs, d'une part d'un premier orifice
(2) relié à une source de vide (3), et d'autre part d'un second orifice (4) relié à une source d'atmosphère contrôlée (5), ladite enceinte (1) étant en outre munie d'un dispositif optique (6) , notamment du type lentille, permettant de faire converger sur un échantillon (7) placé à l'intérieur de ladite enceinte (1) , un faisceau laser (8) .
13 - Nanostructures obtenues par la mise en oeuvre du procédé selon l'une quelconque des revendications 1 à 11, caractérisées en ce qu'elles sont conformées en nanofilaments .
14 - Nanostructures obtenues par la mise en oeuvre du procédé selon l'une quelconque des revendications 1 à 11, caractérisées en ce qu ' elles sont conformées en nanotubes ou en faisceaux de nanotubes, ou encore en torsades.
15 - Nanostructures obtenues par la mise en oeuvre du 'procédé selon l'une quelconque des revendications 1 à 11, caractérisées en ce qu'elles sont conformées en rubans. 16 - Nanostructures obtenues par la mise en oeuvre du procédé selon l'une quelconque des revendications 1 à 11, caractérisées en ce qu'elles comportent des impuretés ou des éléments de dopage en concentration plus ou moins forte, pouvant agir en tant que catalyseur.
17 - Application des nanostructures selon l'une quelconque des revendications 13 à 16, comme isolants, ou pour le renforcement de matériaux.
EP00974609A 1999-10-28 2000-10-30 Nanostructures, leurs applications et leur procede d'elaboration Withdrawn EP1242304A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9913532A FR2800365B1 (fr) 1999-10-28 1999-10-28 Procede d'obtention de nanostructures a partir de composes ayant une forme cristalline hexagonale
FR9913532 1999-10-28
PCT/FR2000/003029 WO2001030689A1 (fr) 1999-10-28 2000-10-30 Nanostructures, leurs applications et leur procede d'elaboration

Publications (1)

Publication Number Publication Date
EP1242304A1 true EP1242304A1 (fr) 2002-09-25

Family

ID=9551500

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00974609A Withdrawn EP1242304A1 (fr) 1999-10-28 2000-10-30 Nanostructures, leurs applications et leur procede d'elaboration

Country Status (5)

Country Link
US (1) US6586093B1 (fr)
EP (1) EP1242304A1 (fr)
JP (1) JP2003512192A (fr)
FR (1) FR2800365B1 (fr)
WO (1) WO2001030689A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6515325B1 (en) 2002-03-06 2003-02-04 Micron Technology, Inc. Nanotube semiconductor devices and methods for making the same
US7509961B2 (en) * 2003-10-27 2009-03-31 Philip Morris Usa Inc. Cigarettes and cigarette components containing nanostructured fibril materials
US20050112048A1 (en) * 2003-11-25 2005-05-26 Loucas Tsakalakos Elongated nano-structures and related devices
US8206674B2 (en) * 2007-05-15 2012-06-26 National Institute Of Aerospace Associates Boron nitride nanotubes
US20090226361A1 (en) * 2008-03-05 2009-09-10 Jessica Campos-Delgado Cvd-grown graphite nanoribbons
US20100192535A1 (en) * 2009-02-04 2010-08-05 Smith Michael W Boron nitride nanotube fibrils and yarns

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3168579B2 (ja) * 1990-11-20 2001-05-21 松下電器産業株式会社 レーザーアブレーション装置
JP3508247B2 (ja) * 1993-10-19 2004-03-22 ソニー株式会社 カーボンチューブの製造方法
JPH09139209A (ja) * 1995-11-15 1997-05-27 Sony Corp カーボン材料の構造制御方法
JPH09320793A (ja) * 1996-05-27 1997-12-12 Nikon Corp X線発生装置及びx線装置
JP3365475B2 (ja) * 1997-03-27 2003-01-14 三菱化学株式会社 単原子層カーボンナノチューブの製造方法
JPH11273551A (ja) * 1998-03-23 1999-10-08 Nec Corp 窒化ホウ素を用いた電子放出素子及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0130689A1 *

Also Published As

Publication number Publication date
FR2800365A1 (fr) 2001-05-04
WO2001030689A1 (fr) 2001-05-03
JP2003512192A (ja) 2003-04-02
US6586093B1 (en) 2003-07-01
FR2800365B1 (fr) 2003-09-26

Similar Documents

Publication Publication Date Title
US7790243B2 (en) Method for producing large-diameter 3D carbon nano-onion structures at room temperature
Richters et al. Enhanced surface-excitonic emission in ZnO/Al2O3 core–shell nanowires
FR2677175A1 (fr) Generateur electrochimique rechargeable a electrolyte liquide et a anode lithium/carbone.
WO2007061078A1 (fr) Nanotube de carbone, substrat et element emetteur d’electrons equipe de ce substrat, substrat pour la synthese de nanotubes de carbone, leur procede de fabrication et dispositif de fabrication
EP0693865B1 (fr) Torche à plasma par induction
Basso et al. The modeling and synthesis of nanodiamonds by laser ablation of graphite and diamond-like carbon in liquid-confined ambient
Fan et al. Metal-filled carbon nanotube based optical nanoantennas: bubbling, reshaping, and in situ characterization
EP1242304A1 (fr) Nanostructures, leurs applications et leur procede d&#39;elaboration
Rahman et al. Synthesis and optical characterization of carbon nanotube arrays
EP1365991A1 (fr) Procede pour former un revetement, constitue de nanotubes de carbone, sur la surface d&#39;un substrat
FR2761619A1 (fr) Procede de fabrication de profils composites renforces a matrice metallique et a symetrie axiale
EP2802680B1 (fr) Renforcement de l&#39;adhésion ou de la fixation de nanotubes de carbone à la surface d&#39;un matériau par une couche de carbone
US11511996B2 (en) Carbon nanotube composite, method for manufacturing the same, and method for manufacturing refined carbon nanotube
Shimotsuma et al. Functional Nanomaterials Synthesized by Femtosecond Laser Pulses
Grigoryan et al. Micro‐Raman spectroscopy of carbon cluster composites
FR2597470A1 (fr) Methode de purification des matieres premieres pour la fabrication de verre a chalcogenure
EP1889031A1 (fr) Guides emetteurs/recepteurs nanometriques
EP3810316A1 (fr) Procede de synthese de nanoparticules silicium-germanium de type c?ur-coquille par pyrolyse laser, procede de fabrication d&#39;une electrode pour batterie au lithium et electrode associee
Wang et al. Direct synthesis of hollow carbon nanoonion-like particles (HCNOs) decorated uniformly with Sn nanoparticles by long-pulse-width millisecond laser ablation of Sn target in n-hexane solution
Samaranayake et al. Sri Lankan graphite making the space elevator possible
WO2006067308A1 (fr) Procede de croissance de nanofils de beta-sic ou de alpha-si3n4, eventuellement enrobes
FR2856197A1 (fr) Dispositif comprenant au moins un type de nanostructure tubulaire sous forme de fibre
FR2727435A1 (fr) Procede pour produire par cvd reactives une pluralite de refractaires sur une meche de filaments de carbone, installation pour la mise en oeuvre de ce procede et produit obtenu
FR3090993A1 (fr) Procede de fabrication d&#39;une electrode frittee, electrode frittee et dispositif comprenant une telle electrode
FR2496703A1 (fr) Source d&#39;evaporation de manganese sur substrat dans le vide, notamment sur substrat de couche photosensible dans un tube photo-electrique et procede de fabrication

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020415

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20090217

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20130503