EP1212519B1 - Procede pour commander un actionneur electromecanique - Google Patents

Procede pour commander un actionneur electromecanique Download PDF

Info

Publication number
EP1212519B1
EP1212519B1 EP00974307A EP00974307A EP1212519B1 EP 1212519 B1 EP1212519 B1 EP 1212519B1 EP 00974307 A EP00974307 A EP 00974307A EP 00974307 A EP00974307 A EP 00974307A EP 1212519 B1 EP1212519 B1 EP 1212519B1
Authority
EP
European Patent Office
Prior art keywords
time
coil
actuator
end position
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00974307A
Other languages
German (de)
English (en)
Other versions
EP1212519A1 (fr
Inventor
Achim Koch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1212519A1 publication Critical patent/EP1212519A1/fr
Application granted granted Critical
Publication of EP1212519B1 publication Critical patent/EP1212519B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/40Methods of operation thereof; Control of valve actuation, e.g. duration or lift
    • F01L2009/4096Methods of operation thereof; Control of valve actuation, e.g. duration or lift relating to sticking duration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2201/00Electronic control systems; Apparatus or methods therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1844Monitoring or fail-safe circuits
    • H01F2007/1866Monitoring or fail-safe circuits with regulation loop

Definitions

  • the invention relates to a method for controlling an electromechanical Actuator.
  • the Coil of the respective electromagnet energized the required Electricity in a catch phase is greater than in one Holding phase in which the gas exchange valve in an end position is held.
  • the invention is based on the object, an improved Method for controlling an electromechanical actuator to minimize the effects of sticking are.
  • sticking depends on the degeneration of the current in the coil, which in turn depends on the supply voltage of the actuator and the coil current level during holding in the end position. Therefore, in one variant of the invention, at least one of these variables is detected and the time period t k is selected depending on it.
  • Control time fluctuations affect an internal combustion engine with electromagnetically actuated gas exchange valves especially when closing the intake valves strongly negative on exhaust emissions and smoothness.
  • Fig. 1 shows an electromagnetic actuator 1 for a designed as a poppet valve gas exchange valve, consisting of a Valve plate 2 with valve seat 3 and a valve stem. 4 consists, which is mounted in a housing-side guide 5 and is provided at the upper end with a cone piece 6. Of the Valve disc is the actuator 1 between two end positions moved: In an upper end position is the gas exchange valve closed and opened in a lower end position. One between the housing-side guide 5 and the cone piece 6 arranged valve spring 8 acts on the valve disk in the closed position.
  • the actuator 1 further consists of an upper ferromagnetic Spool 10 and a lower ferromagnetic Bobbin 12, each carrying a coil 14 and 16.
  • armature 18th Within the upper bobbin 10 is slidably Anchored shaft 17, which has a plate-shaped armature 18th has, which lies between the two coils 14, 16.
  • the the armature 18 facing end faces 19 and 20 of the two Spool 10 and 12 form stops for the armature 18 and define the upper and lower end position of the gas exchange valve, in which it is open or closed.
  • An actuator spring 22 is between the armature shaft 17 and a clamped on the housing side stop 24 and applied the armature 18 in the direction of the open position of the valve disk 2.
  • the armature 18 rests on the valve stem 4. As long as the Coils 14 and 16 are de-energized, the armature 18 of the Valve spring 8 and the actuator spring 22 in the middle position held between the two end faces 19 and 20, as this is shown in the drawing.
  • the two coils 14 and 16 are each driven by a driver circuit 26, 27 energized by a control circuit 28 be controlled.
  • a piezoelectric element 30 ' provided on the Aktuatorfederabstützung.
  • One another piezo element 32 ' is on the housing-side guide 5 provided.
  • the output signals of the two piezo elements 30 ', 32' are the control circuit 28 supplied to them used, the impact velocity of the armature 18 on the Coil bobbins 10 and 12 at the end faces 19 and 20 so too Regulate that the valve without bouncing, quiet, fast and at the desired time in the respective end position transferred can be.
  • the driver circuit is together with a more detailed representation the control circuit 28 shown in Fig. 3 by way of example.
  • Fig. 3 shows the driver circuit 26 for the coil 14.
  • the driver circuit 27 is analogous.
  • the coil 14 between a highside FET Th, on the other hand to the supply voltage Vcc is connected, and a lowside FET Tl switched, in turn, on the other hand, via a resistor R is connected to the reference potential.
  • a diode D2 Between the reference potential and the connection node of the coil 14th with the highside FET Th is in the forward direction a diode D2 connected.
  • Between the connection node of the coil 14 with the low side FET Tl and the supply voltage Vcc is in Forward direction a diode D1 connected.
  • the supply voltage Vcc to the reference potential via a Capacitor C connected. Between Lowside-FET Tl and the Reference potential is a resistor R.
  • a setpoint current in the coil 14 is adjusted. there is the actual current on the voltage drop across the resistor R in Lowside branch measured.
  • the voltage drop is from a Differential amplifier 30 tapped, whose output value via an adding node 31, which is still a constant voltage source 32 is supplied, a filter 33 and further an analog / digital converter 34 and a microcontroller 35 supplied becomes.
  • FIGS. 2a to 2c show the current flow in the circuit 26 in different operating states of the actuator.
  • Fig. 2a shows the energization of the coil 14 during holding the actuator in the end position, in which the gas exchange valve closed is.
  • the current flows in the direction of the arrow labeled 40 from the supply voltage Vcc via the conductive highside FET Th, through the coil 14 and the likewise conductive lowside FT Tl and by the resistor R to the reference potential.
  • Fig. 2b is the turn off to see the coil.
  • the highside FET Th is opened.
  • the energy stored in the coil 14 builds up by the flow of current in the direction of arrow 40 via the low-side FET Tl and the diode D2 from.
  • the driver circuit 26 in the manner indicated in Fig. 2c are switched.
  • the current in the coil 14 drops during clamping with an exponential function from. This drop is in the time series of Fig. 4 shown in the upper curve.
  • the time constant of the exponential waste is due to the level of supply voltage certainly. The higher the supply voltage, the better faster the power dissipation takes place in the coil 14.
  • the Initial current level i. the current with which the coil 14 in the Circuit of Fig. 2a is energized, affects the time constant of exponential decay not, but very well Duration of time until the current has decayed sufficiently, i. until the actuator is released from the end position.
  • Fig. 4 the effect of "gluing" is in two time series shown.
  • the upper time series shows the course of the Energizing a coil while holding the actuator, for example the energization of the coil 14 to the armature 18 in to hold the end position in which the gas exchange valve is closed is.
  • On the X-axis is the time t, on the Y-axis the current I applied.
  • the associated stroke signal H is plotted against time t, that from the output signals of the two piezoelectric elements 30 ', 32 'in the control circuit 28 has been generated.
  • the coil 14 is energized until time t 0 with a holding current Im.
  • the control circuit 28 regulates the current between the values I min and I max .
  • the coil 14 is clamped.
  • the current I thereby drops to 0 between the time t 0 and t 1 .
  • This current level is indicated in Fig. 4 with I 0 . From the time t 1 , the coil 14 is thus no longer energized.
  • the associated stroke signal H shows that the armature 18 is released from the end position H 2 only at a later time t 2 .
  • the armature 18 thus leaves the end face 19, which is associated with the stroke signal H z , only a time t k after the time t 0 , to which was begun to clamp the coil 14.
  • the stroke signal is constant at the value H z . This is caused by the magnetic "sticking", which is due to the time required for the coil current reduction.
  • step S1 the supply voltage Vcc and the current coil current I (t 0 ) are measured.
  • the electrical adhesion time t e is determined from these parameter values. This can be done for example by means of a map in which the corresponding gluing time was stored for the parameters. Alternatively, this can also be done via the following equation:
  • T1 denotes the time constant of the exponential current decay, which is determined as a function of the magnitude of the supply voltage Vcc, for example, can be taken from a previously experimentally determined table. From the above equation, by simply resolving to t, one can determine the period of time at which the current has dropped to a certain current I f at which the magnetic force caused by this current becomes smaller than the resultant force of the springs 22 and 8 the anchor in the middle layer acted upon. This current I f is known for a given actuator or simply determined experimentally by the current I m is slowly lowered until the armature 18 is released from the end position.
  • step S3 Parallel to the steps S1 and S2, the mechanical bonding time t m is determined in step S3, for example, taken from a map.
  • An alternative determination of the mechanical adhesion time t m will be explained later with reference to FIG. 6.
  • step S4 the bonding times t e and t m are added at the time t k .
  • step S5 the switching timing t fv is determined in a known manner, to which the gas exchange valve is to leave the end position.
  • step S6 the time at which to turn off the Spulenbestromung, ie, the coil is to be clamped, determined by the gluing time t k is deducted from the switching timing t sv , so that the switching time t s is obtained.
  • step S3 As an alternative to removing the mechanical adhesion time t m from a characteristic field in step S3, which in fact means a fixed value for the mechanical bonding time t m , the method steps illustrated in FIG. 6 can be run through.
  • step S31 a starting value of the mechanical bonding time for then a subsequent adaptation method taken from a memory. This may be a value stored once or the value for the mechanical adhesion time t m determined during the last operation of the control circuit 28.
  • step S32 with this start value, the time t k corresponding to the steps of Fig. 5 is first determined and used to drive the actuator.
  • step S33 the stroke signal H is monitored at the same time and the time difference between the time t 2 at which the actuator or armature 18 releases from the end position and the time t 0 at which the coil was clamped is determined.
  • the time period t k which has actually set during operation of the actuator.
  • the value for the time period t k previously calculated in the method according to FIG. 5 is then subtracted in step S 34. This difference may be positive or negative depending on whether the calculated value for the time t k was greater or less than the measured value.
  • the difference is then added to the value for the mechanical tack time t m , which was assumed in step S31. This value is then used for the next operation of the method of Fig. 6 in the next pass of step S31, so that the mechanical sticking time t m is constantly adapted.
  • step S31 an output value for the time span t k for first actuation of the actuator is thus first taken. This value is then adapted by measuring the actually setting time period t k in steps S32 and S33 as well as S34, so that the last measured value for the time span t k is always used for each actuation of the actuator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Valve Device For Special Equipments (AREA)
  • Electromagnets (AREA)

Abstract

L'invention concerne un actionneur qui maintient un organe d'actionnement, servant à commander, par exemple, une soupape d'échange de gaz d'un moteur à combustion interne, dans une première position terminale, au moyen d'une bobine. Pour qu'il soit possible de faire passer en temps voulu ledit organe d'actionnement à son autre position terminale, l'alimentation en courant de la bobine est coupée pendant un certain temps tk avant le moment auquel l'organe d'actionnement doit être libéré de ladite première position terminale. Le temps tk est sélectionné en fonction de la tension d'alimentation de l'actionneur et/ou du courant de bobine pendant le maintien en position terminale. Une adaptation du temps tk est également possible.

Claims (4)

  1. Procédé de commande d'un système d'actionnement électromécanique, qui entraíne un actionneur et qui présente au moins une bobine associée à une position terminale de l'actionneur pour maintenir l'actionneur dans cette position terminale, procédé dans lequel l'alimentation de la bobine est désactivée une période de temps tk donnée avant le moment auquel l'actionneur doit sortir de sa position terminale, caractérisé en ce que la période de temps tk est sélectionnée en fonction de la tension d'alimentation de l'actionneur et/ou de l'intensité de la bobine pendant le maintien de l'actionneur dans la position terminale.
  2. Procédé selon la revendication 1, caractérisé en ce que la période de temps tk se compose de deux temps partiels, seul le premier temps partiel étant sélectionné en fonction de l'intensité de la bobine et/ou de la tension d'alimentation.
  3. Procédé selon la revendication 2, caractérisé en ce que le deuxième temps partiel est sélectionné de façon à être constant.
  4. Procédé selon la revendication 2, caractérisé en ce que le deuxième temps partiel est adapté au moyen de la détermination de la période de temps tk selon la revendication 2.
EP00974307A 1999-09-16 2000-09-07 Procede pour commander un actionneur electromecanique Expired - Lifetime EP1212519B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19944520 1999-09-16
DE19944520 1999-09-16
PCT/DE2000/003113 WO2001020140A1 (fr) 1999-09-16 2000-09-07 Procede pour commander un actionneur electromecanique

Publications (2)

Publication Number Publication Date
EP1212519A1 EP1212519A1 (fr) 2002-06-12
EP1212519B1 true EP1212519B1 (fr) 2005-07-20

Family

ID=7922311

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00974307A Expired - Lifetime EP1212519B1 (fr) 1999-09-16 2000-09-07 Procede pour commander un actionneur electromecanique

Country Status (5)

Country Link
US (1) US6661636B2 (fr)
EP (1) EP1212519B1 (fr)
JP (1) JP2003509853A (fr)
DE (1) DE50010766D1 (fr)
WO (1) WO2001020140A1 (fr)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0200030D0 (en) 2002-01-02 2002-02-13 Bae Systems Plc A switching circuit and a method of operation thereof
GB0200024D0 (en) 2002-01-02 2002-02-13 Bae Systems Plc A switching circuit and a method of operation thereof
GB0200027D0 (en) * 2002-01-02 2002-02-13 Bae Systems Plc Improvements relating to operation of a current controller
FR2851289B1 (fr) * 2003-02-18 2007-04-06 Peugeot Citroen Automobiles Sa Actionneur electromecanique de soupape pour moteur a combustion interne et moteur a combustion interne muni d'un tel actionneur
FR2851291B1 (fr) * 2003-02-18 2006-12-08 Peugeot Citroen Automobiles Sa Actionneur electromecanique de commande de soupape pour moteur a combustion interne et moteur a combustion interne muni d'un tel actionneur
JP2007019293A (ja) * 2005-07-08 2007-01-25 Aisin Seiki Co Ltd リニアソレノイドの駆動装置
JP2007027465A (ja) * 2005-07-19 2007-02-01 Aisin Seiki Co Ltd リニアソレノイドの駆動回路
JP2007071186A (ja) * 2005-09-09 2007-03-22 Toyota Motor Corp 電磁駆動弁
JP4311392B2 (ja) * 2005-10-05 2009-08-12 トヨタ自動車株式会社 電磁駆動式動弁機構の制御装置
DE102008024086A1 (de) 2008-05-17 2009-11-19 Daimler Ag Ventiltriebvorrichtung
DE102009032521B4 (de) * 2009-07-10 2016-03-31 Continental Automotive Gmbh Bestimmung des Schließzeitpunkts eines Kraftstoffeinspritzventils basierend auf einer Auswertung der Ansteuerspannung
DE102009028048A1 (de) * 2009-07-28 2011-02-03 Robert Bosch Gmbh Verfahren zum Betreiben eines Magnetventils, insbesondere Einspritzventils einer Kraftstoffeinspritzanlage
US9301460B2 (en) * 2011-02-25 2016-04-05 The Toro Company Irrigation controller with weather station
RU2486656C1 (ru) * 2012-02-20 2013-06-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Новосибирский государственный технический университет" Способ управления двухкатушечным электромагнитным двигателем возвратно-поступательного движения
DE102017008944A1 (de) * 2017-09-23 2019-03-28 Hydac Accessories Gmbh Adaptervorrichtung nebst Verfahren zur Regelung eines Steuerstromes
JP7232093B2 (ja) * 2019-03-25 2023-03-02 ルネサスエレクトロニクス株式会社 半導体装置
US11105291B1 (en) * 2020-09-28 2021-08-31 Ford Global Technologies, Llc Methods and systems for unsticking engine poppet valves
CN114562350B (zh) * 2021-03-09 2023-05-23 长城汽车股份有限公司 基于可变气门升程机构的控制方法及电子设备
JP7443282B2 (ja) * 2021-03-23 2024-03-05 シンフォニアマイクロテック株式会社 ソレノイド

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3733704A1 (de) * 1986-10-13 1988-04-14 Meyer Hans Wilhelm Verfahren zum betrieb einer brennkraftmaschine
US4974622A (en) * 1990-01-23 1990-12-04 Borg-Warner Automotive, Inc. Self compensation for duty cycle control
DE4319918A1 (de) * 1993-06-16 1994-12-22 Rexroth Mannesmann Gmbh Verfahren zum Ansteuern eines Elektromagneten
DE4434684A1 (de) * 1994-09-28 1996-04-04 Fev Motorentech Gmbh & Co Kg Verfahren zur Steuerung der Ankerbewegung einer elektromagnetischen Schaltanordnung
JP3683300B2 (ja) 1995-01-27 2005-08-17 本田技研工業株式会社 内燃機関の制御装置
DE19518056B4 (de) 1995-05-17 2005-04-07 Fev Motorentechnik Gmbh Einrichtung zur Steuerung der Ankerbewegung einer elektromagnetischen Schaltanordnung und Verfahren zur Ansteuerung
DE19526681B4 (de) 1995-07-21 2006-06-22 Fev Motorentechnik Gmbh Verfahren zur zeitgenauen Steuerung der Ankerbewegung eines elektromagnetisch betätigbaren Stellmittels
DE19530798A1 (de) * 1995-08-22 1997-02-27 Fev Motorentech Gmbh & Co Kg Verfahren zur Erkennung des Auftreffens eines Ankers auf einen Elektromagneten an einer elektromagnetischen Schaltanordnung
DE19531437A1 (de) 1995-08-26 1997-02-27 Fev Motorentech Gmbh & Co Kg Verfahren zur Erfassung des Ventilspiels an einem durch einen elektromagnetischen Aktuator betätigten Gaswechselventil
DE19623698A1 (de) 1996-06-14 1997-12-18 Fev Motorentech Gmbh & Co Kg Verfahren zur Steuerung der Antriebe von Hubventilen an einer Kolbenbrennkraftmaschine
DE29712502U1 (de) 1997-07-15 1997-09-18 FEV Motorentechnik GmbH & Co. KG, 52078 Aachen Elektromagnetischer Aktuator mit Gehäuse

Also Published As

Publication number Publication date
DE50010766D1 (de) 2005-08-25
US20020112682A1 (en) 2002-08-22
EP1212519A1 (fr) 2002-06-12
WO2001020140A1 (fr) 2001-03-22
US6661636B2 (en) 2003-12-09
JP2003509853A (ja) 2003-03-11

Similar Documents

Publication Publication Date Title
EP1212519B1 (fr) Procede pour commander un actionneur electromecanique
DE19735375C2 (de) Magnetventil, insbesondere für Ein- und Auslaßventile von Brennkraftmaschinen
DE19821548C2 (de) Verfahren und Vorrichtung zur Steuerung eines elektromagnetischen Ventils
DE19901942C2 (de) Vorrichtung und Verfahren zur Steuerung eines elektromagnetisch angetriebenen Ventils einer Brennkraftmaschine
DE60024937T2 (de) Vorrichtung zur Regelung eines elektromagnetisch angetriebenen Brennkraftmaschinenventils
DE29615396U1 (de) Elektromagnetischer Aktuator mit Aufschlagdämpfung
EP0264706A1 (fr) Procédé pour le fonctionnement d'un moteur à combustion interne
DE19533452A1 (de) Verfahren zur Anpassung einer Steuerung für einen elektromagnetischen Aktuator
DE102010041320B4 (de) Bestimmung des Schließzeitpunkts eines Steuerventils eines indirekt angetriebenen Kraftstoffinjektors
DE4434684A1 (de) Verfahren zur Steuerung der Ankerbewegung einer elektromagnetischen Schaltanordnung
DE102009000132A1 (de) Verfahren zum Betreiben eines Kraftstoffeinspritzsystems
DE102009047453A1 (de) Verfahren zum Betreiben eines Magnetventils, insbesondere Einspritzventils einer Kraftstoffeinspritzanlage
DE102010041880B4 (de) Ermitteln der ballistischen Flugbahn eines elektromagnetisch angetriebenen Ankers eines Spulenaktuators
DE19531435B4 (de) Verfahren zur Anpassung der Steuerung eines elektromagnetischen Aktuators an betriebsbedingte Veränderungen
DE102011016895A1 (de) Verfahren zur Bestimmung des Verschleißzustandes eines elektromagnetischen Aktors während dessen Betriebs
EP2501917A1 (fr) Procédé et dispositif pour l'actionnement d'une soupape de commande de quantité
EP2501916B1 (fr) Procédé et dispositif pour l'actionnement d'une soupape de commande de quantité
DE3733704A1 (de) Verfahren zum betrieb einer brennkraftmaschine
EP0988483A1 (fr) Procede et dispositif pour commander un appareil de reglage electromecanique
DE10148403A1 (de) Verfahren zur Steuerung eines elektromagnetischen Ventiltriebs durch Änderung der Stromrichtung bei der Bestromung der Elektromagneten
EP1204873B1 (fr) Circuit et procede pour determiner l'erreur due au decalage lors d'une mesure, affectee par un decalage, du courant de bobine d'un actionneur electromagnetique
DE102008058525A1 (de) Stellvorrichtung, Ventileinrichtung und Betriebsverfahren
DE60223627T2 (de) Regelverfahren eines elektromagnetischen Aktuators zur Steuerung eines Motorventils vom Positionsanschlag heraus
DE102016219375B3 (de) Betreiben eines Kraftstoffinjektors mit hydraulischem Anschlag bei reduziertem Kraftstoffdruck
DE19849036C2 (de) Verfahren und Einrichtung zum Regeln eines elektromechanischen Stellantriebs

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020304

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050720

REF Corresponds to:

Ref document number: 50010766

Country of ref document: DE

Date of ref document: 20050825

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060421

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080912

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080918

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080919

Year of fee payment: 9

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090907

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100401

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090907