EP1131389B1 - Procede et dispositif de craquage catalytique comprenant des reacteurs a ecoulements descendant et ascendant - Google Patents

Procede et dispositif de craquage catalytique comprenant des reacteurs a ecoulements descendant et ascendant Download PDF

Info

Publication number
EP1131389B1
EP1131389B1 EP99972244A EP99972244A EP1131389B1 EP 1131389 B1 EP1131389 B1 EP 1131389B1 EP 99972244 A EP99972244 A EP 99972244A EP 99972244 A EP99972244 A EP 99972244A EP 1131389 B1 EP1131389 B1 EP 1131389B1
Authority
EP
European Patent Office
Prior art keywords
catalyst
reactor
zone
feed
riser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99972244A
Other languages
German (de)
English (en)
Other versions
EP1131389A1 (fr
Inventor
Thierry Gauthier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP1131389A1 publication Critical patent/EP1131389A1/fr
Application granted granted Critical
Publication of EP1131389B1 publication Critical patent/EP1131389B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G51/00Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more cracking processes only
    • C10G51/06Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more cracking processes only plural parallel stages only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/14Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
    • C10G11/18Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique

Definitions

  • the present invention relates to a method and a device for the catalytic cracking of hydrocarbon charges.
  • the cracking reaction takes place in an elongated enclosure of substantially circular cross section, the catalyst being admitted to the lower part of the enclosure and the hydrocarbon feed previously atomized.
  • the contacting of the feedstock with the hot catalyst makes it possible to vaporize the hydrocarbons which then drive the catalyst towards the upper part of the reaction zone, the introduction of a driving fluid aiding the upward movement.
  • the products formed during the reaction have a very wide range of boiling points.
  • the products formed are generally distinguished according to their boiling point and their chemical nature: dry gases H2, H2S, molecules having 1 or 2 carbon atoms LPG (liquefied petroleum gases) molecules with 3 or 4 carbon atoms gasoline Molecules having at least 5 carbon atoms and boiling in less than 220 ° C LCO (light cycle oil) molecules whose boiling point is greater than 220 ° C and less than 360 ° C slurry molecules boiling in excess of 360 ° C coke heavy molecules (generally polyaromatic remaining adsorbed on the catalyst after the reaction).
  • dry gases H2, H2S molecules having 1 or 2 carbon atoms
  • LPG liquefied petroleum gases
  • gasoline Molecules having at least 5 carbon atoms and boiling in less than 220 ° C LCO (light cycle oil) molecules whose boiling point is greater than 220 ° C and less than 360 ° C slurry molecules boiling in excess of 360 ° C coke heavy molecules (generally polyaromatic remaining adsorbed on the catalyst after the reaction).
  • the yields that are generally obtained naturally depend on the quality of the treated feeds.
  • the observed yields (in% weight of the load) on the units are: dry gas 1-5% LPG 10-25% gasoline 30-55% OCH 15-25% slurry 5-20% coke 3-10%
  • the formed coke is burned in one or more chambers called regenerators to which the catalyst flows at its outlet from the reactor.
  • the heat produced by the combustion of the coke makes it possible to heat the catalyst, which is then reintroduced at the reactor inlet and brought into contact with the feedstock.
  • the catalytic cracking process is an adiabatic process.
  • the heat recovered by the catalyst during its passage through the regeneration zone is equal to the heat lost by the catalyst as it passes through the reaction zone. This therefore imposes on the operator operating conditions that are not independent of each other.
  • the operating conditions that affect the most efficiencies and selectivities for a given reactor are essentially the catalyst flow, which is generally related to the feed rate under the name C / O (C for Catalyst and O for Oil).
  • OLC which may be of interest in countries where middle distillates are in high demand in the fuel market, but LPGs (including propylene) and gasoline are unlikely to be maximized.
  • reaction zones generally used in the majority of cracking units current catalytic converters make it easy to operate under conditions of little cracking severe (C / O from 4 to 8 and reactor outlet temperatures of 500 to 550 ° C).
  • Time to hydrocarbon residence in this reaction zone consisting at least of a tube of substantially circular and elongated section in which the fluids flow globally from bottom to top commonly called riser, and from a separation system cracking vapors and catalyst is generally greater than 2s, of the order of 2 to About 10s.
  • the residence time of the hydrocarbons in contact with the catalyst is often itself greater than 1 s.
  • the downstream reactor combined with a mixture, as described in patent WO / FR98 / 12279, makes it possible to optimize the selectivities in recoverable products (LPG, gasolines) by minimizing the products not recoverable (a small increase in coke compared to a conventional reactor, but in very different temperature and C / O conditions, about 30% less gas dry compared to conventional technology) and to maximize conversion, thanks to obtaining conditions of very serious severity.
  • the main advantage of this type of device is to be able to contact catalyst and load optimally through the initial use of a downflow reactor.
  • the amount of coke present on the catalyst varies between 0.7 and 1.5% by weight, depending on the feedstock treated, the catalyst, operating conditions and the dimensioning of the unit. We know that under these conditions, the residual activity of the catalyst is low. It is therefore illusory to want to reintroduce catalyst in a new reaction chamber.
  • the catalyst from the downstream reactor can advantageously be introduced again into a reaction chamber such as a riser, optionally mixed with a regenerated catalyst stream (that is to say directly from the regeneration chamber).
  • the object of the present invention is to remedy these shortcomings of the prior art by proposing a series of distinct reaction zones that can operate under conditions of temperature and C / O very different. More specifically, the invention relates to a method of catalytic cracking composed of a reaction zone having at least two reactors, with in at least one of these reactors a flow of fluids and catalyst globally downstream (dropper reactor) and in at least one of these reactors a fluid flow and generally upward catalyst (reactor riser), these reactors being characterized by the fact that in each reactor, hydrocarbons introduced into the reactor are brought into contact with hot catalyst which allows the vaporization of these hydrocarbons if they are introduced in liquid form, these vaporized hydrocarbons reacting in the presence of the catalyst, these reacted hydrocarbons are then separated from the catalyst by separation means (inertial separators and / or cyclones) and leave the reaction zone to undergo the usual downstream treatments (fractionation, ). Reactors are also characterized by the fact that the downstream reactor (s) is followed by at least one up
  • the invention relates to a process for catalytic cracking in a bed or fluidized a hydrocarbon feedstock in two reaction zones, one to flow downstream catalyst, the other catalyst upflow, the process being characterized in that a feedstock and catalyst from at least one zone are introduced regeneration in the upper part of the downflow zone, circulate the filler and catalyst in said zone in a weight ratio: catalyst on filler C / O: 5 to 20, the cracked gases are separated from the coked catalyst from the flow zone descending into a first separation zone, the cracked gases are recovered, the coked catalyst in the lower part of the upflow zone, a charge in the lower part of said upflow zone, circulates the coked catalyst and said feedstock in a weight ratio C / O: 4 to 8, the catalyst is separated off wastewater produced in a second separation zone, the catalyst is stripped means of a gas filling in a stripping zone, the effluent and the gases of stripping and the used catalyst is recycled to the regeneration zone where it is regenerated at less in part by means of a regeneration gas
  • the residence times of the load in the dropper and the riser are respectively in general from 50 to 650 ms in the dropper and from 600 to 3000 ms in the nser and preferably 100 to 500 m s in the dropper and 1000 to 2500 ms in the riser.
  • the residence time is defined as the ratio of the volume of each of the reaction chambers (riser or dropper), referred to volume flow rate of the gaseous effluents from each chamber under the exit conditions.
  • the spent catalyst can be regenerated in two zones of superimposed regeneration, the spent catalyst to be regenerated is introduced into a first zone regeneration, the catalyst thus at least partially regenerated being sent to the second upper regeneration zone and the regenerated catalyst from the zone of Higher regeneration is introduced into the downflow zone.
  • the catalyst / oil ratio (C / O) may advantageously be between 7 and 15 for downflow reactor and between 5 and 7 for the upflow reactor.
  • the catalyst temperature at the outlet of the dropper is generally greater than that at the outlet of the riser. It may be from 500 ° C. to 700 ° C. and advantageously from 550 ° C. to 600 ° C. while that of the catalyst at the riser outlet may be from 500 ° C. to 550 ° C. and advantageously from 515 ° C to 530 ° C. These temperatures are closely dependent on the values of the ratios of the C / O, the C / O ratio of the dropper being higher than that of the user.
  • the feedstock supplying each of the reactors can be either a fresh load, ie a recycling of some of the products resulting from a fractionation downstream, or a mixture of both.
  • the charge can be injected co-currently or countercurrently into each of the two reactors.
  • the charge flow rate, for example, of recycle, in the Downstream reactor may be less than 50% by mass of the charge rate to be converted circulating in the riser reactor.
  • the invention also relates to the device for implementing the method. It generally comprises a first substantially vertical downflow reactor having an upper inlet and a lower outlet, first regenerated catalyst feed means connected to at least one spent catalyst regenerator and connected to said upper inlet, first atomized charge feed means disposed below the first catalyst feed means, a first chamber for separating the catalyst from a gas phase connected to the lower outlet of the first downstream reactor and having a gas phase outlet and a coked catalyst outlet, a second substantially vertical upflow reactor having a lower inlet and an upper outlet, a second catalyst supply means being connected to the coked catalyst outlet of the first separation chamber and to the lower inlet of the second reactor, second feed means in a feed located above the lower inlet of the second reactor, a second spent catalyst separation chamber and a second gas phase connected to said upper outlet of the second reactor, said second chamber having a catalyst stripping chamber and having an upper gas phase outlet and a lower catalyst outlet used, said lower output being connected to the regenerator.
  • FIG. 1 attached is a representation of the process under these conditions.
  • the catalyst regenerated in a regeneration zone (3) is transported to the inlet of a reactor globally descending by transfer means (4), withdrawn from the downstream reactor by means of transport (5) and introduced into an upstream reactor (2), then having traveled the reactor ascending, is transported by a line (7) to the regeneration zone (3).
  • the reactor ascendant can also be supplied with freshly regenerated catalyst by means (6) transporting the catalyst from the regeneration zone downward of the upstream reactor (2).
  • the load supplying each of the reactors can be either a fresh charge (line (8) for the downstream reactor, line (9) for the upstream reactor), or a recycle of a part of products from the downstream fractionation (line (16) for the downstream reactor, line (14) for the riser reactor), a mixture of both. It is possible to introduce in each reactor of the recycles of the fractionation independently of the means of introduction of the cool load (line (15) for the downstream reactor, line (13) for the upstream reactor).
  • the gaseous effluents from each reactor are transported to a zone of fractionation (10) of the various hydrocarbon cuts by conduits (11) for downstream reactor and (12) for the upstream reactor).
  • Figure 1 there is shown a arrangement where the fractionation is common to both reaction chambers.
  • the fractionation is independent for each of the reactors, which may be of great interest if the operating conditions of the two reaction zones are very different from each other. Indeed, in this case, the yield structures very different can economically justify the interest of effluent fractionation adapted to each of the reaction chambers.
  • FIG. 2 describes a possible arrangement of the various constituents of the process the invention. It is indeed necessary for the catalyst to circulate correctly between the different speakers that the pressures of each of the speakers are compatible with the rates of catalyst and hydrocarbon circulation desired in each of the enclosures.
  • the regeneration zone (3) consists of two enclosures (301) and (302) in which the catalyst is regenerated in a fluidized bed, air being introduced into each chamber.
  • the catalyst is transported between the two chambers by means of a lift (303), in which gas introduced at the base at a sufficient speed can transport the catalyst between the two speakers. This transport gas can be air.
  • the proportion of air needed to the regeneration is 30 to 70% in the enclosure (301), 5 to 20% in the lift (303) in order to transport the catalyst and 15 to 40% in the enclosure (302).
  • the Gaseous flue gases are dusted off by passing through separators (such as cyclones, shown here schematically (306 and 307).
  • separators such as cyclones, shown here schematically (306 and 307).
  • each enclosure (301) and (302) can be controlled by valves on the lines allowing the evacuation of combustion effluents, at least partially dusted.
  • FIG 2 shows how it is possible to transfer catalyst from a regeneration chamber (302) to the reactor (1).
  • the catalyst is withdrawn into a wall through an inclined line (304) of an angle generally between 30 and 70 ° with respect to the horizontal conducting the catalyst to a enclosure (305) in which the circulation of the catalyst is slowed down to allow evacuation any gas bubbles to the regeneration chamber through a balancing line (308).
  • the catalyst is then accelerated and descends through a transfer tube (309) to the reactor inlet.
  • the catalyst is maintained in the fluidized state through the addition of small amounts of gas throughout the transport. If the catalyst is thus maintained in a fluid state, this makes it possible to obtain at the entrance to the zone reaction (1) a pressure higher than that of smoke from external cyclones (307).
  • the reaction zone (1) defined as descending generally consists of means for introducing the catalyst (101), which may be a valve on a solid, an orifice, or simply opening a conduit, a contacting zone (103) located under (101) where the countercurrent catalyst, for example, encounters the hydrocarbon feed introduced by means (102), generally consisting of atomizers where the charge is finely divided into droplets usually using the introduction of auxiliary fluids such as steam of water.
  • the means for introducing the catalyst are located above the means introduction of the charge.
  • an area may optionally be reaction tube (104), of substantially elongate shape, shown vertically on the Figure 2 but this condition is not exclusive.
  • the average residence time of hydrocarbons in zones 103 to 104 will be less than 650 ms, preferably between 50 and 500ms.
  • the effluents of the dropper are then separated in a separator (105) described in application FR98 / 09672 incorporated as a reference where the residence time must be limited to maximum.
  • the gaseous effluents (cracked gases) of the separator can then undergo a step additional dedusting through external cyclones (108) arranged downstream on a line (106).
  • the gaseous effluents (cracked gases) are evacuated by a line (107).
  • the catalyst in the fluidized bed (111) then undergoes stripping (contact with a light gas such as steam, nitrogen, ammonia, hydrogen or even hydrocarbons whose number of carbon atoms is less than 3 (by means which are well described in the prior art) before being transferred to the upward reaction zone (2) through the conduit (110).
  • a light gas such as steam, nitrogen, ammonia, hydrogen or even hydrocarbons whose number of carbon atoms is less than 3 (by means which are well described in the prior art
  • Effluents gaseous stripping is generally removed from the fluidized bed (111) through the same means (106) and (108) which allow the evacuation of gaseous effluents from the zone reaction (1) via line (107). All effluents can be cooled by means of quench (not shown) on lines (106) or (107)
  • the reaction zone (2) is a substantially elongated tubular zone, many of which Examples are described in the prior art.
  • the load of hydrocarbons is introduced by means (202), generally consisting of atomizers where the charge is finely divided into droplets, usually using the introduction of fluids auxiliaries such as water vapor, introduced at the base of the reactor.
  • Means of introduction catalyst are located below the feed introduction means.
  • the introduction of the charge must be located above at least one catalyst inlet.
  • all the catalyst comes from the downstream reactor and the charge introduction means are therefore located above the pipe (110).
  • the upstream reactor will then be fed by several catalyst streams, at least one from a reactor descending.
  • the reaction is then carried out in the tubular or riser reactor (201).
  • the effluents from the riser are then separated in a separator (203) such as that described in FIG. (2) and in PCTFR application 98/01866 incorporated as a reference.
  • the catalyst from the separation (203) is then introduced into a fluidized bed (211) of a stripping chamber (212) through conduits or openings (204).
  • the catalyst in (211) is then stripped (contact with a light gas such as water vapor, nitrogen, ammonia, hydrogen or even hydrocarbons with less than 3 carbon atoms means which are well described in the prior art) before being transferred to the regeneration (301) through conduits (7).
  • the reaction gaseous effluents separated in (203) are discharged through a conduit (205) to a secondary separator (207) such that a cyclone before being directed to the fractionation section (10) via a conduit (206).
  • the stripping gaseous effluents are generally discharged from the fluidized bed (211) through the same means (206) which allow the evacuation of gaseous effluents from the zone reactional (2).
  • the coked catalyst is withdrawn from the stripping chamber (212) and recycled in the first regeneration chamber (301), located under the chamber 302 regeneration.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Description

La présente invention concerne un procédé et un dispositif pour le craquage catalytique de charges d'nydrocarbures.
On sait que l'industrie pétrolière utilise de façon usuelle des procédés de craquage dans lesquels les molécules d'hydrocarbures à poids moléculaire et à point d'ébullition élevés sont scindés en molécules plus petites à point d'ébullition plus faible.
Dans les procédés de craquage catalytique récents, décrits par exemple dans le brevet EP-A-291253, la réaction de craquage a lieu dans une enceinte allongée de section sensiblement circulaire, le catalyseur étant admis à la partie inférieure de l'enceinte ainsi que la charge hydrocarbonée préalablement atomisée. La mise en contact de la charge avec le catalyseur chaud permet de vaporiser les hydrocarbures qui entraínent alors le catalyseur vers la partie supérieure de la zone réactionnelle, l'introduction d'un fluide d'entraínement aidant le mouvement ascendant. Les produits formés au cours de la réaction ont une gamme de points d'ébullition très large. On distingue généralement les produits formés en fonction de leur température d'ébullition et de leur nature chimique :
gaz secs H2, H2S, molécules possédant 1 ou 2 atomes de carbones
GPL (gaz de pétrole liquéfiés) molécules possédant 3 ou 4 atomes de carbone
Essence molécules ayant au moins 5 atomes de carbone et dont le point d'ébullition est inférieur à 220 °C
LCO (light cycle oil) molécules dont le point d'ébullition est supéneur à 220 °C et inférieur à 360 °C
Slurry molécules dont le point d'ébullition est supérieur à 360 °C
coke molécules lourdes (généralement polyaromatiques restant adsorbées sur le catalyseur après la réaction).
Les points d'ébullition servant à délimiter les coupes sont donnés à titre indicatif et correspondent aux valeurs standard généralement admises. Néanmoins, ces points de coupe peuvent varier en fonction des besoins des raffineurs, qui, dans certains cas forment de plus des coupes intermédiaires des produits formés.
Les rendements que l'on obtient généralement dépendent naturellement de la qualité des charges traitées. Typiquement, à titre indicatif, les rendements observés (en % poids de la charge) sur les unités sont :
gaz sec 1-5 %
GPL 10-25 %
Essence 30-55 %
LCO 15-25%
Slurry 5-20 %
coke 3-10 %
Généralement, le coke formé est brûlé dans une ou plusieurs enceintes appelées régénérateurs vers lesquelles le catalyseur circule à sa sortie du réacteur. La chaleur produite par la combustion du coke permet de réchauffer le catalyseur qui est ensuite réintroduit à l'entrée du réacteur et mis en contact avec la charge. Le procédé de craquage catalytique est un procédé adiabatique. La chaleur récupérée par le catalyseur lors de son passage dans la zone de régénération est égale à la chaleur perdue par le catalyseur lors de son passage dans la zone réactionnelle. Cela impose donc à l'opérateur des conditions opératoires non indépendantes les unes des autres. Les conditions opératoires qui affectent le plus rendements et sélectivités pour un réacteur donné sont essentiellement le débit de catalyseur, que l'on rapporte généralement au débit de charge sous l'appellation C/O (C pour Catalyst et O pour Oil). Le domaine habituel d'opération des unités de craquage catalytique est généralement : C/O= 4-8 (C/O= rapport massique du débit de catalyseur sur le débit de charge)    T(au sommet du réacteur)=500-550 °C
On sait que la conversion augmente avec la température et le C/O. Néanmoins, cette augmentation peut entre autre s'accompagner d'une augmentation significative du rendement coke et des gaz secs avec des technologies classiques. L'augmentation du rendement en coke, par le biais de la balance thermique regénérateur-réacteur et du dimensionnement de l'unité, limite souvent l'opérateur à un domaine de conditions opératoires restreint, et pour un type de charge donnée à une structure de rendements assez figée.
Or, les variations des prix de vente des différents produits peuvent fluctuer en fonction du temps, ce qui peut induire au raffineur la volonté de maximiser certains produits au détriment de certains autres. De plus, l'évolution des spécifications imposées sur les produits dans les différents pays fait que certains produits issus du FCC peuvent ne plus trouver de débouché (par exemple, le LCO étant très aromatique et doté d'un très mauvais indice de cétane, son utilisation dans les carburants du pool gazole pose des problèmes, la teneur en soufre de l'essence lourde (160°C-220°C) rend son utilisation dans le pool des essences délicate dans certains cas). Il peut donc être intéressant donc de minimiser également certaines coupes.
Il est connu que la maximisation du propylène, produit à haute valeur ajoutée (molécule comprise dans la coupe GPL), passe par une sévérisation des conditions de réactions (plus haute température, plus fort C/O). Or, cette sévérisation impliquera que, dans le même temps, les rendements d'autres coupes baissent (LCO et essence).
En travaillant à basse sévérité, on tendra à maximiser le LCO, ce qui peut présenter un intérêt dans les pays où les distillats moyens sont très demandés sur le marché des combustibles, mais les GPL (dont le propylène) ainsi que l'essence ne seront vraisemblablement pas maximisés.
L'opération de la zone réactionnelle pour une unité conventionnelle n'est donc pas toujours compatible avec la tenue de deux objectifs tels que ces deux exemples non limitatifs :
  • la maximisation du propylène et du LCO
  • la minimisation de l'essence lourde, la maximisation de l'essence légère
Il y a donc intérêt à trouver des solutions permettant dans une zone réactionnelle d'opérer à la fois à basse sévérité et à haute sévérité, par exemple en utilisant deux zones réactionnelles opérant dans des conditions opératoires différentes.
Les zones réactionnelles généralement utilisées dans la majorité des unités de craquage catalytique actuelles permettent facilement d'opérer dans des conditions de craquage peu sévères (C/O de 4 à 8 et températures en sortie de réacteur de 500 à 550 °C). Le temps de séjour des hydrocarbures dans cette zone réactionnelle, constituée au minimum d'un tube de section sensiblement circulaire et de forme allongée dans lequel les fluides s'écoulent globalement du bas vers le haut appelé communément riser, et d'un système de séparation des vapeurs de craquage et du catalyseur est généralement supérieur à 2s, de l'ordre de 2 à 10s environ. Le temps de séjour des hydrocarbures au contact du catalyseur est souvent lui-même supérieur à 1 s.
La juxtaposition de deux réacteurs conventionnels pour obtenir deux types de conditions opératoires sur une même unité de craquage catalytique, tels que décrits par Niccum P.K., Miller R.B., Claude A. and M.A.Silvermann dans « Maxofin : a novel FCC process for maximizing light olefins using a new generation ZSM5 additive » (1998, NPRA annual meeting, San Francisco, Califomia, USA, 16 march 1998) rend nécessaire l'utilisation d'additifs dans le second riser où la réaction s'effectue dans des conditions plus sévères pour obtenir une sélectivité plus favorable. De plus, les conditions plus sévères dans le second réacteur induisent une augmentation très importante du rendement en coke (plus de 2 % par rapport à la charge). Ce type de système n'est donc pas agencé de manière optimale.
L'art antérieur peut aussi être illustré par les brevets US-4 424 116 et US 4 606 810 qui décrivent en enchaínement en série de deux réacteurs ascendants. Le brevet US 5 039 395 illustre par ailleurs l'arrière plan technologique.
Afin de minimiser une coupe, il est également possible, dans une unité possédant une ou plusieurs enceintes réactionnelles conventionnelles de type riser, de recycler dans le riser les produits dont on veut minimiser la production. Cela présente dans le cas des charges lourdes un avantage important pour la balance thermique des unités : la vaporisation du recycle consomme plus de chaleur et permet donc de produire plus de chaleur dans la zone de régénération et donc de produire plus de coke dans la zone réactionnelle ; de plus, astucieusement disposée en aval par rapport à l'injection de charge fraíche, l'injection du recycle permet de favoriser la vaporisation de la charge fraíche, ce qui, là encore, permet de traiter des charges de plus en plus lourdes (dont les points d'ébullition moyen et final sont plus élevés). Un tel dispositif est décrit par exemple pour le craquage des coupes lourdes dans le brevet FR 2 621 322.
Dans ce type de mise en oeuvre, les produits recyclés ne sont cependant pas exposés à des conditions très sévères et réagissent peu. Le but de ces recycles est plus lié au bilan thermique et à la vaporisation de la charge qu'à la destruction de ces recycles vers des produits plus valorisables.
Il est également possible de mettre en oeuvre ces recycles en amont de la charge, pour les exposer à des conditions plus sévères que la charge. Dans ces conditions néanmoins, les produits formés dans les conditions les plus sévères ont le temps de se dégrader au-dessus de l'injection de charge où le temps de séjour au contact du catalyseur est nécessairement assez long (supérieur à 1-2 s)
Afin d'opérer dans des conditions opératoires plus sévères, il est préférable de travailler avec des temps de séjour des hydrocarbures dans le réacteur qui sont plus courts. En effet, en augmentant la température, les réactions de dégradation thermique des produits sont de plus en plus prépondérantes. Pour limiter leur impact, il faut limiter le temps de séjour des hydrocarbures dans ces conditions. Plus, le temps de séjour est court et plus il est nécessaire de bien contrôler les mécanismes de mise en contact des hydrocarbures et du catalyseur, ainsi que l'hydrodynamique dans le réacteur. Le réacteur descendant, combiné à un système de mélange approprié, tel que décrit dans le brevet WO/FR98/12279 permet d'optimiser les sélectivités en produits valorisables (LPG, essences) en minimisant les produits non valorisables (augmentation minime du coke par rapport à un réacteur conventionnel, mais dans des conditions de température et de C/O très différentes, diminution de 30 % environ des gaz secs par rapport à une technologie conventionnelle) et de maximiser la conversion, grâce à l'obtention de conditions de sévérité très importante.
Il est donc envisageable, pour accroítre la flexibilité d'opération des FCC de disposer d'un enchaínement d'un réacteur descendant avec un réacteur ascendant. Néanmoins, selon le brevet EP-B-573316 décrivant ce dispositif, tous les produits exposés dans le réacteur descendant doivent ensuite passer dans le réacteur ascendant. Le temps de séjour des produits formés dans le réacteur descendant est donc allongé par le temps de parcours dans le réacteur ascendant. De plus, il n'est pas suggéré d'opérer ces deux réacteurs dans des conditions opératoires significativement différentes.
L'avantage essentiel de ce type de dispositif est de pouvoir mettre en contact catalyseur et charge de manière optimale grâce à l'utilisation initiale d'un réacteur descendant.
La mise en contact des hydrocarbures avec le catalyseur en réacteur descendant lorsqu'elle est effectuée correctement et lorsque le temps de contact entre le catalyseur et les hydrocarbures est limité, permet de minimiser la quantité de coke formé, Il en résulte donc une teneur en coke sur le catalyseur beaucoup plus faible que dans un réacteur ascendant équivalent. Combinée à des conditions opératoires adaptées (circulation de catalyseur plus élevée par rapport à une même quantité de charge), cela peut permettre de réduire la teneur en coke sur le catalyseur de manière très significative, ce qui est particulièrement avantageux pour les charges lourdes, dont le pouvoir cokant est bien connu. De plus on sait que le coke déposé sur le catalyseur tend à désactiver significativement le catalyseur, ce d'autant plus qu'il y a de coke déposé. Typiquement, dans les réacteurs ascendants conventionnels, la quantité de coke présente sur le catalyseur varie entre 0,7 et 1,5 % poids, en fonction de la charge traitée, du catalyseur, des conditions opératoires et du dimensionnement de l'unité. On sait que dans ces conditions, l'activité résiduelle du catalyseur est faible. Il est donc illusoire de vouloir réintroduire ce catalyseur dans une nouvelle enceinte réactionnelle. Par contre, dans le cas d'un réacteur descendant, il est possible de limiter le taux de cokage du catalyseur à des valeurs voisines de 0,2-0,5 % poids dépendant des conditions opératoires, où son activité résiduelle reste importante. Dans ces conditions, le catalyseur issu du réacteur descendant peut avantageusement être à nouveau introduit dans une enceinte réactionnelle telle qu'un riser, éventuellement mélangé à un flux de catalyseur régénéré (c'est-à-dire directement issu de l'enceinte de régénération). On voit donc bien que ces résultats permettent d'envisager sereinement un enchaínement de zones réactionnelles d'abord descendantes, puis ascendantes où le catalyseur issu de la zone réactionnelle descendante serait totalement réintroduit à l'entrée du réacteur ascendant.
L'objet de la présente invention est de remédier à ces lacunes de l'art antérieur en proposant un enchaínement de zones réactionnelles distinctes pouvant opérer dans des conditions de température et de C/O très différentes. Plus précisément, l'invention concerne un procédé de craquage catalytique composé d'une zone réactionnelle présentant au moins deux réacteurs, avec dans l'un au moins de ces réacteurs un écoulement des fluides et du catalyseur globalement descendant (réacteur droppeur) et dans au moins l'un de ces réacteurs un écoulement de fluide et de catalyseur globalement ascendant (réacteur riser), ces réacteurs étant caractérisés par le fait que dans chaque réacteur, des hydrocarbures introduits dans le réacteur sont mis en contact avec du catalyseur chaud qui permet la vaporisation de ces hydrocarbures si ceux-ci sont introduits sous forme liquide, ces hydrocarbures vaporisés réagissant ensuite en présence du catalyseur, ces hydrocarbures ayant réagi sont ensuite séparés du catalyseur par des moyens de séparation (séparateurs inertiels et/ou cyclones) et sortent de la zone réactionnelle pour subir les traitements aval habituels (fractionnement, ...). Les réacteurs sont également caractérisés par le fait que le ou les réacteurs descendants sont suivis d'au moins un réacteur ascendant, tout le catalyseur du ou des réacteur(s) descendant(s) passant alors dans au moins un réacteur ascendant en aval.
Plus particulièrement, l'invention concerne un procédé de craquage catalytique en lit entraíné ou fluidisé d'une charge d'hydrocarbures dans deux zones réactionnelles, l'une à écoulement descendant de catalyseur, l'autre à écoulement ascendant de catalyseur, le procédé étant caractérisé en ce qu'on introduit une charge et du catalyseur provenant d'au moins une zone de régénération dans la partie supérieure de la zone à écoulement descendant, on fait circuler la charge et le catalyseur dans ladite zone selon un rapport pondéral : catalyseur sur charge C/O : 5 à 20, on sépare les gaz craqués du catalyseur coké provenant de la zone à écoulement descendant dans une première zone de séparation, on récupère les gaz craqués, on introduit le catalyseur coké dans la partie inférieure de la zone à écoulement ascendant, on introduit une charge dans la partie inférieure de ladite zone à écoulement ascendant, on y fait circuler le catalyseur coké et ladite charge selon un rapport pondéral C/O : 4 à 8, on sépare le catalyseur usé de l'effluent produit dans une deuxième zone de séparation, on stripe le catalyseur au moyen d'un gaz de stnpage dans une zone de stripage, on récupère l'effluent et les gaz de stripage et on recycle le catalyseur usé dans la zone de régénération où il est régénéré au moins en partie au moyen d'un gaz de régénération.
Les temps de séjour de la charge dans le droppeur et le riser sont respectivement en général de 50 à 650 ms dans le droppeur et de 600 à 3000 ms dans le nser et de préférence 100 à 500 m s dans le droppeur et 1000 à 2500 ms dans le riser. Le temps de séjour est défini comme le rapport du volume de chacune des enceintes réactionnelles (riser ou droppeur), rapportée au débit volumique des effluents gazeux de chaque enceinte dans les conditions de sortie.
Selon une caractéristique du procédé, le catalyseur usé peut être régénéré dans deux zones de régénération superposées, le catalyseur usé à régénérer est introduit dans une première zone de régénération inférieure, le catalyseur ainsi au moins en partie régénéré étant envoyé dans la deuxième zone de régénération supérieure et le catalyseur régénéré provenant de la zone de régénération supérieure est introduit dans la zone d'écoulement descendant.
Le rapport catalyseur sur huile (C/O) peut être avantageusement compris entre 7 et 15 pour le réacteur à écoulement descendant et entre 5 et 7 pour le réacteur à écoulement ascendant.
La température du catalyseur en sortie du droppeur est en général supérieure à celle en sortie du riser. Elle peut être de 500 °C à 700 °C et avantageusement de 550 °C à 600 °C tandis que celle du catalyseur en sortie de riser peut être de 500 °C à 550 °C et avantageusement de 515 °C à 530 °C. Ces températures sont étroitement dépendantes des valeurs des rapports respectifs du C/O, le rapport C/O du droppeur étant plus élevé que celui du user.
Selon une caractéristique du procédé, la charge alimentant chacun des réacteurs peut être soit une charge fraíche, soit un recycle d'une partie des produits issus d'un fractionnement en aval, ou un mélange des deux.
De manière préférée, on peut introduire une charge fraíche dans le réacteur ascendant et ledit recycle au moins en partie dans le réacteur descendant.
Il peut être avantageux d'introduire la charge du réacteur ascendant au-dessus du point d'introduction du catalyseur coké et du point d'introduction du catalyseur régénéré.
La charge peut être injectée à co-courant ou à contre-courant dans chacun des deux réacteurs.
Selon une caractéristique du procédé, le débit de charge par exemple de recycle, dans le réacteur descendant peut représenter moins de 50 % en masse du débit de charge à convertir circulant dans le réacteur ascendant.
L'invention concerne aussi le dispositif pour la mise en oeuvre du procédé. Il comporte en règle générale un premier réacteur descendant sensiblement vertical ayant une entrée supérieure et une sortie inférieure,
un premier moyen d'alimentation en catalyseur régénéré connecté à au moins un régénérateur de catalyseur usé et raccordé à ladite entrée supérieure,
un premier moyen d'alimentation en la charge atomisée disposé en dessous des premiers moyens d'alimentation en catalyseur,
une première enceinte de séparation du catalyseur d'une phase gazeuse raccordée à la sortie inférieure du premier réacteur descendant et ayant une sortie de la phase gazeuse et une sortie de catalyseur coké,
un deuxième réacteur ascendant sensiblement vertical ayant une entrée inférieure et une sortie supérieure,
un second moyen d'alimentation en catalyseur étant connecté à la sortie de catalyseur coké de la première enceinte de séparation et à l'entrée inférieure du deuxième réacteur,
un second moyen d'alimentation en une charge située au-dessus de l'entrée inférieure du deuxième réacteur,
une deuxième enceinte de séparation de catalyseur usé et d'une seconde phase gazeuse raccordée à ladite sortie supérieure du deuxième réacteur, ladite deuxième enceinte comportant une chambre de stripage de catalyseur et ayant une sortie supérieure d'une phase gazeuse et une sortie inférieure de catalyseur usé, ladite sortie inférieure étant connectée au régénérateur.
L'invention sera mieux comprise au vu des figures suivantes, parmi lesquelles :
  • la figure 1 montre une description schématique du procédé, l'écoulement du catalyseur étant en trait plein alors que celui des hydrocarbures est en pointillé.
  • la figure 2 illustre schématiquement un dispositif comprenant un droppeur, un séparateur intermédiaire et un riser.
La figure 1 ci-jointe est une représentation du procédé dans ces conditions. Le catalyseur régénéré dans une zone de régénération (3) est transporté à l'entrée d'un réacteur globalement descendant par des moyens de transfert (4), soutiré du réacteur descendant par des moyens de transport (5) et introduit dans un réacteur ascendant (2), puis, ayant parcouru le réacteur ascendant, est transporté par une ligne (7) vers la zone de régénération (3). Le réacteur ascendant peut également être alimenté en catalyseur fraíchement régénéré par des moyens (6) de transport du catalyseur de la zone de régénération vers le bas du réacteur ascendant (2). La charge alimentant chacun des réacteurs peut être soit une charge fraíche (ligne (8) pour le réacteur descendant, ligne (9) pour le réacteur ascendant), soit un recycle d'une partie des produits issus du fractionnement en aval (ligne (16) pour le réacteur descendant, ligne (14) pour le réacteur ascendant), soit un mélange des deux. Il est possible d'introduire dans chaque réacteur des recycles du fractionnement indépendamment des moyens d'introduction de la charge fraíche (ligne (15) pour le réacteur descendant, ligne (13) pour le réacteur ascendant). Les effluents gazeux issus de chaque réacteur sont transportés vers une zone de fractionnement (10) des différentes coupes d'hydrocarbures par des conduits (11) pour le réacteur descendant et (12) pour le réacteur ascendant). Sur la figure 1, on a représenté un agencement où le fractionnement est commun aux deux enceintes réactionnelles. Néanmoins, il est également possible que le fractionnement soit indépendant pour chacun des réacteurs, ce qui peut présenter un grand intérêt si les conditions opératoires des deux zones réactionnelles sont très différentes les unes des autres. En effet, dans ce cas, les structures de rendement très différentes peuvent économiquement justifier l'intérêt d'un fractionnement des effluents adapté à chacune des enceintes réactionnelles.
Il peut être avantageux de refroidir en aval de la première zone de séparation et de strippage au moins une partie du produit effluent du réacteur descendant, étant donné sa température de sortie de ce réacteur, par un produit résultant d'un fractionnement aval ou par une partie au moins de l'effluent sortant du réacteur ascendant.
La figure 2 décrit un agencement possible des différents constituants du procédé objet de l'invention. Il faut en effet, pour que le catalyseur circule correctement entre les différentes enceintes que les pressions de chacune des enceintes soient compatibles avec les taux de circulation de catalyseur et d'hydrocarbures désirés dans chacune des enceintes. Sur la figure 2, la zone de régénération (3) est constituée de deux enceintes (301) et (302) dans lesquelles le catalyseur est régénéré en lit fluidisé, de l'air étant introduit dans chaque enceinte. Le catalyseur est transporté entre les deux enceintes au moyen d'un lift (303), dans lequel du gaz introduit à la base à une vitesse suffisante permet de transporter le catalyseur entre les deux enceintes. Ce gaz de transport peut être de l'air. Typiquement, la proportion d'air nécessaire à la régénération est de 30 à 70 % dans l'enceinte (301), de 5 à 20 % dans le lift (303) afin de transporter le catalyseur et de 15 à 40 % dans l'enceinte (302). Des moyens (304), tels qu'une vanne sur solide de type « vanne à bouchon » permettent de contrôler le débit de circulation entre les enceintes (301) et (302). Dans chacune des deux enceintes (301) et (302), les effluents gazeux de combustion sont dépoussiérés grâce à un passage dans des séparateurs (tels que des cyclones, représentés ici schématiquement (306 et 307). La pression dans chaque enceinte (301) et (302) peut être contrôlée par des vannes situées sur les lignes permettant l'évacuation des effluents de combustion, au moins partiellement dépoussiérées.
Le catalyseur est ensuite transféré vers les zones réactionnelles. Sur la figure 2, on a représenté un enchaínement de deux zones réactionnelles, l'une étant descendante (1), l'autre en aval étant ascendante (2). Dans cet exemple, tout le catalyseur circulant dans le réacteur (2) circule également dans le réacteur (1). Néanmoins, il est dans certains cas intéressant de mélanger, à l'entrée du riser (2), le catalyseur issu de (1) avec du catalyseur provenant directement de l'enceinte de régénération (3). A titre d'exemple, la figure 2 montre comment il est possible de transférer du catalyseur d'une enceinte (302) de régénération vers le réacteur (1). Le catalyseur est soutiré en paroi à travers une ligne inclinée (304) d'un angle compris généralement entre 30 et 70° par rapport à l'horizontale conduisant le catalyseur jusqu'à une enceinte (305) dans laquelle la circulation du catalyseur est ralentie pour permettre d'évacuer d'éventuelles bulles de gaz vers l'enceinte de régénération à travers une ligne d'équilibrage (308). Le catalyseur est ensuite accéléré et descend à travers un tube de transfert (309) jusqu'à l'entrée du réacteur. Durant tout son trajet depuis l'enceinte de régénération, le catalyseur est maintenu dans l'état fluidisé grâce à l'ajout de petites quantités de gaz tout le long du transport. Si le catalyseur est maintenu ainsi à l'état fluide, cela permet d'obtenir à l'entrée de la zone réactionnelle (1) une pression supérieure à celle des fumées issues des cyclones extemes (307). La zone réactionnelle (1) définie comme descendante est généralement constituée de moyens d'introduction du catalyseur (101), qui peuvent être une vanne sur solide, un orifice, ou simplement l'ouverture d'un conduit, d'une zone de mise en contact (103) située sous (101) où le catalyseur rencontre à contre-courant par exemple la charge d'hydrocarbures, introduite par des moyens (102), généralement constitués d'atomiseurs où la charge est divisée finement en gouttelettes à l'aide généralement de l'introduction de fluides auxiliaires tels que la vapeur d'eau. Les moyens d'introduction du catalyseur sont situés au-dessus des moyens d'introduction de la charge. Entre la zone de mise en contact (103) et des moyens de séparation des hydrocarbures du catalyseur (105), on peut éventuellement disposer une zone de réaction (104), de forme sensiblement allongée, représentée de manière verticale sur la figure 2 mais cette condition n'est pas exclusive. Le temps de séjour moyen des hydrocarbures dans les zones 103 à 104 sera inférieur à 650 ms, préférentiellement compris entre 50 et 500ms. Les effluents du droppeur sont ensuite séparés dans un séparateur (105) décrit dans la demande FR98/09672 incorporée comme référence où le temps de séjour doit être limité au maximum. Les effluents gazeux (gaz craqués) du séparateur peuvent alors subir une étape supplémentaire de dépoussièrage à travers des cyclones externes (108) disposés en aval sur une ligne (106). Les effluents gazeux (gaz craqués) sont évacués par une ligne (107). Il est également possible de refroidir les effluents gazeux, afin de limiter la dégradation thermique des produits, en injectant par exemple des hydrocarbures liquides dans l'effluent sortant des cyclones (108) par la ligne (107). Le catalyseur séparé dans le séparateur (105) est alors soit réinjecté directement à la base d'un réacteur ascendant (201) à travers un conduit (110), comme il est indiqué sur la figure 2, soit introduit dans un lit fluidisé (111) d'une charge de stripage à travers un conduit ou une ouverture (109). Le catalyseur dans le lit fluidisé (111) subit alors un stripage (contactage avec un gaz léger tel que- la vapeur d'eau, l'azote, l'ammoniac, l'hydrogène ou même des hydrocarbures dont le nombre d'atomes de carbones est inférieur à 3 (par des moyens qui sont bien décrits dans l'art antérieur) avant d'être transféré vers la zone réactionnelle ascendante (2) à travers le conduit (110). Les effluents gazeux de stripage sont généralement évacués du lit fluidisé (111) à travers les mêmes moyens (106) et (108) qui permettent l'évacuation des effluents gazeux de la zone réactionnelle (1) par la ligne (107). Tous les effluents peuvent être refroidis par des moyens de quench (non représentés) sur les lignes (106) ou (107)
La zone réactionnelle (2) est une zone tubulaire sensiblement allongée, dont de nombreux exemples sont décrits dans l'art antérieur. Dans l'exemple donné sur la figure 2, la charge d'hydrocarbures est introduite par des moyens (202), généralement constitués d'atomiseurs où la charge est divisée finement en gouttelettes, à l'aide généralement de l'introduction de fluides auxiliaires tels que la vapeur d'eau, introduits à la base du réacteur. Des moyens d'introduction du catalyseur sont situés au-dessous des moyens d'introduction de la charge. Pour que la zone réactionnelle soit considérée comme ascendante, il faut que l'introduction de la charge soit située au-dessus d'au moins une entrée de catalyseur. Dans le cas de la figure 2, tout le catalyseur provient du réacteur descendant et les moyens d'introduction de la charge sont donc situés au-dessus de la conduite (110). Dans le cas contraire, le réacteur ascendant sera alors alimenté par plusieurs courants de catalyseur, l'un au moins provenant d'un réacteur descendant. Il sera alors possible de positionner l'introduction de charge (202) au-dessus d'au moins une alimentation en catalyseur (provenant par exemple de la zone de régénération) et en-dessous d'au moins une alimentation en catalyseur (provenant par exemple d'un réacteur descendant). La réaction s'effectue ensuite dans le réacteur tubulaire ou riser (201). Les effluents du riser sont ensuite séparés dans un séparateur (203) tel que celui décrit sur la figure (2) et dans la demande PCTFR 98/01866 incorporée comme référence. Le catalyseur issu de la séparation (203) est alors introduit dans un lit fluidisé (211) d'une chambre de stripage (212) à travers des conduits ou des ouvertures (204). Le catalyseur dans (211) subit alors un stripage (contactage avec un gaz léger tel que la vapeur d'eau, l'azote, l'ammoniac, l'hydrogène ou même des hydrocarbures dont le nombre d'atomes de carbones est inférieur à 3 par des moyens qui sont bien décrits dans l'art antérieur) avant d'être transféré vers la zone de régénération (301) à travers des conduits (7). Les effluents gazeux réactionnels séparés dans (203) sont évacués à travers un conduit (205) vers un séparateur secondaire (207) tel qu'un cyclone avant d'être dirigés vers la section de fractionnement (10) par un conduit (206). Les effluents gazeux de stripage sont généralement évacués du lit fluidisé (211) à travers les mêmes moyens (206) qui permettent l'évacuation des effluents gazeux de la zone réactionnelle (2).
Le catalyseur coké est soutiré de la chambre de stripage (212) et recyclé dans la première enceinte de régénération (301), située sous l'enceinte 302 de régénération.
En disposant astucieusement les enceintes les unes par rapport aux autres, il est possible de faire fonctionner le procédé correctement tout en maintenant les effluents dans la ligne (106) et dans la ligne (206) à la même pression imposée en aval de la colonne de fractionnement, sans disposer de vanne de contrôle de pression différentielle des lignes (106) et (206).
A titre d'exemple et pour illustrer l'intérêt de l'invention, on a comparé les résultats obtenus par une unité industrielle munie d'un réacteur ascendant classique (cas A) traitant une charge lourde et équipée d'un système de double régénération tel que décrit sur la figure 2 avec les résultats que l'on obtiendrait en insérant un réacteur descendant en amont de ce réacteur dans deux cas. Dans le premier cas (cas B), on a considéré un enchaínement de deux zones réactionnelles sans séparation des vapeurs d'hydrocarbures en sortie du réacteur descendant. Il est alors nécessaire d'injecter toute la charge fraíche à l'entrée du réacteur descendant. Dans le deuxième cas (cas C), le réacteur descendant est alimenté par la coupe LCO produite par le réacteur ascendant avec séparation des vapeurs d'hydrocarbures en sortie du réacteur descendant tandis que le réacteur ascendant est alimenté par la charge fraíche. Cela permet de découpler totalement les conditions opératoires de ces deux réacteurs, et comme on le voit dans la structure de rendements globale réacteur descendant + réacteur ascendant rapportée à la charge fraíche, d'obtenir une minimisation du rendement LCO au profit de l'essence et des LPG, beaucoup plus avantageuse que dans le cas d'un enchaínement tel que celui du cas B. Ce changement de sélectivités se fait avec une légère augmentation de la production de gaz secs et de coke, minimisée toutefois grâce à l'emploi de la technologie du réacteur descendant à court temps de séjour.
On voit par ailleurs que le taux de recycle selon le cas C est substantiellement diminué pour maintenir une température de sortie du catalyseur et d'effluents du riser à une valeur comparable.
Figure 00120001
Dans l'exemple, les notations suivantes ont été adoptées.
On note
   RA = réacteur ascendant
   RD = réacteur descendant
   REG1 : première enceinte de régénération
   REG2 : deuxième enceinte de régénération
   CUFCC : charge fraíche totale à l'entrée de l'unité de FCC.
   C/O (catalyseur sur huile)
Les propriétés de la charge d'hydrocarbures considérées sont :
  • densité : d 15 / 4 = 0,934
  • teneur en soufre : %S = 0,5
  • Carbone Conradson : 5,6
  • Claims (17)

    1. Procédé de craquage catalytique en lit entrainé ou fluidisé d'une charge d'hydrocarbures dans deux zones réactionnelles, l'une (1) à écoulement descendant de catalyseur, l'autre (2) à ecoulement ascendant de catalyseur, le procédé étant caractérisé en ce qu'on introduil une charge (102) et du catalyseur provenant d'au moins une zone de régénération (302) dans la partie supérieure de la zone à écoulement descendant, on fait circuler la charge et le catalyseur dans ladite zone selon un rapport pondéral : catalyseur sur charge C/O ; 5 à 20 durant un temps de séjour inférieur à 650 ms, on sépare les gaz craqués du catalyseur coké provenant de la zone à écoulement descendant dans une première zone de séparation (105), on récupère (107) les gaz craqués, on introduit le catalyseur coké dans la partie inférieure de la zone à écoulement ascendant, on introduit (202) une charge dans la partie inférieure de ladite zone (2) à écoulement ascendant, on y fait circuler le catalyseur coké et ladite charge selon un rapport pondéral C/O : 4 à 8, on sépare le catalyseur usé de l'effluent produit, dans une deuxième zone (203) de séparation, on strippe le catalyseur au moyen d'un gaz de stripage dans une zone (212) de stripage, on récupère (206) l'effluent et les gaz de stripage et on recycle (7) le catalyseur usé dans la zone de régénération où il est régénéré au moins en partie au moyen d'un gaz de régénération.
    2. Procédé selon la revendication 1, dans lequel le temps de séjour de la charge dans le réacteur descendant est de 100 à 500ms et celui de la charge dans le réacteur ascendant est de 600 à 3000 ms, de préférence 1000 à 2500ms.
    3. Procédé selon l'une des revendications 1 à 2, dans lequel le catalyseur usé est régénéré dans deux zones de régénération superposées, le catalyseur usé à régénérer est introduit dans une première zone de régénération inférieure, le catalyseur ainsi au moins en partie régénéré étant envoyé dans la deuxième zone de régénération supérieure et le catalyseur régénéré provenant de la zone de régénération supérieure est introduit dans la zone d'écoulement descendant.
    4. Procédé selon l'une des revendications 1 à 3, dans lequel le rapport C/O est compris entre 7 et 15 pour le réacteur à écoulement descendant et entre 5 et 7 pour le réacteur à écoulement ascendant.
    5. Procédé selon l'une des revendications 1 à 4, dans lequel la charge alimentant chacun des réacteurs est une charge fraíche, un recycle d'une partie des prodults issus d'un fractionnement en aval, ou un mélange des deux.
    6. Procédé selon l'une des revendications 1 à 5, dans lequel la catalyseur coké provenant de la zone à écoulement descendant est strippé par un gaz après avoir été séparé et avant d'être introduit dans le réacteur ascendant et les gaz de stripage sont récupérés.
    7. Procédé selon d'une des revendications 1 à 6, dans lequel la zone réactionnelle à écoulement ascendant est alimentée en outre par du catalyseur régénéré.
    8. procédé selon la revendication 7, dans lequel on introduit la charge entre les deux points d'introduction de catalyseur régénéré et de catalyseur coke dans la zone d'écoulement ascendant.
    9. Procédé selon la revendication 7 dans lequel on introduit la charge au-dessus du point d'introductoin du catalyseur coké et du point d'introduction du catalyseur régénéré dans le réacteur ascendant .
    10. Procédé selon l'une des revendications 1 à 8 dans lequel on introduit une charge fraíche dans le réacteur ascendant et ledit recycle au moins en partie dans le réacteur descendant.
    11. Procédé selon l'une des revendications 1 à 10, dans lequel le débit de charge et de préférence de recycle dans le réacteur descendant représente moins de 50 % en masse de débit de charge à convertir circulant dans le réacteur ascendant
    12. Dispositif pour le craquage catalytique en lit fluidisé ou entraíné d'une charge hydrocarbonée comportant :
      un premier réacteur descendant (1) sensiblement vertical ayant une entrée supérieure et une sortie inférieure.
      un premier moyen d'alimentation (101) en catalyseur régénéré connecté à au moins un régénérateur de catalyseur usé et raccordé à ladite entrée supérieure,
      un premier moyen d'alimentation (102) en la charge atomisée disposé en dessous des premiers moyens d'alimentation en catalyseur.
      une première enceinte de séparation (105) du catalyseur d'une phase gazeuse raccordée à la sortie inférieure du premier réacteur descendant (1) et ayant une sortie (106) de la phase gazeuse et une sortie de catalyseur coké,
      un deuxième réacteur ascendant (2) sensiblement vertical ayant une entrée inférieure et une sortie supérieure.
      un second moyen d'alimentation (110) en catalyseur étant connecté à la sortie de catalyseur coké de la première enceinte de séparation et à l'entrée inférieure du deuxième réacteur,
      un second moyen d'alimentation (202) en une charge située au-dessus de l'entrée inférieure du deuxième réacteur,
      une deuxième enceinte de séparation (203) de catalyseur usé et d'une seconde phase gazeuse raccordée à ladite sortie supérieure du deuxième réacteur, ladite deuxième enceinte comportant une chambre de stripage (212) de Catalyseur et ayant une sonie supérieure (206) d'une phase gazeuse et une sortie (7) inférieure de catalyseur usé, ladite sortie inférieure étant connectée au régénérateur (3D1).
    13. Dispositif selon la revendication 12, dans lequel la première anceinte (105) de séparation comporte une chambre (111) de stripage du catalyseur en communication avec celle-ci.
    14. Dispositif selon l'une des revendications 12 ou 13, dans lequel le deuxième réacteur ascendant comporte un moyen supplémentaire d'alimentation en catalyseur raccordé au régénérateur et disposé au-dessus du moyen d'alimentation en la charge.
    15. Dispositif selon l'une des revendications 12 ou 13, dans lequel le deuxième réacteur ascendant comporte un moyen supplémentaire d'alimentation en catalyseur raccordé au régénérateur et disposé au-dessous du moyen d'alimentation en la charge.
    16. Dispositif selon l'une des revendications 12 à 15 dans lequel des moyens de quench des effluents sont disposés en aval de la premiers enceinte de séparation.
    17. Dispositif selon l'une des revendications 12 à 16, qui comprend deux régénérateurs de catalyseur, dans lequel le second régénérateur (302) est connecté au premier moyen d'alimentation (309, 101) en catalyseur du premier réacteur descendant (1) et dans lequel le premier régénérateur (301) disposé au-dessous du second est raccordé à la deuxième enceinte (203,211) de séparation et de strippage.
    EP99972244A 1998-11-13 1999-11-12 Procede et dispositif de craquage catalytique comprenant des reacteurs a ecoulements descendant et ascendant Expired - Lifetime EP1131389B1 (fr)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    FR9814319A FR2785907B1 (fr) 1998-11-13 1998-11-13 Procede et dispositif de craquage catalytique comprenant des reacteurs a ecoulements descendant et ascendant
    FR9814319 1998-11-13
    PCT/FR1999/002801 WO2000029508A1 (fr) 1998-11-13 1999-11-12 Procede et dispositif de craquage catalytique comprenant des reacteurs a ecoulements descendant et ascendant

    Publications (2)

    Publication Number Publication Date
    EP1131389A1 EP1131389A1 (fr) 2001-09-12
    EP1131389B1 true EP1131389B1 (fr) 2004-07-14

    Family

    ID=9532733

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP99972244A Expired - Lifetime EP1131389B1 (fr) 1998-11-13 1999-11-12 Procede et dispositif de craquage catalytique comprenant des reacteurs a ecoulements descendant et ascendant

    Country Status (9)

    Country Link
    US (1) US6641715B1 (fr)
    EP (1) EP1131389B1 (fr)
    JP (1) JP2002530467A (fr)
    KR (1) KR100607922B1 (fr)
    AT (1) ATE271114T1 (fr)
    DE (1) DE69918710T2 (fr)
    ES (1) ES2226502T3 (fr)
    FR (1) FR2785907B1 (fr)
    WO (1) WO2000029508A1 (fr)

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO2024015599A1 (fr) * 2022-07-14 2024-01-18 Uop Llc Procédé et appareil pour séparer un catalyseur d'un produit gazeux

    Families Citing this family (14)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR2802211B1 (fr) * 1999-12-14 2002-02-01 Inst Francais Du Petrole Procede et dispositif de craquage catalytique comprenant en parallele au moins un reacteur a ecoulement ascendant et au moins un reacteur a ecoulement descendant
    FR2811327B1 (fr) * 2000-07-05 2002-10-25 Total Raffinage Distribution Procede et dispositif de craquage d'hydrocarbures mettant en oeuvre deux chambres reactionnelles successives
    CN1205305C (zh) * 2001-11-29 2005-06-08 中国石油化工股份有限公司 一种催化裂化反应-再生***
    FR2894849B1 (fr) * 2005-12-20 2008-05-16 Inst Francais Du Petrole Nouveau reacteur a deux zones reactionnelles fluidisees avec systeme de separation gaz/solide integre
    CN101029248B (zh) * 2006-02-28 2012-08-15 中国石油化工股份有限公司 一种增产轻烯烃的方法
    US20080011645A1 (en) * 2006-07-13 2008-01-17 Dean Christopher F Ancillary cracking of paraffinic naphtha in conjuction with FCC unit operations
    US20080011644A1 (en) * 2006-07-13 2008-01-17 Dean Christopher F Ancillary cracking of heavy oils in conjuction with FCC unit operations
    FR2909897B1 (fr) * 2006-12-13 2009-06-26 Inst Francais Du Petrole Nouveau systeme de separation gaz solide pour les regenerateurs des unites de craquage catalytique en lit fluidise
    FR2918070B1 (fr) * 2007-06-27 2012-10-19 Inst Francais Du Petrole Zone reactionnelle comportant deux risers en parallele et une zone de separation gaz solide commune en vue de la production de propylene
    FR2935377B1 (fr) * 2008-08-29 2013-02-15 Inst Francais Du Petrole Procede de conversion d'une charge lourde en essence et en propylene presentant une structure de rendement modulable
    KR20100091403A (ko) * 2009-02-10 2010-08-19 에스케이에너지 주식회사 질소를 이용한 스트리핑 방법
    WO2012004805A1 (fr) 2010-07-08 2012-01-12 Indian Oil Corporation Ltd. Régénération ascendante de catalyseur fcc pour craquage à plusieurs étages
    US9434892B2 (en) 2010-07-08 2016-09-06 Indian Oil Corporation Ltd. Two stage fluid catalytic cracking process and apparatus
    CN103814114B (zh) 2011-07-27 2018-04-24 沙特***石油公司 在下流式反应器中流化催化裂化链烷烃族石脑油

    Family Cites Families (10)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US3902856A (en) * 1971-10-05 1975-09-02 Texaco Inc Hydrogenation reactor with improved flow distribution
    US4385985A (en) * 1981-04-14 1983-05-31 Mobil Oil Corporation FCC Reactor with a downflow reactor riser
    US4424116A (en) * 1982-03-25 1984-01-03 Ashland Oil, Inc. Converting and stripping heavy hydrocarbons in two stages of riser conversion with regenerated catalyst
    US4606810A (en) * 1985-04-08 1986-08-19 Mobil Oil Corporation FCC processing scheme with multiple risers
    FR2615199B1 (fr) * 1987-05-11 1991-01-11 Inst Francais Du Petrole Procede de vapocraquage dans une zone reactionnelle en lit fluide
    FR2667609B1 (fr) * 1990-10-03 1993-07-16 Inst Francais Du Petrole Procede et dispositif de craquage catalytique en lit fluide a courant descendant.
    FR2690922B1 (fr) * 1992-05-07 1994-07-22 Inst Francais Du Petrole Procede et dispositif de craquage catalytique dans deux zones reactionnelles successives.
    FR2715163B1 (fr) * 1994-01-18 1996-04-05 Total Raffinage Distribution Procédé de craquage catalytique en lit fluidisé d'une charge d'hydrocarbures, notamment d'une charge à forte teneur en composés azotés basiques.
    FR2753453B1 (fr) * 1996-09-18 1998-12-04 Total Raffinage Distribution Procede et dispositif de craquage catalytique en lit fluidise d'une charge d'hydrocarbures, mettant en oeuvre une zone de mise en contact amelioree
    FR2811327B1 (fr) * 2000-07-05 2002-10-25 Total Raffinage Distribution Procede et dispositif de craquage d'hydrocarbures mettant en oeuvre deux chambres reactionnelles successives

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO2024015599A1 (fr) * 2022-07-14 2024-01-18 Uop Llc Procédé et appareil pour séparer un catalyseur d'un produit gazeux

    Also Published As

    Publication number Publication date
    ATE271114T1 (de) 2004-07-15
    KR100607922B1 (ko) 2006-08-04
    DE69918710T2 (de) 2004-12-02
    FR2785907A1 (fr) 2000-05-19
    FR2785907B1 (fr) 2001-01-05
    ES2226502T3 (es) 2005-03-16
    JP2002530467A (ja) 2002-09-17
    US6641715B1 (en) 2003-11-04
    DE69918710D1 (de) 2004-08-19
    KR20010089439A (ko) 2001-10-06
    EP1131389A1 (fr) 2001-09-12
    WO2000029508A1 (fr) 2000-05-25

    Similar Documents

    Publication Publication Date Title
    EP1242569B1 (fr) Procede et dispositif de craquage catalytique comprenant en parallele au moins un reacteur a ecoulement ascendant et au moins un reacteur a ecoulement descendant
    EP1131389B1 (fr) Procede et dispositif de craquage catalytique comprenant des reacteurs a ecoulements descendant et ascendant
    EP1800742B1 (fr) Réacteur à deux zones réactionnelles fluidisées avec système de séparation gaz/solide intégré
    EP0208609B2 (fr) Procédé et dispositif pour le craquage catalytique de charges d'hydrocarbures, avec contrôle de la température de réaction
    CA2352018C (fr) Procede et dispositif de craquage d'hydrocarbures mettant en oeuvre deux chambres reactionnelles successives
    EP2627736B1 (fr) Procede de craquage et de stripage multi-etage dans une unite de fcc.
    EP0171330B1 (fr) Procédé et appareil pour craquage catalytique en lit fluide
    EP2336273B1 (fr) Procédé de craquage catalytique avec maximisation des bases gazoles
    EP0323297A1 (fr) Procédé de conversion d'hydrocarbures en lit fluidisé
    EP0489726B1 (fr) Procede et dispositif de vapocraquage d'hydrocarbures en phase fluidisee
    JPH0645787B2 (ja) 炭化水素の接触分解方法
    FR2659346A1 (fr) Procede de craquage avec oligomerisation ou trimerisation des olefines presentes dans les effluents.
    EP0291408B1 (fr) Procédé de vapocraquage dans une zone réactionnelle en lit fluide
    CA2095794C (fr) Procede et dispositif de craquage catalytique dans deux zones reactionnelles successives
    FR2770225A1 (fr) Procede et dispositif de vaporisation selective des charges d'hydrocarbures en craquage catalytique
    FR2682119A1 (fr) Perfectionnements aux dispositifs de craquage catalytique a l'etat fluide de charges d'hydrocarbures.
    FR2521157A1 (fr) Preparation d'une charge de craquage catalytique fluide par vaporisation selective
    WO1991003527A1 (fr) Procede et dispositif de vapocraquage d'hydrocarbures en phase fluidisee
    EP0322276A1 (fr) Procédé et dispositif pour le craquage catalytique de charges lourdes comportant un second strippage en lit fluide
    LU84039A1 (fr) Procede et appareil de vaporisation selective
    FR2659976A1 (fr) Craquage catalytique avec refroidissement brusque.
    BE892090A (fr) Preparation d'une charge de craquage catalytique fluide par vaporisation selective
    FR3038904A1 (fr) Procede permettant de realiser le bouclage du bilan thermique sur une unite de craquage catalytique de naphta dite ncc
    FR2523997A1 (fr) Procede et appareil de vaporisation selective pour l'elimination du carbone et des metaux contenus dans les fractions lourdes de petrole
    FR2627187A1 (fr) Procede de craquage a l'etat fluide d'une charge d'hydrocarbures

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20010613

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

    Effective date: 20040714

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040714

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040714

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040714

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040714

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040714

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REF Corresponds to:

    Ref document number: 69918710

    Country of ref document: DE

    Date of ref document: 20040819

    Kind code of ref document: P

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: FRENCH

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20041014

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20041014

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20041014

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20041112

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20041130

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20041130

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20041130

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20041130

    GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

    Effective date: 20040714

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2226502

    Country of ref document: ES

    Kind code of ref document: T3

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    BERE Be: lapsed

    Owner name: INSTITUT FRANCAIS DU PETROLE

    Effective date: 20041130

    26N No opposition filed

    Effective date: 20050415

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    BERE Be: lapsed

    Owner name: INSTITUT FRANCAIS DU *PETROLE

    Effective date: 20041130

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20041214

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: CD

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R081

    Ref document number: 69918710

    Country of ref document: DE

    Owner name: IFP ENERGIES NOUVELLES, FR

    Free format text: FORMER OWNER: INSTITUT FRANCAIS DU PETROLE, RUEIL-MALMAISON, HAUTS-DE-SEINE, FR

    Effective date: 20110331

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 17

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 18

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 19

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20181123

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20181203

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20181214

    Year of fee payment: 20

    Ref country code: FR

    Payment date: 20181121

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R071

    Ref document number: 69918710

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: MK

    Effective date: 20191111

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20200804

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20191113