EP1165310B2 - Folded honeycomb structure consisting of corrugated paperboard and method and device for producing the same - Google Patents

Folded honeycomb structure consisting of corrugated paperboard and method and device for producing the same Download PDF

Info

Publication number
EP1165310B2
EP1165310B2 EP00920578A EP00920578A EP1165310B2 EP 1165310 B2 EP1165310 B2 EP 1165310B2 EP 00920578 A EP00920578 A EP 00920578A EP 00920578 A EP00920578 A EP 00920578A EP 1165310 B2 EP1165310 B2 EP 1165310B2
Authority
EP
European Patent Office
Prior art keywords
corrugated core
corrugated
strips
cover layer
strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00920578A
Other languages
German (de)
French (fr)
Other versions
EP1165310B1 (en
EP1165310A1 (en
Inventor
Jochen Pflug
Ignace Verpoest
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Katholieke Universiteit Leuven
Original Assignee
Katholieke Universiteit Leuven
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7902566&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1165310(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Katholieke Universiteit Leuven filed Critical Katholieke Universiteit Leuven
Publication of EP1165310A1 publication Critical patent/EP1165310A1/en
Publication of EP1165310B1 publication Critical patent/EP1165310B1/en
Application granted granted Critical
Publication of EP1165310B2 publication Critical patent/EP1165310B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B31MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER; WORKING PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31DMAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER, NOT PROVIDED FOR IN SUBCLASSES B31B OR B31C
    • B31D3/00Making articles of cellular structure, e.g. insulating board
    • B31D3/005Making cellular structures from corrugated webs or sheets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1002Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1002Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina
    • Y10T156/1005Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina by inward collapsing of portion of hollow body
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1002Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina
    • Y10T156/1007Running or continuous length work
    • Y10T156/1015Folding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1002Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina
    • Y10T156/1007Running or continuous length work
    • Y10T156/1016Transverse corrugating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1002Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina
    • Y10T156/1007Running or continuous length work
    • Y10T156/1016Transverse corrugating
    • Y10T156/102Transverse corrugating with deformation or cutting of corrugated lamina
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1002Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina
    • Y10T156/1025Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina to form undulated to corrugated sheet and securing to base with parts of shaped areas out of contact
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1002Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina
    • Y10T156/1026Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina with slitting or removal of material at reshaping area prior to reshaping
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1002Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina
    • Y10T156/1051Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina by folding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1052Methods of surface bonding and/or assembly therefor with cutting, punching, tearing or severing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1052Methods of surface bonding and/or assembly therefor with cutting, punching, tearing or severing
    • Y10T156/1082Partial cutting bonded sandwich [e.g., grooving or incising]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/23Sheet including cover or casing
    • Y10T428/234Sheet including cover or casing including elements cooperating to form cells
    • Y10T428/236Honeycomb type cells extend perpendicularly to nonthickness layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24149Honeycomb-like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • Y10T428/24562Interlaminar spaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • Y10T428/2457Parallel ribs and/or grooves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24744Longitudinal or transverse tubular cavity or cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24752Laterally noncoextensive components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24752Laterally noncoextensive components
    • Y10T428/2476Fabric, cloth or textile component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/04Processes
    • Y10T83/0581Cutting part way through from opposite sides of work
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/04Processes
    • Y10T83/0586Effecting diverse or sequential cuts in same cutting step

Definitions

  • the invention relates to honeycomb core layers as used in sandwich materials for packaging and structural applications, and to methods and apparatus for making these honeycomb core layers.
  • honeycomb cores have been used for many decades as the core material for bulking and bending-ready sandwich dishes and plates.
  • honeycomb cores consist predominantly of aluminum or phenolic resin-impregnated aramid fiber paper and are usually produced in the expansion process.
  • a sandwich structure with two, usually glued cover layers offers extremely high stiffness and strength weight ratios.
  • the interest of other large industries in lightweight sandwich core materials with good weight-specific material characteristics is growing steadily, so that now more than half of the honeycomb core materials are used in other areas.
  • honeycomb for packaging, automotive and similar markets requires rapid continuous production of the honeycomb core layer to produce a product that is competitive with corrugated and other low cost materials.
  • a honeycomb core sandwich has high specific compressive strengths in the material plane due to its optimal nearly direction-independent support of the surface layers. Compared to the corrugated core sandwich (e.g., corrugated board), better edge crush resistance and flexural stiffness, particularly in the machine direction, can be achieved. As a result, significant weight and material savings are possible. Also perpendicular to the material plane, due to the vertical mutually supporting cell walls, the pressure characteristics are significantly better. In addition, a sandwich with honeycomb core has a better surface quality, which is particularly important for printing on packaging materials. Because of these advantages and the increasing demand for low-cost sandwich cores, there have been many attempts in the past to reduce the high cost of manufacturing honeycomb cores.
  • corrugated boards are processed into honeycomb cores.
  • corrugated boards are used in the cell walls of honeycomb cores (US 4,948,445 Hess).
  • individual corrugated sheets are fed with running in the direction of production waves and introduced short, passing through the entire corrugated cardboard thickness cross-sections. Therefore, after unfolding in the direction of production and expanding, honeycomb cores with relatively large cell widths and relatively thick cell walls are formed.
  • the process is similar to the expansion process with a coherent material web.
  • honeycombs and methods are known in which a corrugated board web (US 3,912,573 Kunz) or a single corrugated web (WO 91/00803 Kunz) is cut into strips with the shafts transverse to the production direction. After cutting the web a honeycomb core layer is then created by the sticking together of the individual strips. This method requires a certain size of the individual strips or special positioning bands, so that their handling is guaranteed. The size of the strips greatly reduces the web width after the strips are turned. In order not to obtain too small a width of the honeycomb core layer, the strips are cut in a further production step and glued to a honeycomb block, which is then promoted much slower across the production direction. For small honeycomb heights this honeycomb block may need to be cut.
  • honeycombs produced by such a method also have individual straight strips between individual corrugated or trapezoidally shaped cell wall strips.
  • Such reinforced honeycombs are already known from manual production via a block (WO 95/10412 Darfler). There are individual flat layers between The individual corrugated layers placed and glued to them.
  • honeycomb and process for their preparation in which a continuous material web is first corrugated or trapezoidal deformed after the introduction of cuts, before the contiguous cell walls are folded against each other and glued (WO 97/03816 plow).
  • a very light paper 40 g / m 2 to 80 g / m 2
  • waves of these low grammages it is advantageous to stabilize the shaft directly after the formation by sticking a web.
  • the FEFCO and ASSCO's International Shipping Code describes various forms of packaging and fillings, including a folded cardboard box number 0966. To facilitate folding, the corrugation of individual corrugated sheets is used as a guide and the remaining paper as a hinge used.
  • the invention has for its object to provide a honeycomb core layer, a method and an apparatus which allows the continuous production of honeycombs with relatively small cell widths, with a corrugated cardboard production comparable production speed. Furthermore, a good surface quality and a reliable and fast connection of the outer layers is desired.
  • a wavy or trapezoidal material web is preferably supplied with at least one, but preferably with two cover layers.
  • This can be corrugated board, but also a plastic, fiber composite or metal corrugated core board.
  • a web with several cores for example, a two -wave corrugated board (BC flute, AA flood) can be used.
  • the top layers of very thin material (basis weight between 60 g / m 2 and 100 g / m 2 ) and the corrugated core layer of up to 2 times as thick material, since the top layers come to lie in the preferred variant of the folded double .
  • Very low demands are placed on the quality of the cover layers, as well as on the thickness tolerance and surface quality of the corrugated web, since these factors have little influence on the surface quality of the end product.
  • the thickness of the corrugated cardboard web determines the width of the honeycomb cells.
  • cell widths of 4.7 mm (A-Flute), or at very low basis weights of 3.6 mm (C-flute) are sufficient, since the flat corrugated core cover strips provide additional support and the risk of denting the cover layers into the cells (dimpling). Reduce.
  • honeycomb cores with smaller or larger cell widths can also be produced from corrugated corrugated webs with smaller or larger heights of the shaft (for example K-flute).
  • the multilayer web is first provided in the conveying direction on the underside and the top with a plurality of continuous fold lines.
  • the fold lines can be introduced, for example, by pressing or longitudinal cutting of the web.
  • the cuts do not completely cut through the web in the thickness direction, but leave one covering layer (or the top layer and the wave crests) contiguous.
  • the cuts on the top are as close as possible between the cuts of the bottom.
  • the usual in corrugated board unevenness of the outer layers and the different cutting forces between the wave crests can cause the cover layer is partially or completely cut at individual locations. This is quite desirable as long as the corrugated core strips remain coherent in the transverse direction.
  • the required folding force can be reduced by this slight cutting or perforation of the outer layers or an additional pre-embossing of the fold line.
  • the corrugated core strips can also be completely cut through first and glued together at the same time or immediately afterwards by means of adhesive films. This material may be easier to bend or fold than the material of the web. Accordingly, the word combination "integrally formed" includes not only wavy strips interconnected by a cover layer but also separate wavy strips joined together by adhesive film.
  • the ratio between the width and the height of the continuous corrugated core strips is preferably in the range of 0.5 to 2.0.
  • the contiguous corrugated core strips are then each rotated by 90 ° so that the sections open and fold the contiguous cover layers of adjacent strips by 180 °. Since the strips are connected, no alignment in the thickness or longitudinal direction is necessary.
  • the strips lie flat against each other with the contiguous cover layers and form the folded honeycomb. They can be glued, otherwise connected or only connected by gluing the new cover layers through them.
  • the application of the adhesive may be carried out by rollers, nozzles or brushes, wherein an application is preferred, which is a relatively small amount of adhesive constantly applied.
  • the corrugated core strips are much more stable than just a cover layer and can be glued with some pressure. Possible deformations of the corrugated core, which often affect the surface quality during corrugated board production, take place here in the width direction and have no influence on the surface quality and thickness tolerance of the folded honeycomb.
  • the flat, in the honeycomb standing corrugated core coating strips can absorb the tensile stresses in the production direction and allow for rapid transport of the web. Later, they increase the shear and pressure characteristics of the honeycomb, so that all the material of the corrugated cardboard is used in the folded honeycomb core.
  • honeycomb panel material To produce a honeycomb panel material, new cover layers can be continuously adhered to the honeycomb core layer immediately after honeycomb production.
  • the high compressive strength of the honeycomb is very useful.
  • a good connection of the outer layers to the honeycomb can be achieved by a slight fraying of the edges when introducing the longitudinal cuts.
  • the small side surfaces of the folded corrugated core layer strips are additionally available for connecting the cover layers.
  • Fig. 1 shows the supplied corrugated web with the waves transverse to the production direction and the position of the longitudinal incisions in the plan view and the side view.
  • the corrugated web can be based on plastic, fabric, fiber composite, paper, cardboard or similar materials.
  • the corrugated core strips 1 are each bounded by two cuts 2 and 3.
  • the corrugated web is cut by these cuts, which do not cut completely through the material web in the thickness direction, alternately from top and bottom.
  • the remaining material (a cover layer and / or the wave crests of the corrugated core) is later folded around the fold lines 4 and 5 at this point.
  • Fig. 2 shows the position of the longitudinal cuts and the fold lines in the front view.
  • the ratio between the width and the height of each corrugated core strip is preferably in the range of 0.5 to 2.
  • FIG. 3 to Fig. 6 the folding of the continuous corrugated core strip is shown stepwise in the front view.
  • An adhesive 6, preferably for starch or PVA based packaging applications, may be applied to the corrugated core topsheet strips prior to folding.
  • the adhesive can be applied over the entire area or only where the wave crests or troughs of the adjacent corrugated core strips meet.
  • FIGS. 7 to 10 show the same intermediate steps of the production in perspective view.
  • FIG. 11 shows the process for producing the folded corrugated cardboard honeycomb in the plan view.
  • FIG. 12 shows the positions of the individual method steps. First, at position 10, the longitudinal cuts are made in the material web. Then takes place from 11 to 13, the rotation of the strip of material. Optionally, an adhesive can also only be introduced during twisting (about 12). At 14 then cover layers can be applied to the Faltwabe.
  • the length of this process step can therefore be relatively short ( ⁇ 0.5 m) if there is no change in the web width.
  • FIGS. 14 to 16 show the individual steps in the case of a possible deformation of the contiguous corrugated core strips out of the web plane in order to avoid the web width change.
  • the width change can be greatly reduced if the corrugated core strips are rotated one after the other. It is particularly advantageous to first twist every third corrugated core strip. In three stages so all corrugated core strips can be rotated without a noticeable change in width results.
  • Fig. 17 shows the three-step rotation of every third corrugated core strip and the resulting small deformations out of the orbital plane in individual front views. Individual or several corrugated core strips can also be rotated in a different order one after the other to limit the width change.
  • FIG. 18 shows a device for introducing the longitudinal cuts. This device may consist of simple slitters 20 rotating on upper 21 and lower 22 axes or on a plurality of separate axes.
  • the distance between the upper and lower cutting blades to each other and each other should be as uniform as possible in order to achieve a high cutting accuracy and thus a very constant honeycomb core thickness. Furthermore, the material web should be guided as exactly as possible (eg by rolling) so that an exact depth of the cuts is achieved.
  • the fast exact cutting of cores in the production direction is already carried out in corrugated board production. Apart from the preferred use of rotating knives, cutting with stationary knives is also conceivable.
  • the contiguous corrugated core strips form a relatively stable path, therefore, the corrugated core web can be conveyed after insertion of the incisions behind the longitudinal cutting knives with rollers or belts.
  • Fig. 19 shows a variable device 24 for introducing the longitudinal cuts.
  • Fig. 20 shows a device for rotating and folding the continuous corrugated core strips.
  • the device may consist of simple fixed guides 23, rotating rollers or conveyor belts.
  • the geometry of these guides determines how the contiguous corrugated core strips are twisted during transport and folded against each other. It is either a sequential turning, in which it comes to a very small step-shaped waves across the width or a simultaneous turning with a larger corrugation across the width possible.
  • Fig. 21 shows a variable device for simultaneously rotating and folding the continuous corrugated core strips with a corrugation across the width.
  • Figure 17 shows how the guides of the individual strips of material must rotate in three stages as each third corrugated core strip is rotated. In this variant, it is advantageous that it is sufficient to guide the respective non-rotating two corrugated core strips upwards or downwards in order to rotate the corrugated core strip in each case by 90 °.
  • honeycomb core layer thickness should preferably be over 4 mm, since the material savings compared to corrugated cardboard with two superimposed cores are particularly large. But even at lower altitudes, the honeycomb offers significantly better material properties.
  • the material can be made from the same, albeit lighter papers (Kraftliner or testliner) and the usual PVA-based adhesive on equipment that is substantially similar to the well-developed corrugators. The two additional process steps (inserting the longitudinal cuts and folding the contiguous corrugated strips) can be performed by the described simple devices and do not reduce the production speed.
  • the gluing of the cover layers can take place in the same production plant, directly after the core layer production, and for further processing of the honeycomb board, the cutting, punching and printing machines customary in the corrugated board processing industry can be used.
  • the honeycomb board has significantly better compressive strengths in the material plane (edge crush resistance, ECT) compared to corrugated board, especially in the production direction (machine direction). In addition, it offers significantly better pressure characteristics and greater impact energy absorption perpendicular to the material plane (flat crushing resistance, FCT). The possible weight and material savings, the direction-independent strength and the better surface quality, as well as the low cost of the additional production steps can be expected that the corrugated cardboard corrugated board is competitive with corrugated board.
  • edge crush resistance, ECT edge crush resistance
  • FCT flat crushing resistance
  • the folded honeycomb can be further processed into sandwich components without lamination of cover layers.
  • the honeycomb cells can also be filled with a foam or similar material for better acoustic and thermal insulation.
  • the honeycomb cell walls can be impregnated or coated by an immersion bath or by spraying. The good material properties and the low cost of production can be expected that this material in addition to the packaging applications in other areas such as interior trim components for vehicles, in furniture, floor coverings and Wandverkeidisme, etc. finds applications.

Landscapes

  • Laminated Bodies (AREA)
  • Making Paper Articles (AREA)
  • Catalysts (AREA)
  • Cartons (AREA)
  • Machines For Manufacturing Corrugated Board In Mechanical Paper-Making Processes (AREA)

Abstract

The invention relates to a folded honeycomb structure and to a method and device for producing said folded honeycomb structure from a corrugated core web. The folded honeycomb structure has a number of adjacent corrugated core strips which lie in one plane and are interconnected by cover layer strips. Said cover layer strips are folded about 180° and are perpendicular to said plane. According to the inventive method for producing the folded honeycomb structure, interconnected corrugated core strips are produced first by making a number of longitudinal scores in a corrugated core web. These corrugated core strips are then alternately rotated through 90° respectively so that the cover layer strips fold and the folded honeycomb structure is formed. The device corresponding to this method consists of a number of rotating blades for making the longitudinal scores and a number of guiding elements for rotating the interconnecting corrugated core strips.

Description

Die Erfindung bezieht sich auf Wabenkernschichten wie sie in Sandwichmaterialien für Verpakkungs- und Strukturanwendungen eingesetzt werden, sowie auf Verfahren und Vorrichtungen zur Herstellung dieser Wabenkernschichten.The invention relates to honeycomb core layers as used in sandwich materials for packaging and structural applications, and to methods and apparatus for making these honeycomb core layers.

In der Luft- und Raumfahrt werden als Kernwerkstoff für beul- und biegestreife Sandwichschalen und -platten seit vielen Jahrzehnten bevorzugt Wabenkerne verwendet. Diese, meist hexagonalen oder überexpandierten Wabenkerne bestehen vorwiegend aus Aluminium oder phenolharzgetänktern Aramidfaserpapier und werden gewöhnlich im Expansionsprozeß hergestellt. Eine Sandwichstruktur mit zwei, üblicherweise aufgeklebten Deckschichten bietet extrem hohe Steifigkeits- und Festigkeits-Gewichtsverhältnisse. Das Interesse anderer großer Industriezweige an leichten Sandwichkernwerkstoffen mit guten gewichtsspezifischen Materialkennwerten wächst beständig, so daß inzwischen mehr als die Hälfte der Wabenkemmaterialien in anderen Bereichen eingesetzt werden.In the aerospace industry honeycomb cores have been used for many decades as the core material for bulking and bending-ready sandwich dishes and plates. These mostly hexagonal or overexpanded honeycomb cores consist predominantly of aluminum or phenolic resin-impregnated aramid fiber paper and are usually produced in the expansion process. A sandwich structure with two, usually glued cover layers offers extremely high stiffness and strength weight ratios. The interest of other large industries in lightweight sandwich core materials with good weight-specific material characteristics is growing steadily, so that now more than half of the honeycomb core materials are used in other areas.

Die Anwendung von Waben für Verpackungen, im Automobilbau und vergleichbaren Märkten erfordert eine schnelle kontinuierliche Herstellung der Wabenkernschicht, damit ein zur Wellpappe und anderen preiswerten Werkstoffen konkurrenzfähiges Produkt hergestellt werden kann.The use of honeycomb for packaging, automotive and similar markets requires rapid continuous production of the honeycomb core layer to produce a product that is competitive with corrugated and other low cost materials.

Ein Sandwich mit Wabenkern besitzt hohe spezifische Druckfestigkeiten in der Materialebene, aufgrund der optimalen nahezu richtungsunabhängigen Unterstützung der Deckschichten. Im Vergleich zum Sandwich mit Wellkern (z.B. Wellpappe) können bessere Kantenstauchwiderstände und Biegesteifigkeiten insbesondere in der Maschinenrichtung erreicht werden. Dadurch sind deutliche Gewichts- und Materialeinsparungen möglich. Auch senkrecht zur Materialebene sind, aufgrund der senkrechten sich gegenseitig abstützenden Zellwände, die Druckkennwerte erheblich besser. Zudem hat ein Sandwich mit Wabenkern eine bessere Oberflächenqualität was insbesondere für das Bedrucken von Verpackungsmaterialien von Bedeutung ist. Aufgrund dieser Vorteile und der steigenden Nachfrage nach preisgünstigen Sandwichkernen gab es in der Vergangenheit vielfältige Bemühungen zur Verringerung der hohen Herstellungskosten für Wabenkerne.A honeycomb core sandwich has high specific compressive strengths in the material plane due to its optimal nearly direction-independent support of the surface layers. Compared to the corrugated core sandwich (e.g., corrugated board), better edge crush resistance and flexural stiffness, particularly in the machine direction, can be achieved. As a result, significant weight and material savings are possible. Also perpendicular to the material plane, due to the vertical mutually supporting cell walls, the pressure characteristics are significantly better. In addition, a sandwich with honeycomb core has a better surface quality, which is particularly important for printing on packaging materials. Because of these advantages and the increasing demand for low-cost sandwich cores, there have been many attempts in the past to reduce the high cost of manufacturing honeycomb cores.

Es sind viele Verfahren bekannt bei denen einzelne Materialstreifen oder eine zusammenhängende Materialbahn an abwechselnden Stellen verklebt und dann expandiert wird (US 4.500.380 Bova, DE 196.09.309 Hering, US 4.992.132 Schmidlin, US 5.334.276 Meier). Solche Verfahren werden bereits zur teilweise automatisierten Herstellung von Papierwaben mit Zellweiten über etwa 10 mm für Innenverpackungen, Kanten- und Eckelemente, sowie für Paletten eingesetzt. Die erforderlichen Kräfte und die Materialspannungen beim Expandieren stellen hohe Anforderungen an den Klebstoff und die Verklebung der Zellwände. Durch ein Vorprägen der Faltlinien können diese Kräfte zwar reduziert werden, dennoch leidet die Regelmäßigkeit der Wabengeometrie, insbesondere bei Papierwaben mit kleinen Zellweiten, unter dem Expansionsprozeß. Die inneren Spannungen und die erforderlichen Expansionskräfte erhöhen sich stark bei geringeren Zellweiten. Daher sind diese Verfahren für kleinere Zellweiten zunehmend problematisch und schwieriger zu automatisieren. Zudem ist die Produktionsgeschwindigkeit durch das erforderliche Querschneiden der Bahn begrenzt.There are many known methods in which individual strips of material or a continuous material web is glued at alternating locations and then expanded (US 4,500,380 Bova, DE 196.09309 Hering, US 4,992,132 Schmidlin, US 5,334,276 Meier). Such methods are already used for the partially automated production of paper honeycomb with cell widths above about 10 mm for inner packaging, edge and corner elements, as well as for pallets. The forces required and the material stresses during expansion place high demands on the adhesive and the bonding of the cell walls. Although these forces can be reduced by pre-embossing the fold lines, the regularity of the honeycomb geometry, in particular in the case of paper cells with small cell widths, nevertheless suffers from the expansion process. The internal stresses and the required expansion forces increase strongly with smaller cell widths. Therefore, these methods are becoming increasingly problematic for smaller cell widths and more difficult to automate. In addition, the production speed is limited by the required transverse cutting of the web.

Ebenso sind viele Verfahren bekannt bei denen einzelne, gewellte oder trapezförmige Materialbahnen oder Streifen versetzt verklebt werden (US 3.887.418 Jurisisch, US 5,217.556 Fell, US 5.399.221 Casella, US 5.324.465 Duffy), Die technische Umsetzung zu einem kontinuierlichen Prozeß mit einer hohen Produktionsgeschwindigkeit gestaltet sich bei diesen Verfahren, aufgrund der notwendigen Positionierung und Handhabung der einzelnen Materialbahnen schwierig.Similarly, many methods are known in which individual, corrugated or trapezoidal webs or strips are adhesively bonded (US 3,887,418 Jurisisch, US 5,217,556 fur, US 5,399,221 Casella, US 5,324,465 Duffy), the technical implementation of a continuous process with A high production speed is difficult in these methods, due to the necessary positioning and handling of the individual webs.

Es sind weiter Verfahren bekannt bei denen Wellpappen zu Wabenkernen verarbeitet werden. Bei einem Verfahren werden Wellpappen in den Zellwänden von Wabenkernen verwendet (US 4.948.445 Hess). Dabei werden einzelne Wellpappenbögen, mit in Produktionsrichtung verlaufenden Wellen zugeführt und kurze, durch die gesamte Wellpappendicke gehende Querschnitte eingebracht. Daher entstehen nach dem Auffalten in Produktionsrichtung und dem Expandieren Wabenkerne mit relativ großen Zellweiten und relativ dikken Zellwänden. Prinzipiell gleicht das Verfahren den Expansionsverfahren mit einer zusammenhängenden Materialbahn.There are also known methods in which corrugated boards are processed into honeycomb cores. In one method corrugated boards are used in the cell walls of honeycomb cores (US 4,948,445 Hess). In this case, individual corrugated sheets are fed with running in the direction of production waves and introduced short, passing through the entire corrugated cardboard thickness cross-sections. Therefore, after unfolding in the direction of production and expanding, honeycomb cores with relatively large cell widths and relatively thick cell walls are formed. In principle, the process is similar to the expansion process with a coherent material web.

Des weiteren sind Waben und Verfahren bekannt bei denen eine Wellpappenbahn (US 3.912.573 Kunz) oder eine einzelne gewellte Bahn (WO 91/00803 Kunz) mit den Wellen quer zur Produktionsrichtung in Streifen geschnitten wird. Nach dem Zerschneiden der Bahn wird dann durch das Aneinanderkleben der einzelnen Streifen eine Wabenkernschicht erstellt. Dieses Verfahren erfordert eine gewisse Größe der einzelnen Streifen oder besondere Positionierungsbänder, damit deren Handhabung gewährleistet bleibt. Durch die Größe der Streifen reduziert sich die Bahnbreite nach den Drehen der Streifen stark. Um keine zu kleine Breite der Wabenkernschicht zu erhalten, werden die Streifen in einem weiteren Produktionsschritt abgeschnitten und zu einem Wabenblock verklebt, der dann quer zur Produktionsrichtung deutlich langsamer weiter gefördert wird. Für kleine Wabenhöhen muß dieser Wabenblock gegebenenfalls zerschnitten werden. Die durch ein solches Verfahren hergestellten Waben besitzen zwischen einzelnen gewellten oder trapezförmig geformten Zellwandstreifen auch einzelne gerade Streifen. Solche verstärkte Waben sind auch bereits aus der manuellen Herstellung über einen Block bekannt (WO 95/10412 Darfler). Dort werden einzelne ebene Lagen zwischen die einzelnen gewellten Lagen gelegt und mit ihnen verklebt.Furthermore, honeycombs and methods are known in which a corrugated board web (US 3,912,573 Kunz) or a single corrugated web (WO 91/00803 Kunz) is cut into strips with the shafts transverse to the production direction. After cutting the web a honeycomb core layer is then created by the sticking together of the individual strips. This method requires a certain size of the individual strips or special positioning bands, so that their handling is guaranteed. The size of the strips greatly reduces the web width after the strips are turned. In order not to obtain too small a width of the honeycomb core layer, the strips are cut in a further production step and glued to a honeycomb block, which is then promoted much slower across the production direction. For small honeycomb heights this honeycomb block may need to be cut. The honeycombs produced by such a method also have individual straight strips between individual corrugated or trapezoidally shaped cell wall strips. Such reinforced honeycombs are already known from manual production via a block (WO 95/10412 Darfler). There are individual flat layers between The individual corrugated layers placed and glued to them.

Es sind auch Waben und Verfahren zu deren Herstellung bekannt bei denen eine zusammenhängende Materialbahn nach dem Einbringen von Schnitten zunächst gewellt oder trapezförmig verformt wird, bevor die zusammenhängenden Zellwände gegeneinander gefaltet und verklebt werden (WO 97/03816 Pflug). Um eine Materialeinsparung bei Verpackungsanwendungen insbesondere im Vergleich zur Wellpappe, zu erzielen ist ein sehr leichtes Papier (40 g/m2 bis 80 g/m2) zu bevorzugen. Beim Wellen dieser geringen Grammaturen ist es vorteilhaft, die Welle direkt nach der Formung durch das Aufkleben einer Bahn zu stabilisieren. Insbesondere bei der Wellung quer zur Produktionsrichtung, wie sie in der Wellpappenherstellung mit Geschwindigkeiten bis zu 350 m/min üblich ist, muß direkt eine Decklage (ein sogenannter Liner) aufgeklebt werden. Die gewellte Bahn alleine kann die zur schnellen Förderung der Materialbahn notwendige Zugspannung nicht aufnehmen.There are also known honeycomb and process for their preparation in which a continuous material web is first corrugated or trapezoidal deformed after the introduction of cuts, before the contiguous cell walls are folded against each other and glued (WO 97/03816 plow). In order to achieve a material saving in packaging applications, in particular compared to corrugated board, a very light paper (40 g / m 2 to 80 g / m 2 ) is to be preferred. When waves of these low grammages, it is advantageous to stabilize the shaft directly after the formation by sticking a web. In particular, in the corrugation transverse to the production direction, as is customary in corrugated board production at speeds up to 350 m / min, directly a top layer (a so-called liner) must be adhered. The corrugated web alone can not absorb the tension necessary for the rapid conveyance of the material web.

Es sind weiter Verfahren und Vorrichtungen bekannt um Einschnitte in Wellpappen einzubringen (US 5.690.601 Cummings). Diese Einschnitte werden entlang der Wellen einzelner Wellpappenbögen (in Querrichtung zur eigentlichen Produktionsrichtung der Wellpappe) vorgenommen um ein definiertes Falten zu ermöglichen. Das Falten erfolgt bei diesem Verfahren zum Schnitt hin, so daß dieser sich schließt.There are further known methods and devices for introducing cuts in corrugated cardboard (US 5,690,601 Cummings). These cuts are made along the corrugations of individual corrugated sheets (transversely to the actual production direction of the corrugated cardboard) to allow a defined folding. The folding is done in this process to cut so that it closes.

Der von der FEFCO und ASSCO herausgegebene "Internationaler Code für Versandverpackung" beschreibt verschiedene Formen von Verpackungen und Füllungen unter anderem eine Füllung aus gefaltetem Pappkarton mit der Nummer 0966. Um die Faltung zu erleichtern wird entlang der Wellen einzelner Wellpappenbögen geschritten und das übrigbleibende Papier als Scharnier verwendet.The FEFCO and ASSCO's International Shipping Code describes various forms of packaging and fillings, including a folded cardboard box number 0966. To facilitate folding, the corrugation of individual corrugated sheets is used as a guide and the remaining paper as a hinge used.

Der Erfindung liegt die Aufgabe zugrunde, eine Wabenkernschicht, ein Verfahren und eine Vorrichtung anzugeben, welche die kontinuierliche Herstellung von Waben mit relativ kleinen Zellweiten, mit einer der Wellpappenherstellung vergleichbaren Produktionsgeschwindigkeit ermöglicht. Des weiteren ist eine gute Oberflächenqualität sowie eine zuverlässige und schnelle Anbindung der Deckschichten erwünscht.The invention has for its object to provide a honeycomb core layer, a method and an apparatus which allows the continuous production of honeycombs with relatively small cell widths, with a corrugated cardboard production comparable production speed. Furthermore, a good surface quality and a reliable and fast connection of the outer layers is desired.

Die gestellte Aufgabe wird aufgrund der Maßnahmen der Ansprüche 1, 7 und 14 und mit Hilfe des Zwischenprodukts gemäß Anspruch 23 gelöst und durch weitere Merkmale der Unteransprüche weiterentwickelt.The object is achieved on the basis of the measures of claims 1, 7 and 14 and with the aid of the intermediate product according to claim 23 and further developed by further features of the subclaims.

Bei der Erfindung wird vorzugsweise eine wellenförmige oder trapezförmige Materialbahn mit mindestens einer, aber vorzugsweise mit zwei Decklagen zugeführt. Dies kann Wellpappe, aber auch eine Kunststoff-, Faserverbund- oder Metallwellkernplatte sein. Auch eine Bahn mit mehreren Wellkernen z.B. eine zweiwellige Wellpappe (BC-Flute, AA-Flute) kann verwendet werden. Vorzugsweise bestehen die Decklagen aus sehr dünnem Material (Flächengewicht zwischen 60 g/m2 und 100 g/m2) und die gewellte Kernschicht aus bis zu 2 mal so dickem Material, da die Decklagen in der zu bevorzugenden Variante der Faltwabe doppelt zu liegen kommen. An die Qualität der Decklagen, sowie an die Dickentoleranz und Oberflächenqualität der Wellkernbahn werden dabei sehr geringe Ansprüche gestellt, da diese Faktoren auf die Oberflächenqualität des Endproduktes wenig Einfluß haben.In the invention, a wavy or trapezoidal material web is preferably supplied with at least one, but preferably with two cover layers. This can be corrugated board, but also a plastic, fiber composite or metal corrugated core board. Also, a web with several cores, for example, a two -wave corrugated board (BC flute, AA flood) can be used. Preferably, the top layers of very thin material (basis weight between 60 g / m 2 and 100 g / m 2 ) and the corrugated core layer of up to 2 times as thick material, since the top layers come to lie in the preferred variant of the folded double , Very low demands are placed on the quality of the cover layers, as well as on the thickness tolerance and surface quality of the corrugated web, since these factors have little influence on the surface quality of the end product.

Die Dicke der Wellpappenbahn bestimmt die Weite der Wabenzellen. Zur Stützung der Deckschichten sind Zellweiten von 4.7 mm (A-Flute), oder bei sehr geringen Flächengewichten 3.6 mm (C-Flute) ausreichend, da die flachen Wellkerndeckschichtstreifen eine zusätzliche Auflage bieten und die Gefahr des Beulens der Deckschichten in die Zellen (Dimpling) vermindern. Es können aber auch Wabenkerne mit kleineren bzw. größeren Zellweiten aus Wellkernbahnen mit geringeren bzw. größeren Höhen der Welle (z.B. K-Flute) hergestellt werden.The thickness of the corrugated cardboard web determines the width of the honeycomb cells. For supporting the cover layers, cell widths of 4.7 mm (A-Flute), or at very low basis weights of 3.6 mm (C-flute) are sufficient, since the flat corrugated core cover strips provide additional support and the risk of denting the cover layers into the cells (dimpling). Reduce. However, honeycomb cores with smaller or larger cell widths can also be produced from corrugated corrugated webs with smaller or larger heights of the shaft (for example K-flute).

Gemäß einer Ausführungsform der Erfindung wird die mehrlagige Bahn zunächst in Förderrichtung auf der Unterseite und der Oberseite mit einer Vielzahl von durchlaufenden Faltlinien versehen. Die Faltlinien können zum Beispiel durch Pressen oder Längseinschneiden der Bahn eingebracht werden. Die Schnitte durchschneiden die Bahn in Dickenrichtung nicht ganz, sondern lassen jeweils eine Deckschicht (oder die Deckschicht und die Wellenberge) zusammenhängend. Die Schnitte auf der Oberseite liegen dabei möglichst genau zwischen den Schnitten der Unterseite. Die bei Wellpappen üblichen Unebenheiten der Deckschichten und die unterschiedlichen Schneidkräfte zwischen den Wellenbergen können dazu führen, daß die Deckschicht an einzelnen Stellen teilweise oder ganz durchschnitten wird. Dies ist durchaus erwünscht solange die Wellkernstreifen in Querrichtung noch zusammenhängend bleiben. Die erforderliche Faltkraft kann durch dieses leichte Anschneiden oder Perforieren der Deckschichten oder ein zusätzliches Vorprägen der Faltlinie verringert werden. Die Wellkernstreifen können auch zunächst komplett durchgeschnitten und gleichzeitig oder unmittelbar danach mittels Klebefolien zusammengeklebt werden. Dieses Material kann im Vergleich zu dem Material der Bahn leichter zu biegen bzw. zu falten sein. Demzufolge, schließt die Wortkombination "einstückig gebildet" nicht nur Wellenstreifen ein, die durch eine Deckschicht miteinander verbunden sind sondern auch getrennte Wellenstreifen, die durch Klebefolie miteinander verbunden werden. Das Verhältnis zwischen der Breite und der Höhe der zusammenhängenden Wellkernstreifen liegt vorzugsweise im Bereich von 0.5 bis 2.0.According to one embodiment of the invention, the multilayer web is first provided in the conveying direction on the underside and the top with a plurality of continuous fold lines. The fold lines can be introduced, for example, by pressing or longitudinal cutting of the web. The cuts do not completely cut through the web in the thickness direction, but leave one covering layer (or the top layer and the wave crests) contiguous. The cuts on the top are as close as possible between the cuts of the bottom. The usual in corrugated board unevenness of the outer layers and the different cutting forces between the wave crests can cause the cover layer is partially or completely cut at individual locations. This is quite desirable as long as the corrugated core strips remain coherent in the transverse direction. The required folding force can be reduced by this slight cutting or perforation of the outer layers or an additional pre-embossing of the fold line. The corrugated core strips can also be completely cut through first and glued together at the same time or immediately afterwards by means of adhesive films. This material may be easier to bend or fold than the material of the web. Accordingly, the word combination "integrally formed" includes not only wavy strips interconnected by a cover layer but also separate wavy strips joined together by adhesive film. The ratio between the width and the height of the continuous corrugated core strips is preferably in the range of 0.5 to 2.0.

Die zusammenhängenden Wellkernstreifen werden dann jeweils um 90° so gedreht, daß sich die Schnitte öffnen und sich die zusammenhängenden Decklagen benachbarter Streifen um 180° falten. Da die Streifen zusammenhängen, ist keine Ausrichtung in Dicken- oder Längsrichtung notwendig. Die Streifen legen sich mit den zusammenhängenden Decklagen flächig aneinander und bilden die Faltwabe. Sie können verklebt, anderweitig verbunden oder erst bei Aufkleben der neuen Deckschichten durch diese verbunden werden. Das Aufbringen des Klebers kann durch Rollen, Düsen oder Bürsten erfolgen, wobei ein Aufbringen bevorzugt wird, das eine relativ geringe Klebstoffmenge konstant aufträgt. Bei der Verwendung einer Wellkernbahn mit zwei Decklagen sind die Wellkernstreifen wesentlich stabiler als nur mit einer Decklage und können mit einigem Druck verklebt werden. Eventuelle Verformungen des Wellkerns, die bei der Wellpappenherstellung die Oberflächenqualität oft beeinträchtigen, erfolgen hier in Breitenrichtung und haben auf die Oberflächenqualität und Dickentoleranz der Faltwabe keinen Einfluß.The contiguous corrugated core strips are then each rotated by 90 ° so that the sections open and fold the contiguous cover layers of adjacent strips by 180 °. Since the strips are connected, no alignment in the thickness or longitudinal direction is necessary. The strips lie flat against each other with the contiguous cover layers and form the folded honeycomb. They can be glued, otherwise connected or only connected by gluing the new cover layers through them. The application of the adhesive may be carried out by rollers, nozzles or brushes, wherein an application is preferred, which is a relatively small amount of adhesive constantly applied. When using a corrugated web with two cover layers, the corrugated core strips are much more stable than just a cover layer and can be glued with some pressure. Possible deformations of the corrugated core, which often affect the surface quality during corrugated board production, take place here in the width direction and have no influence on the surface quality and thickness tolerance of the folded honeycomb.

Die flachen, in der Wabe senkrecht stehenden Wellkerndeckschichtstreifen können die Zugspannungen in der Produktionsrichtung aufnehmen und ermöglichen einen schnellen Transport der Materialbahn. Sie erhöhen später die Schub- und Druckkennwerte der Wabe, so daß alles Material der Wellpappe im daraus gefalteten Wabenkern genutzt wird.The flat, in the honeycomb standing corrugated core coating strips can absorb the tensile stresses in the production direction and allow for rapid transport of the web. Later, they increase the shear and pressure characteristics of the honeycomb, so that all the material of the corrugated cardboard is used in the folded honeycomb core.

Zur Herstellung eines Wabenplattenmaterials können neue Deckschichten direkt nach der Wabenherstellung kontinuierlich auf die Wabenkernschicht aufgeklebt werden. Dabei ist die hohe Druckfestigkeit der Wabe sehr nützlich. Eine gute Anbindung der Deckschichten an die Wabe kann durch ein leichtes zerfasem der Kanten beim Einbringen der Längsschnitte erreicht werden. Neben den Kanten der Wellkernlage stehen die kleinen Seitenflächen der gefalteten Wellkerndeckschichtstreifen zusätzlich zur Anbindung der Deckschichten zur Verfügung.To produce a honeycomb panel material, new cover layers can be continuously adhered to the honeycomb core layer immediately after honeycomb production. The high compressive strength of the honeycomb is very useful. A good connection of the outer layers to the honeycomb can be achieved by a slight fraying of the edges when introducing the longitudinal cuts. In addition to the edges of the corrugated core layer, the small side surfaces of the folded corrugated core layer strips are additionally available for connecting the cover layers.

Ein Ausführungsbeispiel für die Wabenkernschicht, das Verfahren und die Vorrichtung wird anhand der Zeichnungen beschrieben. Dabei zeigt:

Fig. 1
die Wellkernbahn und die Position der Längseinschnitte in der Draufsicht und der Seitenansicht,
Fig. 2
die Position der Längseinschnitte in der Wellkernbahn in der Frontansicht,
Fig. 3
die leicht gefalteten zusammenhängenden Wellkernstreifen,
Fig. 4
die 30° gefalteten zusammenhängenden Wellkernstreifen,
Fig. 5
die 60° gefalteten zusammenhängenden Wellkernstreifen,
Fig. 6
die nahezu ganz gefalteten zusammenhängenden Wellkernstreifen,
Fig. 7
eine perspektivische Darstellung der leicht gefalteten Wellkernbahn,
Fig. 8
eine perspektivische Darstellung der 30° gefalteten Wellkernbahn,
Fig. 9
eine perspektivische Darstellung der 60° gefalteten Wellkernbahn,
Fig. 10
eine perspektivische Darstellung der nahezu ganz gefalteten Faltwabe aus Wellpappe,
Fig. 11
das Verfahren zur Herstellung der Faltwabe aus Wellpappe in der Draufsicht,
Fig. 12
eine perspektivische Darstellung des Verfahrens zur Herstellung der Faltwabe aus Wellpappe,
Fig. 13
die Führung der Materialbahn aus der Bahnebene in der Seitenansicht,
Fig. 14
die noch ebene Wellkernbahn in der Frontansicht,
Fig. 15
die Verformung aus der Bahnebene bei 5° gefalteter Wellkernbahn,
Fig. 16
die Verformung aus der Bahnebene bei 45° gefalteter Wellkernbahn,
Fig. 17
die Verformung aus der Bahnebene bei dreistufiger Verdrehung jedes dritten Wellkernstreifens,
Fig. 18
die Vorrichtung zum Einbringen der Längseinschnitte zur Herstellung der Faltwabe in der Frontansicht,
Fig. 19
die Vorrichtung zum variablen Einbringen der Längseinschnitte in der Frontansicht,
Fig. 20
die Vorrichtung zum Drehen und Zusammenfalten der zusammen hängenden Wellkernstreifen zur Herstellung der Faltwabe aus Wellpappe im Schnitt.
Fig. 21
die Vorrichtung zum variablen Drehen und Zusammenfalten der zusammenhängenden Wellkernstreifen im Schnitt.
An embodiment of the honeycomb core layer, the method and the apparatus will be described with reference to the drawings. Showing:
Fig. 1
the corrugated web and the position of the longitudinal incisions in plan view and side view,
Fig. 2
the position of the longitudinal cuts in the corrugated core web in the front view,
Fig. 3
the slightly folded contiguous corrugated strips,
Fig. 4
the 30 ° folded corrugated corrugated strips,
Fig. 5
the 60 ° folded coherent corrugated strips,
Fig. 6
the almost completely folded contiguous corrugated strips,
Fig. 7
a perspective view of the slightly folded corrugated web,
Fig. 8
a perspective view of the 30 ° folded corrugated web,
Fig. 9
a perspective view of the 60 ° folded corrugated web,
Fig. 10
a perspective view of the almost completely folded folded honeycomb cardboard,
Fig. 11
the process for the production of folded corrugated board in plan view,
Fig. 12
a perspective view of the method for producing the folded honeycomb cardboard,
Fig. 13
the guidance of the material web from the web level in the side view,
Fig. 14
the still flat corrugated web in the front view,
Fig. 15
the deformation from the web plane at 5 ° folded corrugated web,
Fig. 16
the deformation from the web plane at 45 ° folded corrugated web,
Fig. 17
the deformation from the orbital plane with three-step rotation of every third corrugated core strip,
Fig. 18
the apparatus for introducing the longitudinal cuts for the production of the folded honeycomb in the front view,
Fig. 19
the device for the variable introduction of the longitudinal cuts in the front view,
Fig. 20
the device for rotating and folding the coherent corrugated core strip for producing the folded corrugated board in the cut.
Fig. 21
the device for variable turning and folding of the continuous corrugated core strips in section.

Fig. 1 zeigt die zugeführte Wellkernbahn mit den Wellen quer zur Produktionsrichtung und die Position der Längseinschnitte in der Draufsicht und der Seitenansicht. Die Wellenkernbahn kann auf der Basis von Kunststoff, Gewebe, Faserverbundwerkstoff, Papier, Pappe oder ähnlichen Materialien sein. Die Wellkernstreifen 1 sind jeweils durch zwei Einschnitte 2 und 3 begrenzt. Die Wellkernbahn ist durch diese Schnitte, welche die Materialbahn in Dickenrichtung nicht ganz durchschneiden, abwechselnd von oben und unten eingeschnitten. Das verbleibende Material (eine Deckschicht oder/und die Wellenberge des Wellkerns) wird später an dieser Stelle um die Faltlinien 4 und 5 gefaltet. Fig. 2 zeigt die Position der Längseinschnitte und der Faltlinien in der Frontansicht. Das Verhältnis zwischen der Breite und der Höhe jedes Wellenkernstreifens liegt vorzugsweise im Bereich 0.5 bis 2.Fig. 1 shows the supplied corrugated web with the waves transverse to the production direction and the position of the longitudinal incisions in the plan view and the side view. The corrugated web can be based on plastic, fabric, fiber composite, paper, cardboard or similar materials. The corrugated core strips 1 are each bounded by two cuts 2 and 3. The corrugated web is cut by these cuts, which do not cut completely through the material web in the thickness direction, alternately from top and bottom. The remaining material (a cover layer and / or the wave crests of the corrugated core) is later folded around the fold lines 4 and 5 at this point. Fig. 2 shows the position of the longitudinal cuts and the fold lines in the front view. The ratio between the width and the height of each corrugated core strip is preferably in the range of 0.5 to 2.

In Fig. 3 bis Fig. 6 ist die Faltung der zusammenhängenden Wellkernstreifen schrittweise in der Frontansicht dargestellt. Ein Klebstoff 6, für Verpakkungsanwendungen vorzugsweise auf Stärke oder PVA Basis, kann vor dem Falten auf die Wellkerndeckschichtstreifen aufgebracht werden. Der Klebstoff kann auf der gesamten Fläche oder nur dort aufgebracht werden wo sich die Wellenberge oder Wellentäler der benachbarten Wellkernstreifen treffen. Fig. 7 bis Fig. 10 zeigen die gleichen Zwischenschritte der Herstellung in perspektivischer Darstellung.In Fig. 3 to Fig. 6, the folding of the continuous corrugated core strip is shown stepwise in the front view. An adhesive 6, preferably for starch or PVA based packaging applications, may be applied to the corrugated core topsheet strips prior to folding. The adhesive can be applied over the entire area or only where the wave crests or troughs of the adjacent corrugated core strips meet. FIGS. 7 to 10 show the same intermediate steps of the production in perspective view.

Fig. 11 zeigt das Verfahren zur Herstellung der Faltwabe aus Wellpappe in der Draufsicht. In Fig. 12 sind die Positionen der einzelnen Verfahrensschritte eingezeichnet. Zunächst werden bei Position 10 die Längseinschnitte in die Materialbahn eingebracht. Danach erfolgt von 11 bis 13 die Verdrehung der Materialstreifen. Dabei kann optional ein Klebstoff auch erst während des Verdrehens eingebracht werden (etwa bei 12). Bei 14 können dann Deckschichten auf die Faltwabe aufgebracht werden.Fig. 11 shows the process for producing the folded corrugated cardboard honeycomb in the plan view. FIG. 12 shows the positions of the individual method steps. First, at position 10, the longitudinal cuts are made in the material web. Then takes place from 11 to 13, the rotation of the strip of material. Optionally, an adhesive can also only be introduced during twisting (about 12). At 14 then cover layers can be applied to the Faltwabe.

Im kontinuierlichen Prozeß ergeben sich Torsionsspannungen durch die Verdrehung der zusammenhängenden Wellkernstreifen. Diese Spannungen sind aufgrund der geringen Torsionssteifigkeit der dünnen, schmalen Steifen relativ gering. Die Länge dieses Prozeßschrittes kann daher relativ kurz sein (< 0.5 m), wenn keine Änderung der Bahnbreite erfolgt. Zwangsläufig entspricht das Verhältnis zwischen der Dicke der Wellkernbahn und der Dicke der Wabenkernschicht dem Verhältnis der Breiten beider Materialbahnen (bWabe= bWelle* tWabe/tWelle).In the continuous process torsional stresses result from the rotation of the contiguous corrugated core strips. These stresses are relatively low due to the low torsional stiffness of the thin, narrow strips. The length of this process step can therefore be relatively short (<0.5 m) if there is no change in the web width. Inevitably, the ratio between the thickness of the corrugated core web and the thickness of the honeycomb core layer corresponds to the ratio of the widths of both material webs (b honeycomb = b wave * t honeycomb / t wave ).

Vorzugsweise ist die Wellkerndicke (tWelle) gleich der Wabenkemdicke (tWabe) zu wählen, damit sich eine konstante Anlagenbreite ergibt (bWabe= bWelle). Allerdings wird ohnehin während des Drehens der Materialstreifen eine maximale Breite der Bahn mit b max = b Well * t Welle 2 + t Wabe 2 / t Wabe

Figure imgb0001
erreicht. Bei gleicher Materialdicke tWelle=tWabe würde die Breitenänderung bmax = 1.41. bWelle betragen. Diese Änderung der Bahnbreite kann durch eine kurzzeitige Führung der Materialstreifen aus der Bahnebene heraus verhindert werden.Preferably, the corrugation core thickness (t wave ) is equal to the honeycomb thickness (t honeycomb ) to choose, so as to give a constant plant width (b honeycomb = b wave ). However, anyway during rotation of the strip of material a maximum width of the web with b Max = b Well * t wave 2 + t honeycomb 2 / t honeycomb
Figure imgb0001
reached. For the same material thickness t wave = t honeycomb , the width change would be b max = 1.41. b wave . This change in the web width can be prevented by a brief guidance of the strip of material out of the web plane.

Fig.13 zeigt die Führung der Materialbahn aus der Bahnebene heraus in der Seitenansicht. Die zusammenhängenden Wellkernstreifen können während der 90°-Torsion leicht gebogen werden. Eine Biegung der tordierten Wellkernstreifen erfordert jedoch eine größere Länge des Torsionsbereiches. Daher ist es sinnvoll die Bahn über der Breite leicht zu wellen um so die Verformungen aus der Bahnebene heraus zu begrenzen. Fig. 14 bis 16 zeigen die einzelnen Schritte bei einer möglichen Verformung der zusammenhängenden Wellkernstreifen aus der Bahnebene heraus zur Vermeidung der Bahnbreitenänderung.13 shows the guidance of the material web from the web plane out in the side view. The contiguous corrugated core strips can easily be bent during the 90 ° twist. However, a bend of the twisted corrugated core strips requires a greater length of the torsion region. Therefore, it makes sense to slightly wave the web over the width so as to limit the deformations out of the web plane. FIGS. 14 to 16 show the individual steps in the case of a possible deformation of the contiguous corrugated core strips out of the web plane in order to avoid the web width change.

Des weiteren kann die Breitenänderung stark reduziert werden wenn die Wellkernstreifen nacheinander verdreht werden. Dabei ist es besonders vorteilhaft, zunächst jeden dritten Wellkernstreifen zu verdrehen. In drei Stufen können so alle Wellkernstreifen verdreht werden, ohne daß sich eine merkliche Breitenänderung ergibt. Fig. 17 zeigt die dreistufige Verdrehung jedes dritten Wellkernstreifens und die resultierenden geringen Verformungen aus der Bahnebene heraus in einzelnen Frontansichten. Einzelne oder mehrere Wellkernstreifen können auch in anderer Reihenfolge nacheinander verdreht werden um die Breitenänderung zu begrenzen.Furthermore, the width change can be greatly reduced if the corrugated core strips are rotated one after the other. It is particularly advantageous to first twist every third corrugated core strip. In three stages so all corrugated core strips can be rotated without a noticeable change in width results. Fig. 17 shows the three-step rotation of every third corrugated core strip and the resulting small deformations out of the orbital plane in individual front views. Individual or several corrugated core strips can also be rotated in a different order one after the other to limit the width change.

Dennoch ist eine Reduktion der Bahnbreite bei der Herstellung von Wabenkernschichten mit einer größeren Dicke (twabe>tWelle) und eine Vergrößerung der Bahnbreite bei der Herstellungen kleinerer Dicken (tWabe < tWelle) bis zu einem gewissen Grade aus Gründen der Flexibilität der Anlage eventuell vorteilhaft. Das Verhältnis zwischen der Dicke der Wellkernbahn (tWelle) und der Dicke der Wabenkernschicht (tWabe) liegt dabei vorzugsweise zwischen 0.5 und 2. Fig. 18 zeigt eine Vorrichtung zum Einbringen der Längseinschnitte. Diese Vorrichtung kann aus einfachen Längsschneidmessern 20 bestehen, die auf einer oberen 21 und einer unteren Achse 22 oder auf einer Vielzahl von separaten Achsen rotieren. Der Abstand zwischen den oberen und unteren Schneidmessern zueinander und untereinander sollte möglichst gleichmäßig sein um eine hohe Schnittgenauigkeit und damit eine sehr konstante Wabenkerndicke zu erreichen. Ferner sollte die Materialbahn (z.B. durch Walzen) möglichst exakt geführt werden damit eine exakte Tiefe der Einschnitte erzielt wird. Das schnelle exakte Schneiden von Wellkernen in der Produktionsrichtung wird bereits bei der Wellpappenherstellung durchgeführt. Neben der bevorzugten Verwendung von rotierenden Messern ist auch das Schneiden mit stillstehenden Messern denkbar. Die zusammenhängenden Wellkernstreifen bilden eine relativ stabile Bahn, daher kann die Wellkernbahn nach dem Einbringen der Einschnitte hinter den Längsschneidmessern mit Walzen oder Bändern gefördert werden.Nevertheless, a reduction of the width of the web in the manufacture of honeycomb core layers with a larger thickness (t honeycomb> tW elle) and an increase of the web width in the preparations of smaller thickness (t honeycomb <t shaft) to a certain extent, for reasons of flexibility of the plant possibly advantageous. The ratio between the thickness of the corrugated core web (t wave ) and the thickness of the honeycomb core layer (t honeycomb ) is preferably between 0.5 and 2. FIG. 18 shows a device for introducing the longitudinal cuts. This device may consist of simple slitters 20 rotating on upper 21 and lower 22 axes or on a plurality of separate axes. The distance between the upper and lower cutting blades to each other and each other should be as uniform as possible in order to achieve a high cutting accuracy and thus a very constant honeycomb core thickness. Furthermore, the material web should be guided as exactly as possible (eg by rolling) so that an exact depth of the cuts is achieved. The fast exact cutting of cores in the production direction is already carried out in corrugated board production. Apart from the preferred use of rotating knives, cutting with stationary knives is also conceivable. The contiguous corrugated core strips form a relatively stable path, therefore, the corrugated core web can be conveyed after insertion of the incisions behind the longitudinal cutting knives with rollers or belts.

Fig. 19 zeigt eine variable Vorrichtung 24 zum Einbringen der Längseinschnitte. Durch eine gleichmäßige Verstellung der Abstände zwischen den einzelnen Schneidmessern 20 in Breitenrichtung kann eine Wabenkernschichten mit unterschiedlicher Dicke hergestellt werden. Ferner ist auch ein schnelles Austauschen der kompletten Schneidwalzen (z.B. mit sogenannten Revolversystemen) denkbar.Fig. 19 shows a variable device 24 for introducing the longitudinal cuts. By a uniform adjustment of the distances between the individual cutting blades 20 in the width direction, a honeycomb core layers with different thickness can be produced. Furthermore, a quick replacement of the complete cutting rollers (for example with so-called turret systems) is conceivable.

Fig. 20 zeigt eine Vorrichtungen zum Drehen und Zusammenfalten der zusammenhängenden Wellkernstreifen. Die Vorrichtung kann aus einfachen feststehenden Führungen 23, aus rotierenden Walzen oder aus Transportbändern bestehen. Die Geometrie dieser Führungen bestimmt wie die zusammenhängenden Wellkernstreifen beim Transport verdreht und gegeneinander gefaltet werden. Dabei ist entweder ein sequentielles Drehen, bei dem es zu einem sehr geringen stufenförmigem Wellen über der Breite kommt oder ein gleichzeitiges Drehen mit einer größeren Wellung über der Breite möglich.Fig. 20 shows a device for rotating and folding the continuous corrugated core strips. The device may consist of simple fixed guides 23, rotating rollers or conveyor belts. The geometry of these guides determines how the contiguous corrugated core strips are twisted during transport and folded against each other. It is either a sequential turning, in which it comes to a very small step-shaped waves across the width or a simultaneous turning with a larger corrugation across the width possible.

Fig. 21 zeigt eine variable Vorrichtungen zum gleichzeitigen Drehen und Zusammenfalten der zusammenhängenden Wellkernstreifen mit einer Wellung über der Breite. Fig.17 zeigt wie die Führungen der einzelnen Materialstreifen beim Drehen jedes dritten Wellkernstreifens in drei Stufen führen müssen. Bei dieser Variante ist vorteilhaft, daß es genügt die jeweils nicht drehenden zwei Wellkernstreifen nach oben bzw. unten zu führen, um den jeweils dazwischen liegenden Wellkernstreifen um 90° zu drehen.Fig. 21 shows a variable device for simultaneously rotating and folding the continuous corrugated core strips with a corrugation across the width. Figure 17 shows how the guides of the individual strips of material must rotate in three stages as each third corrugated core strip is rotated. In this variant, it is advantageous that it is sufficient to guide the respective non-rotating two corrugated core strips upwards or downwards in order to rotate the corrugated core strip in each case by 90 °.

Diese Faltwabe aus Wellpappe, das beschriebene Verfahren und die Vorrichtungen ermöglichen die Herstellung eines der Wellpappe in allen Materialkennwerten deutlich überlegenen Wabenmaterials. Die Wabenkernschichtdicke sollte vorzugsweise über 4 mm betragen, da die Materialeinsparungen im Vergleich zur Wellpappe mit zwei übereinander liegenden Wellkernen besonders groß sind. Doch auch bei geringeren Höhen biete die Wabe deutlich bessere Materialeigenschaften. Das Material kann aus den gleichen, wenn auch leichteren Papieren (Kraftliner oder Testliner) und dem üblichen, auf Stärke bzw. PVA basierenden Klebstoff auf Anlagen hergestellt werden, die in wesentlichen Komponenten den weit entwickelten Wellpappenanlagen gleichen. Die beiden zusätzlichen Prozeßschritte (Einbringen der Längseinschnitte und Falten der zusammenhängenden Wellpappenstreifen) können durch die beschriebenen einfachen Vorrichtungen durchgeführt werden und reduzieren die Produktionsgeschwindigkeit nicht.This folded corrugated board made of corrugated cardboard, the described method and the devices make it possible to produce a honeycomb material which is clearly superior to the corrugated board in all material characteristics. The honeycomb core layer thickness should preferably be over 4 mm, since the material savings compared to corrugated cardboard with two superimposed cores are particularly large. But even at lower altitudes, the honeycomb offers significantly better material properties. The material can be made from the same, albeit lighter papers (Kraftliner or testliner) and the usual PVA-based adhesive on equipment that is substantially similar to the well-developed corrugators. The two additional process steps (inserting the longitudinal cuts and folding the contiguous corrugated strips) can be performed by the described simple devices and do not reduce the production speed.

Mit den beschriebenen verstellbaren Längsschneid- und Führungsvorrichtungen bzw. dem in der Wellpappenindustrie üblichen Austauschen der Walzen und Komponenten kann eine Anlage für einwellige Wellpappe sehr flexibel Faltwaben mit unterschiedlichen Dicken herstellen. Die Produktionskosten sind voraussichtlich geringer als bei der Herstellung von zweilagigen Wellpappen. Zudem kann die Produktionsgeschwindigkeit, dieser auf einer einwelligen Wellpappenanlage basierenden Wabenpappenanlage vermutlich größer sein, als die von heute üblichen zweiwelligen Wellpappenanlagen.With the described adjustable longitudinal cutting and guiding devices or the usual in the corrugated industry replacing the rollers and components can be a plant for single-wall corrugated cardboard very flexible produce folding honeycomb with different thicknesses. Production costs are expected to be lower than in the production of double-layer corrugated board. In addition, the production speed of this honeycomb cardboard system based on a single-shaft corrugated cardboard system can presumably be greater than that of today's two-shaft corrugated board systems.

Beim Herstellen von Faltwaben aus Wellpappe kann das Aufleimen der Decklagen in der gleichen Produktionsanlage, direkt nach der Kernschichtfertigung erfolgen, und zur Weiterverarbeitung der Wabenpappe können die in der wellpappenverarbeitenden Industrie üblichen Schneid-, Stanz- und Druckmaschinen verwendet werden.In the manufacture of folded corrugated fiberboard, the gluing of the cover layers can take place in the same production plant, directly after the core layer production, and for further processing of the honeycomb board, the cutting, punching and printing machines customary in the corrugated board processing industry can be used.

Die Wabenpappe verfügt im Vergleich zur Wellpappe über deutlich bessere Druckfestigkeiten in der Materialebene (Kantenstauchwiderstand, ECT), insbesondere in der Produktionsrichtung (Maschinenrichtung). Zudem bietet sie senkrecht zur Materialebene (Flachstauchwiderstend, FCT) erheblich bessere Druckkennwerte und eine größere Stoßenergieaufnahme. Die möglichen Gewichts- und Materialeinsparungen, die richtungsunabhängigeren Festigkeiten und die bessere Oberflächenqualität, sowie der geringe Aufwand für die zusätzlichen Produktionsschritte lassen erwarten, daß die Faltwabenpappe aus Wellpappe konkurrenzfähig zur Wellpappe ist.The honeycomb board has significantly better compressive strengths in the material plane (edge crush resistance, ECT) compared to corrugated board, especially in the production direction (machine direction). In addition, it offers significantly better pressure characteristics and greater impact energy absorption perpendicular to the material plane (flat crushing resistance, FCT). The possible weight and material savings, the direction-independent strength and the better surface quality, as well as the low cost of the additional production steps can be expected that the corrugated cardboard corrugated board is competitive with corrugated board.

Zudem kann die Faltwabe ohne ein Auflaminieren von Deckschichten vielfältig zu Sandwichbauteilen weiterverarbeitet werden. Die Wabenzellen können zur besseren akustischen und thermischen Isolation zusätzlich mit einem Schaum oder ähnlichem Material gefüllt werden. Des weiteren können die Wabenzellwände durch ein Tauchbad oder durch Besprühen imprägniert oder beschichtet werden. Die guten Materialeigenschaften und die geringen Produktionskosten lassen erwarten, daß dieses Material neben den Verpackungsanwendungen auch in anderen Bereichen wie zum Beispiel in Innenverkleidungsbauteilen für Fahrzeuge, in Möbeln, Bodenbelägen und Wandverkeidungen, usw. Anwendungen findet.In addition, the folded honeycomb can be further processed into sandwich components without lamination of cover layers. The honeycomb cells can also be filled with a foam or similar material for better acoustic and thermal insulation. Furthermore, the honeycomb cell walls can be impregnated or coated by an immersion bath or by spraying. The good material properties and the low cost of production can be expected that this material in addition to the packaging applications in other areas such as interior trim components for vehicles, in furniture, floor coverings and Wandverkeidungen, etc. finds applications.

Die Vorteile der erfindungsgemäßen Faltwabe sind:

  1. a) verbesserte Bedruckbarkeit durch bessere Oberflächenqualität,
  2. b) verbesserte mechanische Eigenschaften, z.B. Flachstauchwiderstand und Kantenstauchwiderstand, Biegefestigkeit, Biegesteifigkeit,
  3. c) geringeres Gewicht bei gleichen mechanischen Eigenschaften,
  4. d) guter Schlagwiderstand und mechanische Eigenschaften nach einem Schlag oder Stoß,
  5. e) Umweltfreundlichkeit, z.B. 20 bis 25% wenige Rohmaterialien werden verwendet, die Faltwabe findet Anwendung, wo bisjetzt nichtwiederverwendbare Materialien eingesetzt worden sind.
The advantages of the folded honeycomb according to the invention are:
  1. a) improved printability through better surface quality,
  2. b) improved mechanical properties, eg flat crush resistance and edge crush resistance, flexural strength, flexural stiffness,
  3. c) lower weight with the same mechanical properties,
  4. d) good impact resistance and mechanical properties after a shock or impact,
  5. e) Environmental friendliness, eg 20 to 25% of raw materials are used, the folded honeycomb is used where until now non-reusable materials have been used.

Claims (24)

  1. A folded honeycomb comprising a plurality of corrugated core strips which lie beside one another and in one plane and each consist of a corrugated or trapezoidal core with at least one cover layer, the cover layers of the corrugated core strips being arranged parallel to one another and transversely with respect to the plane, and the longitudinal direction of the flutes of the corrugated core extending, for each corrugated core strip, transversely with respect to it, and the corrugated core strips being connected to one another, characterized in that for at least each second corrugated core strip, the cover layer of the one corrugated core strip is formed in one piece with the cover layer of one of the adjacent corrugated core strips and is connected with it via a fold of 180°, and the connections between adjacent corrugated core strips are arranged alternately on one side and the other side of the plane of the folded honeycomb.
  2. The folded honeycomb according to claim 1, characterized in that the ratio between the width and the height of each corrugated core strip lies in the range from 0.5 to 2.
  3. The folded honeycomb according to claim 1 or 2, characterized in that the ratio between the weights per unit area of the corrugated core material and the cover layer material of each corrugated core strip lies in the range from 1 to 2.
  4. The folded honeycomb according to one of claims 1 to 3, characterized in that the cover layer of the corrugated or trapezoidal core of at least each second corrugated strip is wholly or partly connected over the entire area to the cover layer of the corrugated or trapezoidal core of at least one adjacent corrugated core strip.
  5. The folded honeycomb according to one of the preceding claims, characterized in that each corrugated core strip consists of two cover layers and a corrugated or trapezoidal core arranged between them, and the one cover layer of each corrugated core strip is formed in one piece with a cover layer of an adjacent corrugated core strip and is connected to it via a fold of 180°, and the other cover layer is formed in one piece with a cover layer of another adjacent corrugated core strip and is connected to it via a fold of 180°.
  6. The folded honeycomb according to one of the preceding claims, further characterized in that a cover layer is arranged at least on one side of the plurality of corrugated core strips lying beside one another.
  7. A process for the continuous production of a folded honeycomb, comprising the following steps:
    a) forming connected corrugated core strips consisting of a corrugated or a trapezoidal core with at least one cover layer, the longitudinal direction of the flutes of the corrugated core extending, for each corrugated core strip, tranversely with respect to it, the corrugated core strips being connected to one another and the connections between adjacent corrugated core strips being arranged alternately on one side and the other side of the folded honeycomb and, for at least each second corrugated core strip, the cover layer of one corrugated core strip being connected to the cover layer of an adjacent corrugated core strip; and
    b) rotating the connected corrugated core strips through about 90° in relation to one another, as a result of which the cover layers of the corrugated core strips are folded through about 180° at the connecting lines, such that they lie in a plane and the connections between adjacent corrugated core strips are arranged alternately on one side and the other side of the plane of the folded honeycomb.
  8. The process according to claim 7, characterized in that the ratio between the width and the height of each corrugated core strip lies in the range from 0.5 to 2.
  9. The process according to claim 7 or 8, characterized in that the ratio between the weights per unit area of the corrugated core material and the cover layer material of each corrugated core strip lies in the range from 1 to 2.
  10. The process according to one of claims 7 to 9, characterized in that the touching surfaces are firmly connected to one another, either with adhesive which is applied previously or in another way.
  11. The process according to one of claims 7 to 10, characterized in that at least one cover sheet is laminated onto the folded honeycomb.
  12. The process according to one of claims 7 to 11, characterized in that the step of forming the connected corrugated core strips includes cutting completely through the corrugated core web to form individual corrugated core strips.
  13. The process according to one of claims 7 to 11, characterized in that the step of forming the connected corrugated core strips includes the longitudinal slitting of a corrugated core web to form connected corrugated core strips.
  14. A system for producing a folded honeycomb, comprising:
    a) a first apparatus for forming connected corrugated core strips lying in a plane consisting of a corrugated or a trapezoidal core with at least one cover layer, the longitudinal direction of the flutes of the corrugated core extending, for each corrugated core strip, tranversely with respect to it, the corrugated core strips being connected to one another and the connections between adjacent corrugated core strips being arranged alternately on one side and the other side of the plane, in at least each second corrugated core strip a cover layer of one corrugated core strip being connected to the cover layer of one of the adjacent corrugated core strips; and
    b) a second apparatus for rotating the connected corrugated core strips through about 90° with respect to one another, as a result of which the cover layers are folded through about 180° at the connecting lines, such that they lie in a plane and the connections between adjacent corrugated core strips are arranged alternately on one side and the other side of the plane of the folded honeycomb.
  15. The apparatus according to claim 14, characterized in that the apparatus for forming the connected corrugated core strips includes an apparatus for cutting completely through a corrugated core web to form individual corrugated core strips.
  16. The apparatus according to claim 14, characterized in that the apparatus for forming the connected corrugated core strips includes an apparatus for the longitudinal slitting of a corrugated core web to form connected corrugated core strips.
  17. The apparatus according to one of claims 14 to 16, characterized in that the ratio between the width and the height of each corrugated core strip lies in the range from 0.5 to 2.
  18. The apparatus according to one of claims 14 to 17, characterized in that the ratio between the weights per unit area of the corrugated core material and the cover layer material of each corrugated core strip lies in the range from 1 to 2.
  19. The apparatus according to one of claims 16 to 18, characterized in that the apparatus for the longitudinal slitting of the corrugated core web has a plurality of rotating or stationary knives.
  20. The apparatus according to one of claims 14 to 19, characterized in that the rotation apparatus has a longitudinal undulation and, as a result, leads the corrugated core strips out of the plane for some time or leads them in such a way that individual corrugated core strips or a plurality of corrugated core strips are rotated one after another.
  21. The apparatus according to one of claims 14 to 20, characterized in that an apparatus for applying adhesive to the cover layers of the corrugated core strips is located upstream or in the region of the rotation of the corrugated core strips.
  22. The apparatus according to one of claims 16 to 21, characterized in that the apparatus for cutting and for rotation in each case has adjusting devices for the variable setting of the distance of the knives and guide elements in the width direction.
  23. A plurality of corrugated core strips which lie one beside the other, are connected to each other and lie in one plane and which each consist of a corrugated or a trapezoidal core with at least one cover layer, the cover layers of the corrugated core strips being parallel to one another and the longitudinal direction of the flutes of the corrugated core for each corrugated core strip extending transversely with respect to it, and the corrugated core strips being connected to one another, characterized in that for at least each second corrugated core strip, the cover layer of the one corrugated core strip is formed in one piece with the cover layer of one of the adjacent corrugated core strips and can be connected to it by being folded through 180° to form a folded honeycomb, so that the connections between adjacent corrugated core strips are arranged alternately on one side and the other side of the plane of the folded honeycomb.
  24. The plurality according to claim 23, characterized in that the ratio between the width and the height of each corrugated core strip lies in the range from 0.5 to 2.
EP00920578A 1999-03-26 2000-03-25 Folded honeycomb structure consisting of corrugated paperboard and method and device for producing the same Expired - Lifetime EP1165310B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19913830A DE19913830A1 (en) 1999-03-26 1999-03-26 Folded honeycomb made of corrugated cardboard, method and device for the production thereof
DE19913830 1999-03-26
PCT/EP2000/002646 WO2000058080A1 (en) 1999-03-26 2000-03-25 Folded honeycomb structure consisting of corrugated paperboard and method and device for producing the same

Publications (3)

Publication Number Publication Date
EP1165310A1 EP1165310A1 (en) 2002-01-02
EP1165310B1 EP1165310B1 (en) 2003-01-15
EP1165310B2 true EP1165310B2 (en) 2007-02-14

Family

ID=7902566

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00920578A Expired - Lifetime EP1165310B2 (en) 1999-03-26 2000-03-25 Folded honeycomb structure consisting of corrugated paperboard and method and device for producing the same

Country Status (10)

Country Link
US (1) US6800351B1 (en)
EP (1) EP1165310B2 (en)
JP (1) JP4740459B2 (en)
CN (1) CN1238182C (en)
AT (1) ATE231067T1 (en)
AU (1) AU762081B2 (en)
CA (1) CA2366504C (en)
DE (2) DE19913830A1 (en)
ES (1) ES2190410T5 (en)
WO (1) WO2000058080A1 (en)

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10164559B4 (en) * 2001-01-05 2004-01-29 Stolarov, Penio, Dr.-Ing. Process for the production of objects, volumes, furniture modules and furniture, and articles produced using this process
EP1347700A1 (en) * 2001-01-05 2003-10-01 Penio Dr.-Ing. Stolarov Method for producing objects, volumes, furniture modules and furniture, and articles produced by said method
US7288164B2 (en) 2004-06-30 2007-10-30 Cascades Canada Inc. Process and apparatus for manufacturing a honeycomb composite material
EP1824667B1 (en) * 2004-11-19 2010-07-21 Jochen Pflug Half closed thermoplastic honeycomb, their production process and equipment to produce
DE102004062264A1 (en) * 2004-12-23 2006-07-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Building element, in particular wall cladding, and method for its production
WO2007101868A2 (en) * 2006-03-08 2007-09-13 Recticel Automobilsysteme Gmbh Process for the production of a three-dimensionally shaped sandwich structure
CN101073933B (en) * 2006-05-19 2010-09-29 淄博豪特集成房屋制造有限公司 Production of engineering corrugated honeycomb with fire-retarding and mould-proof functions
US20080078495A1 (en) * 2006-06-28 2008-04-03 Carl Marschke Web Fluting Apparatus and method of Forming Open Core Web Elements
US7896999B2 (en) * 2006-06-28 2011-03-01 Carl R. Marschke Method of forming open core web elements
US7459049B2 (en) * 2006-06-28 2008-12-02 Marschke Carl R Method and apparatus for manufacturing open core elements from web material
US20080053022A1 (en) * 2006-07-13 2008-03-06 Marschke Carl R Hollow core floor and deck element
US7837144B2 (en) * 2006-08-11 2010-11-23 Techno-Sciences, Inc. Fluid-driven artificial muscles as mechanisms for controlled actuation
US7931240B2 (en) * 2006-08-11 2011-04-26 Techno-Sciences, Inc. Cellular support structures used for controlled actuation of fluid contact surfaces
US20080075916A1 (en) * 2006-09-27 2008-03-27 Bradford Company Strength to Weight Folded Honeycomb Product
US20080131654A1 (en) 2006-12-05 2008-06-05 Bradford Company Folded Product Made From Extruded Profile and Method of Making Same
US9550318B2 (en) 2006-12-05 2017-01-24 Bradford Company Method of making sandwich-like product starting with extruded profile
US8668855B2 (en) 2006-12-05 2014-03-11 Bradford Company Method of making core for sandwich-like product starting with extruded profile
US20080202672A1 (en) * 2007-02-23 2008-08-28 Bradford Company Method of Making Product From Fusible Sheets and/or Elements
CN101254669B (en) * 2008-03-14 2011-03-16 杨军 Horizontal fibers honeycomb papers core and cardboard
US20100048078A1 (en) * 2008-08-21 2010-02-25 E. I. Du Pont De Nemours And Company Folded Core Having a High Compression Modulus and Articles Made from the Same
DE102009045157A1 (en) 2009-09-30 2011-04-07 Voith Patent Gmbh Packaging material, process for producing packaging material and packaging product
US20110281080A1 (en) 2009-11-20 2011-11-17 E. I. Du Pont De Nemours And Company Folded Core Based on Carbon Fiber Paper and Articles Made from Same
US8610029B2 (en) * 2010-04-22 2013-12-17 Apple Inc. Systems and methods for using a portion of a housing in a button assembly
US8308885B2 (en) 2010-10-20 2012-11-13 Bradford Company Method of making multi-layered product having spaced honeycomb core sections
JP5890683B2 (en) * 2011-01-28 2016-03-22 キヤノン株式会社 Information processing apparatus and method
US8303744B2 (en) 2011-02-10 2012-11-06 Bradford Company Method of making multilayer product having honeycomb core
US8454781B2 (en) 2011-04-13 2013-06-04 Bradford Company Method of making multilayer product having honeycomb core of improved strength
US20130157001A1 (en) 2011-12-19 2013-06-20 E I Du Pont De Nemours And Company Structural core
DE102013000149A1 (en) 2012-01-06 2013-09-05 Bradford Co. Method for making honeycomb core for sandwich-like product in e.g. aerospace industry, involves flattening selected areas of extruded web and folding extruded web along transversely extending fold lines
US20130183484A1 (en) 2012-01-12 2013-07-18 E I Du Pont De Nemours And Company Core structures comprising tannin resin
US9434142B2 (en) 2012-01-26 2016-09-06 E I Du Pont De Nemours And Company Method of making a sandwich panel
US20140113104A1 (en) 2012-02-23 2014-04-24 E I Du Pont De Nemours And Company Fiber-resin composite sheet and article comprising the same
DE102012218686A1 (en) 2012-10-15 2014-04-17 Zf Friedrichshafen Ag Component for a chassis of a vehicle
US9393450B2 (en) * 2013-03-27 2016-07-19 Kyle Schueller Fire suppression aerial delivery system
JP2015058536A (en) * 2013-09-17 2015-03-30 株式会社森傳 Method of producing honeycomb structure
EP3077193A1 (en) * 2013-12-03 2016-10-12 Alfred Iseli Load-bearing honeycomb structures made from folded multilayer corrugated cardboard
US20150190981A1 (en) 2014-01-08 2015-07-09 E I Du Pont De Nemours And Company Metallic core having a high compression strength and articles made from same
US9976258B2 (en) 2014-10-03 2018-05-22 E I Du Pont De Nemours And Company Honeycomb core having a high compression strength
DE102014117078B4 (en) * 2014-11-21 2022-02-03 Technische Universität Dresden Folded core for a sandwich structure, method for producing a folded core and sandwich structure
DE102015010092A1 (en) 2015-08-03 2017-02-09 Sinecell Corrugated Technologies GmbH Method and device for producing honeycomb panels
IL240450A (en) * 2015-08-09 2016-09-29 Sitton Oren System and method for the manufacture of vertically oriented fluted multiwalls
USD810452S1 (en) 2015-08-20 2018-02-20 Furnitury Ltd. Stool
JP2018043381A (en) * 2016-09-13 2018-03-22 株式会社アサヒテクニカ Method of manufacturing laminated corrugated board, apparatus for manufacturing laminated corrugated board, laminated corrugated board, corrugated board
CN106739146B (en) * 2016-12-12 2019-02-19 芜湖市天申新材料科技有限公司 A kind of tooth form paper feeding activity shunting frame
CN106827674A (en) * 2016-12-12 2017-06-13 芜湖市天申新材料科技有限公司 One kind is packed for tooth form paper shunting frame
CN107364188B (en) * 2017-07-27 2023-04-28 寻乌县天源包装有限公司 Continuous production system of high-strength vertical corrugated board
CN111989212A (en) * 2018-02-16 2020-11-24 艾康科尔股份有限公司 Hierarchical honeycomb core with sandwich cell walls
US11246424B2 (en) 2018-04-23 2022-02-15 Elephant in a Box, Inc. Flexible foldable furniture by using honeycomb technology
KR20210033978A (en) * 2018-07-24 2021-03-29 로우 앤드 보나 게르마니 게엠베하 운트 코 카게 Folded core structure and method of providing folded core structure
DE102020120558A1 (en) 2020-08-04 2022-02-10 Technische Universität Dresden Process for the production of a corrugated web honeycomb core, corrugated web honeycomb core, use and component
JP7371600B2 (en) * 2020-10-05 2023-10-31 トヨタ自動車株式会社 Honeycomb core manufacturing method
CN117900347B (en) * 2024-03-15 2024-05-24 常州弘建新材料有限公司 Honeycomb aluminum plate corner profiling equipment

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1395801A (en) * 1972-08-11 1975-05-29 Honshu Paper Co Ltd Method and apparatus for producing a corrugated paper block
JPS5220918B1 (en) * 1975-04-17 1977-06-07
JPS5822150A (en) * 1981-08-03 1983-02-09 吉沢工業株式会社 Manufacture of core material and pad using corrugated-cardboard blank board as raw material
JPS6273934A (en) * 1985-09-27 1987-04-04 丹羽 孝人 Core material capable of being curved-surface machined
US4948445A (en) 1988-10-28 1990-08-14 Hees Ronald D Method and apparatus for making a corrugated fiberboard honeycomb structure
US5132156A (en) * 1990-03-07 1992-07-21 Down River International, Inc. Void filler
NL9300503A (en) * 1993-03-22 1994-10-17 Honicel Nederland Method and device for manufacturing a panel.
JPH0852829A (en) * 1994-05-18 1996-02-27 Yoshimasa Yokoyama Corrugated board material for laminating
JPH08324568A (en) * 1995-05-26 1996-12-10 Hisashi Yoshii Beam member and pallet using said member, and manufacture of the beam member
US5690601A (en) * 1996-06-10 1997-11-25 Marquip, Inc. Method and apparatus for slitting and scoring corrugated paperboard sheets for folding

Also Published As

Publication number Publication date
ATE231067T1 (en) 2003-02-15
US6800351B1 (en) 2004-10-05
ES2190410T3 (en) 2003-08-01
CA2366504A1 (en) 2000-10-05
AU4110400A (en) 2000-10-16
DE19913830A1 (en) 2000-09-28
WO2000058080A1 (en) 2000-10-05
CA2366504C (en) 2008-07-22
JP2002539991A (en) 2002-11-26
EP1165310B1 (en) 2003-01-15
AU762081B2 (en) 2003-06-19
DE50001100D1 (en) 2003-02-20
JP4740459B2 (en) 2011-08-03
EP1165310A1 (en) 2002-01-02
CN1345269A (en) 2002-04-17
CN1238182C (en) 2006-01-25
ES2190410T5 (en) 2007-10-01

Similar Documents

Publication Publication Date Title
EP1165310B2 (en) Folded honeycomb structure consisting of corrugated paperboard and method and device for producing the same
EP1603740B1 (en) Method and device for the production of a sandwich structure for a sandwich composite
EP2991822B1 (en) Method for making ductile honeycomb cores
DE69530181T3 (en) Process for producing a mineral fiber web
EP0746504B1 (en) Web-shaped member and connection device between two web-shaped members
DE102008022805A1 (en) Wavy veneer board for use with lightweight board, in e.g. furniture construction, has laminar wood veneers stuck with each other, where veneer board exhibits waveform e.g. zigzag waveform, viewed in longitudinal section
EP1688237B1 (en) Method for manufacturing plastic foam panels from extruded polystyrene foam material and covered panel
DE102005052691B3 (en) Honeycomb structure manufacturing method for e.g. industry, involves providing profiled material strips with different widths, which correspond to height of honeycomb, and connecting material strips with one another through laser welding
DE112012001685T5 (en) A method of producing a multi-layer product having a honeycomb core with improved strength
DE2434970A1 (en) MASTIX MASS AND COMPOSITE PANELS MANUFACTURED WITH IT
DE60318169T2 (en) Web-shaped composite material
EP2531348B1 (en) Expandable honeycomb core, method for the continuous production thereof and sandwich composite
EP2688722B1 (en) Method for edging wood-based material boards
DE3602210C2 (en)
EP2468495B1 (en) Sandwich board with reinforced edge area, reinforcement element and method for producing same
DE10305747A1 (en) Process to manufacture lightweight insulation lining with layers each consisting of a flat foil bonded to a corrugated foil
DE2523663A1 (en) CARDBOARD BLOCK
DE112011103551T5 (en) A method of making a multilayer product having spaced honeycomb core regions
DE2239203A1 (en) CONSTRUCTION AND CONSTRUCTION PANEL AND PROCESS AND EQUIPMENT FOR THEIR PRODUCTION (RIGID LIGHTWEIGHT PANEL IN DETACHED CONSTRUCTION)
EP3995304A1 (en) Moulding, upholstery material, core layer and method for manufacturing a moulding
DE3117095C2 (en) Process for the production of parts with corrugated cardboard covered on both sides as well as press or stamping deformable corrugated cardboard semi-finished product for the production of dimensionally stable finished product parts
DE19606195A1 (en) Folded honeycomb structure esp. used as sandwich core layer
DE3545406A1 (en) METHOD FOR THE PRODUCTION OF FURNITURE OF CARDBOARD WITH FURNITURE WITH DECORATED SURFACES
AT208047B (en) Reticulated cell arrangement and method of making the same
DE102022102916A1 (en) Cell structure, method of making a cell structure and cell support core

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010920

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 20020524

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030115

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030115

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030115

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50001100

Country of ref document: DE

Date of ref document: 20030220

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030325

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030415

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030415

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030515

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2190410

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

Ref document number: 1165310E

Country of ref document: IE

111L Licence recorded

Free format text: 0200 KAPPA PACKAGNG B.V.

Effective date: 20020924

Free format text: 0100 ASSIDOMAN AB

Effective date: 20020924

ET Fr: translation filed
PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: SCA PACKAGING MARKETING NV

Effective date: 20031015

111L Licence recorded

Free format text: 0100 KAPPA PACKAGNG B.V.

Effective date: 20020924

NLR1 Nl: opposition has been filed with the epo

Opponent name: SCA PACKAGING MARKETING NV

REG Reference to a national code

Ref country code: ES

Ref legal event code: GD2A

Effective date: 20020224

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PLAY Examination report in opposition despatched + time limit

Free format text: ORIGINAL CODE: EPIDOSNORE2

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLUE Nl: licence registered with regard to european patents

Effective date: 20040820

REG Reference to a national code

Ref country code: CH

Ref legal event code: AEN

Free format text: DAS PATENT IST AUFGRUND DES WEITERBEHANDLUNGSANTRAGS VOM 21.12.2004 REAKTIVIERT WORDEN.

ZE Nl: corrections to earlier entries in headings pe - xe

Free format text: PAT. BUL. 12/2004, HEADING UE, PAGE 1865, PATENT NO. 1165310: THE NAME OF THE LICENCEE "KAPPA PACKAGING B.V." SHOULD BE MODIFIED INTO; "KAPPA PACKAGING B.V."

PLBC Reply to examination report in opposition received

Free format text: ORIGINAL CODE: EPIDOSNORE3

PLAY Examination report in opposition despatched + time limit

Free format text: ORIGINAL CODE: EPIDOSNORE2

PLBC Reply to examination report in opposition received

Free format text: ORIGINAL CODE: EPIDOSNORE3

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20070214

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: AEN

Free format text: AUFRECHTERHALTUNG DES PATENTES IN GEAENDERTER FORM

NLR2 Nl: decision of opposition

Effective date: 20070214

NLR3 Nl: receipt of modified translations in the netherlands language after an opposition procedure
REG Reference to a national code

Ref country code: SE

Ref legal event code: RPEO

GBTA Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977)

Effective date: 20070418

ET3 Fr: translation filed ** decision concerning opposition
REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Date of ref document: 20070425

Kind code of ref document: T5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20110228

Year of fee payment: 12

Ref country code: SE

Payment date: 20110330

Year of fee payment: 12

Ref country code: AT

Payment date: 20110318

Year of fee payment: 12

Ref country code: CH

Payment date: 20110223

Year of fee payment: 12

Ref country code: IT

Payment date: 20110328

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110329

Year of fee payment: 12

Ref country code: ES

Payment date: 20110321

Year of fee payment: 12

Ref country code: GB

Payment date: 20110224

Year of fee payment: 12

Ref country code: BE

Payment date: 20110228

Year of fee payment: 12

BERE Be: lapsed

Owner name: *KATHOLIEKE UNIVERSTEIT LEUVEN RESEARCH & DEVELOPM

Effective date: 20120331

Owner name: *PFLUG JOCHEN

Effective date: 20120331

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20121001

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120326

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120325

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 231067

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120325

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20121130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50001100

Country of ref document: DE

Effective date: 20121002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120325

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120402

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120325

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

REG Reference to a national code

Ref country code: GB

Ref legal event code: S28

Free format text: APPLICATION FILED

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120325

REG Reference to a national code

Ref country code: FR

Ref legal event code: RN

Effective date: 20130212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121001

REG Reference to a national code

Ref country code: FR

Ref legal event code: FC

Effective date: 20130527

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20130710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120326

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130529

Year of fee payment: 14

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: FR

Effective date: 20130529

REG Reference to a national code

Ref country code: GB

Ref legal event code: S28

Free format text: APPLICATION WITHDRAWN

Effective date: 20140212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121002

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20141128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140331