EP1242569B1 - Procede et dispositif de craquage catalytique comprenant en parallele au moins un reacteur a ecoulement ascendant et au moins un reacteur a ecoulement descendant - Google Patents

Procede et dispositif de craquage catalytique comprenant en parallele au moins un reacteur a ecoulement ascendant et au moins un reacteur a ecoulement descendant Download PDF

Info

Publication number
EP1242569B1
EP1242569B1 EP00983393A EP00983393A EP1242569B1 EP 1242569 B1 EP1242569 B1 EP 1242569B1 EP 00983393 A EP00983393 A EP 00983393A EP 00983393 A EP00983393 A EP 00983393A EP 1242569 B1 EP1242569 B1 EP 1242569B1
Authority
EP
European Patent Office
Prior art keywords
catalyst
zone
feed
dropper
riser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00983393A
Other languages
German (de)
English (en)
Other versions
EP1242569A1 (fr
Inventor
Renaud Pontier
Patrick Leroy
Jean-Paul Lepage
Marcellin Espeillac
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP1242569A1 publication Critical patent/EP1242569A1/fr
Application granted granted Critical
Publication of EP1242569B1 publication Critical patent/EP1242569B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G51/00Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more cracking processes only
    • C10G51/06Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more cracking processes only plural parallel stages only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/14Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
    • C10G11/18Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique

Definitions

  • the present invention relates to a process and apparatus for catalytic cracking (FCC) entrained bed comprising parallel reactors comprising at least one downflow reactor (dropper) and at least one upflow catalyst reactor (commonly called riser) from at least one regeneration zone.
  • FCC catalytic cracking
  • catalytic cracking units with dual regeneration with charge injection in the form of fine droplets met the need to work on heavy cuts.
  • the patent application FT98 / 14319 describes a series of a dropper and a riser in series. It describes in detail the advantages of a second reactor which is operated under conditions very different in temperature and in C / O of the main riser: in particular, this second reactor advantageously represents an additional capacity of treatment of a heavy load in producing a minimal amount of coke compared to a conventional reactor; it also becomes possible to crack some cuts (called recycles) from the main riser undesirable (low recovery or cuts not meeting certain specifications such as sulfur or aromatic content) to maximize the yield of valuable cuts (LPG, gasoline) .
  • the fresh feed is introduced at the bottom of the riser and it is the LCO product of the riser which is introduced as load of the dropper.
  • Such a configuration makes it possible to maximize the gasoline yield by depleting the LCO under relatively severe cracking conditions.
  • the disadvantage of this system with a dropper and a riser in series is that for a large load capacity dropper, the riser reactor works with a significant amount of partially deactivated catalyst through its passage into the dropper (the deactivation from the coke deposition on the catalyst). This results in decreased efficiency that does not allow to draw the full potential of this association.
  • the other patented configuration by Stone and Webster is to implement two risers in parallel by working from regenerated catalyst in a common regeneration zone.
  • An object of the invention is to overcome the disadvantages of the prior art.
  • the object of the invention is described in the claims of independent claims 1 and 12.
  • Optional features of the invention are described in the claims of dependent claims 2-11 and 13-16.
  • Another object is to crack both heavy hydrocarbons and light hydrocarbons under severe reaction conditions, in a reactor adapted to this type of conditions, the dropper or downflow reactor and much less severe in a riser or reactor. upflow so as to promote the formation of very different products meeting the specificities of each type of reactor.
  • the invention relates to a process for catalytic cracking in a fluidized or fluidized bed of at least one hydrocarbon feedstock in at least two reaction zones, at least one having an upward flow, into which the feedstock is introduced and of the catalyst from at least one regeneration zone in the lower part of the upflow reaction zone, the feedstock and the catalyst are circulated from bottom to top in said zone, the first gases produced from the coked catalyst are separated in a the first separation zone, the catalyst is stripped by means of a stripping gas, a first cracking and stripping effluent is recovered and the coked catalyst is recycled to the regeneration zone and regenerated at least partly by means of an oxygen-containing gas, the process being characterized by introducing catalyst from at least one regeneration zone and a hydrocarbon feedstock formed in the upper part of at least one downflow reaction zone, the catalyst and the feed are circulated up and down under suitable conditions, the coked catalyst is separated from the second produced gases in a second separation zone, the second product gases are recovered and the coked catalyst is recycled to the regeneration zone.
  • the temperature of the catalyst at the outlet of the downstream reactor may be greater than that at the outlet of the riser reactor.
  • the catalyst from the second separation zone can be stripped by means of a recycle gas which is usually steam and the resulting hydrocarbons are recovered in general with the cracking gases.
  • the catalyst to be regenerated from the first separation zone is introduced into a first regeneration zone operating at a suitable temperature, the at least partially regenerated catalyst being sent to the second regeneration zone operating at a higher temperature and the catalyst regenerated from the second regeneration zone is introduced into the upflow reaction zone and the downflow reaction zone.
  • the coke catalyst from the second separation zone may be recycled to the first regeneration zone either by gravity flow, generally in the dense zone, or by flow through a riser comprising fluidizing air as a motor ( lift), usually in the diluted zone of the first regeneration zone.
  • the hydrocarbon feedstock or each of the feeds can be introduced into the upward reaction zone and the downward reaction zone by co-current injection of the catalyst flow or countercurrent, or countercurrently. current for one and co-current for the other. Nevertheless, a countercurrent injection in the two zones seems preferable for a better vaporization of the introduced droplets.
  • the feedstock supplying each of the reaction zones may be a so-called fresh non-cracked feedstock, a recycle of a part of the products resulting from a fractionation downstream or a mixture of the two.
  • the charge of one of the reaction zones may be either heavier or lighter than that flowing in the other zone. More particularly, the charge of the upflow reaction zone may be a vacuum distillate or an atmospheric residue or a recycle of a portion of the products from the downward reaction zone and the charge of the downflow zone is a non-feedstock. or a recycle of a portion of the products from the upward reaction zone and preferably a gasoline cut or an LCO cut.
  • the flow of charge and for example recycle (LCO cut, HCO or gasoline) circulating in the downstream reactor may represent less than 50% by weight of the feed rate to be converted in the upward reaction zone.
  • the downstream reactor technology makes it possible to minimize the amount of coke formed. This results in a much lower coke content on the catalyst than in an equivalent upflow reactor.
  • the coke content is thus very significantly reduced so that the amount of heat released by the combustion of this additional coke in the regenerator (s) is significantly lower than the amount of heat consumed by the vaporization of the feedstock and the heat of reaction to the dropper reactor.
  • the regeneration side catalyst is cooled compared to the previous situation comprising only one traditional riser.
  • This heat extraction effect which can be obtained equivalently by a heat exchanger on the regeneration side (catcooler) or by the vaporization of an almost chemically inert recycle (MTC) downstream of the charge injection in the direction of the flow of the catalyst in a riser or dropper reactor, allows either to treat loads with higher carbon conradson, or to increase the flow of charge, or to take advantage of the temperature decrease at (x) regenerator (s) ) to increase the circulation of catalyst (C / O) to riser and dropper.
  • the heat required for the reaction and the reaction side vaporization is provided by the regenerated catalyst, heated by combustion of the coke regenerator (s).
  • the heat extraction effect makes it necessary to increase the circulation of catalyst with a constant charge flow rate and thus to benefit from better catalytic activity (more active sites). It is also possible to treat more refractory charges in the dropper.
  • the second chamber for separating the catalyst from the cracking effluents may not comprise a stripping chamber.
  • prestriping means for example by steam can be introduced into the separation chamber and the evacuation of the steam can be carried out with the effluents of cracking and prestriping.
  • the second separation chamber comprises a catalyst stripping chamber with stripping vapor injection, in communication with it, as described for example in the Applicant's patent application.
  • FR 98/09672 The cracking and stripping effluents are generally discharged by common means.
  • it may comprise two superposed regenerators of coked catalyst, the second being located above the first, means of circulation of the catalyst from the first regenerator to the second regenerator.
  • Said first and second catalyst supply means are connected to the second regenerator and the lower outlet of the first separation chamber is connected to the first regenerator via the first recycling means.
  • a regeneration zone (1) of the coked catalyst comprises two superposed regeneration chambers (2) and (3) in which the catalyst is regenerated in a fluidized bed, air being introduced at the base of each enclosure by means not shown in the figure.
  • Each chamber has its own dedusting means (4, 5) (cyclones) and evacuation (9, 10) of the coke combustion effluents.
  • the pressure in each chamber (2) and (3) can be controlled by valves on the lines allowing the evacuation of combustion effluents at least partially dusted.
  • the catalyst is transported between the two chambers by means of an ascending column (6). Air, generally introduced at the base by an injector (7), at a sufficient speed makes it possible to transport the catalyst between the two enclosures.
  • the proportion of air required for regeneration is 30 to 70% in the lower chamber (2) operating at a lower temperature (670 ° C. for example) and 15 to 40% in the upper chamber (3). ) operating at higher temperature (770 ° C for example), 5 to 20% of air flowing in the lift to transport the catalyst.
  • a valve on a solid (8) valve cap type to control the flow rate between the speakers (2) and (3).
  • the substantially regenerated catalyst from the second regenerator located above the first (3) is sent from a dense bed (11) into a disengaging well (13) through a conduit (12) inclined at an angle usually between 30 and 70 degrees from the horizontal.
  • the circulation of the catalyst is slowed down to allow any gas bubbles to be evacuated to the second regeneration chamber (3) through a pressure equalizing line (14).
  • the catalyst is then accelerated and descends through a transfer tube (15) to the inlet of a reactor (16) with downward flow (dropper).
  • the catalyst is maintained in the fluidized state by adding small amounts of gas throughout the transport. If the catalyst is thus maintained in the fluidized state, this makes it possible to obtain at the inlet of the dropper a pressure greater than that of the fumes coming from the external cyclones (5).
  • the dropper (16) comprises means for introducing the regenerated catalyst (17), which may be a solid-state valve, an orifice or simply the opening of a conduit, into a contact zone (18) located below the valve (17), where the catalyst encounters against the current for example, the hydrocarbon feed introduced by injectors (19), generally consist of atomizers where the load is finely divided into droplets through the introduction of auxiliary fluids such as water vapor.
  • injectors (19) generally consist of atomizers where the load is finely divided into droplets through the introduction of auxiliary fluids such as water vapor.
  • the means for introducing the catalyst are situated above the means for introducing the charge. Between the contacting zone (18) and the means for separating the hydrocarbons from the catalyst (20), it is possible to have a substantially elongated reaction zone (21), represented vertically in the figure, but this condition is not exclusive.
  • the average residence time of the hydrocarbons in the zones (18) and (21) will for example be less than 650 ms, preferably between 50 and 500 ms.
  • the effluents of the dropper are then separated in the separator (20), for example as described in the application FR98 / 09672 where the residence time must be limited to the maximum.
  • the gaseous effluents (cracked gases) from the separator can then undergo an additional step of dedusting through cyclones, for example external cyclones (22), arranged downstream on a line (23). These gaseous effluents (cracked gases) are evacuated by a line (24).
  • the gaseous stripping effluents are generally discharged from the fluidized bed (28) through the same means (23, 22) which allow the evacuation of gaseous effluents from the dropper (16) via the line (24).
  • the coked catalyst is raised by a fluidization gas (29) in the dense fluidized bed of the second regenerator (3).
  • the riser reaction zone (30) is a substantially elongated tubular zone, many examples of which are described in the prior art.
  • the hydrocarbon charge is introduced by means (31), generally consisting of atomizers where the charge is finely divided into droplets, generally using the introduction of auxiliary fluids such as as water vapor, introduced through the means (31).
  • the means for introducing the catalyst are located below the feed introduction means.
  • the feed introduction is located above the catalyst inlet.
  • These means for introducing the catalyst into the riser (30) comprise a withdrawal well (32) conforming to that (13) which feeds the dropper, connected to the dense bed of the second catalyst regenerator (3) via a conduit (33) inclined at substantially the same angle as that of the conduit (12).
  • the well (32) is further connected to the diluted fluidized bed by a pressure equalizing line (34).
  • a line (35) At the base of the well, a line (35) first vertical and then inclined is connected to the lower part of the riser.
  • a control valve (36) disposed on the line (35) regulates the regenerated catalyst flow at the inlet of the riser as a function of the catalyst outlet temperature and the effluents at the top of the riser.
  • Fluidizing gas introduced at the base of the riser by injection means (37) circulate the catalyst cocurrently with the charge in the riser.
  • the load could have been injected against the current flow down the riser.
  • an injection of a light cut of hydrocarbons or a heavier cut (LCO or HCO for example), from downstream distillation of the riser cracking effluents can be carried out in this riser.
  • the cut introduced can represent 10 to 50% by weight of the feed introduced into the riser and can contribute to maximize the production of gasoline.
  • the cracking reaction is carried out in the riser.
  • the cracking effluents are then separated in a separator (38), for example as described in the application PCT FR 98/01866 .
  • the catalyst resulting from the separation is then introduced into a fluidized bed (39) of a stripping chamber (40) located below the separator, through conduits (41) or openings.
  • the catalyst in the chamber (39, 40) is then subjected to stripping (contact with a light gas such as water vapor, nitrogen, ammonia, hydrogen or even hydrocarbons with a number of carbon atoms of less than 3) by means not shown in the figure.
  • the stripped catalyst is then transferred to the dense bed of the first regeneration chamber (2) via a conduit (45).
  • the gaseous cracking and stripping effluents separated in the separator (38) are discharged through a conduit (42) to a secondary separator (43) such as a cyclone for example internal to the chamber (39, 40) before be directed to the downstream fractionation section by a conduit (44).
  • the results obtained were compared by an industrial unit equipped with a conventional upstroke reactor treating a heavy load and equipped with a double regeneration system as described in the figure with the results obtained by inserting a downstream reactor in parallel, the new reactor then being fed by two sections, different in each example, produced by the upstream reactor.
  • the results of this comparison are based on the industrial results obtained with the unit equipped with the upstream reactor and cracked pilot tests of the section under consideration.
  • the new conditions to satisfy the thermal balance of the unit as a whole are recalculated with a process model.
  • the catalyst comes from the second regenerator.
  • the cracking effluents are distilled and a portion of the HCO cut obtained as well as all of a heavy gasoline cut (170 ° C-200 ° C) are recycled into the riser.
  • This recycle consisting of 49.3% HCO and 50.7% heavy gasoline cut, represents 27.1% by weight of the fresh load riser.
  • An additional cut is recycled as a feed into the dropper which is fed, in turn, by catalyst from the second regenerator.
  • the coked catalyst from the stripper connected to the riser is recycled in the dense phase of the first regenerator while the one from the stripper connected to the dropper is recycled by means of a lift in the dense phase of the second regenerator.
  • the conditions are maintained at riser (ROT and recycle) by increasing the C / O of the riser.
  • propylene can be produced in a substantial amount (53% more) by a really severe cracking dropper, while maintaining a satisfactory gasoline yield.
  • the temperature the second regenerator dropped by 21 ° C (catcooler effect).
  • a gain in conversion of fresh feed of 1.9% is obtained by depletion of LCO and slurry.
  • the conditions are maintained at riser (ROT and recycle) by increasing the C / O of the riser.
  • REG1 first regeneration chamber
  • REG2 second regeneration chamber
  • RA RA + RD FCC Unit Charge (CU FCC) kg / s 48.08 48.08 RA hydrocarbon recycle % fresh load 27.14 27.14 C / O RA - 6.33 6.60
  • T output RA (ROT) ° C 516 516 T fresh charge RA ° C 174 174 Trecycle RA ° C 178 178 T REG 1 ° C 692 689 T REG2 ° C 778 767 air used for regeneration t / h 173.5 190.1 Proportion (air regl) / (air) % 65.7 61.4 total) C / O RD - - 9.7 T output RD ° C - 603 T charge RD ° C - 180 returns dry gases % CU FCC 4.77 4.98 Propane % CU FCC 0.95 1.10 propylene % CU FCC 4.31 4.85 C3 cut (prop

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Processing Of Solid Wastes (AREA)

Description

  • La présente invention concerne un procédé et un dispositif de craquage catalytique (FCC) en lit entraîné comprenant des réacteurs en parallèle comprenant au moins un réacteur à écoulement descendant (dropper) et au moins un réacteur à écoulement ascendant de catalyseur (communément appelé riser) provenant d'au moins une zone de régénération.
  • L'évolution du raffinage est marquée de plus en plus par la flexibilité requise des unités du point de vue des charges à traiter mais aussi par la polyvalence des effluents produits.
  • C'est ainsi que le FCC a dû évoluer pour accepter des charges de plus en plus lourdes (carbone conradson jusqu'à 10 et d4 15 jusqu'à 1,0 par exemple) et que dans le même temps il lui était demandé d'accroître son rendement en coupe essence, mais aussi en propylène dont le besoin augmentait en pétrochimie.
  • Les caractéristiques spécifiques d'unités de craquage catalytique comportant une double régénération avec injection de la charge sous forme de fines gouttelettes répondaient au besoin de travailler sur des coupes lourdes.
  • Plus récemment, et dans le même sens, a été ajouté à cette unité un module d'extraction de chaleur (échangeur catcooler), permettant par son extraction de calories de traiter des charges sans limite haute du carbone conradson. Toujours dans la même optique de traitement de charge lourde, a été développé et breveté le concept de réacteur descendant à temps de séjour court (0,1 à 1 seconde) permettant d'atteindre des conditions de craquage sévères (par exemple température élevée jusqu'à 650 °C et circulation de catalyseur importante - rapport massique de catalyseur sur charge ou C/O de 10 à 20 -) Les conditions de craquage sévères permettent de maximiser la conversion. Cependant, afin d'obtenir une bonne sélectivité, il devient primordial de contrôler et limiter le temps de séjour des hydrocarbures dans le réacteur pour éviter que les réactions de dégradation thermique ne deviennent prépondérantes (production excessive de coke, perte des produits valorisables par surcraquage). La mise en contact des hydrocarbures avec le catalyseur doit être effectuée correctement avec un temps de contact entre le catalyseur et les hydrocarbures limité. Le réacteur descendant, combiné à un système de mélange approprié, tel que décrit dans le brevet PCT/FR97/01627 , permet d'optimiser des sélectivités en produits valorisables (LPG, essences) en minimisant les produits non valorisables tels que le coke et les gaz secs par rapport à une technologie conventionnelle.
  • Pour répondre à l'objectif de flexibilité, l'idée est alors apparue de combiner un riser traditionnel avec un dropper à temps de séjour court. La demande de brevet FT98/14319 décrit un enchaînement d'un dropper et d'un riser en série. On y décrit en détail les avantages d'un deuxième réacteur qui est opéré dans des conditions très différentes en température et en C/O du riser principal : en particulier, ce deuxième réacteur représente avantageusement une capacité additionnelle de traitement d'une charge lourde en produisant une quantité de coke minime par rapport à un réacteur conventionnel ; il devient également possible de craquer certaines coupes (appelées recycles) issues du riser principal non désirables (valorisation faible ou coupes ne respectant pas certaines spécifications comme les teneurs en soufre ou en aromatiques) afin de maximiser le rendement des coupes valorisables (LPG, essence).
  • Dans un exemple de ce brevet, la charge fraîche est introduite au bas du riser et c'est le LCO produit du riser qui est introduit comme charge du dropper. Une telle configuration permet de maximiser le rendement en essence par épuisement du LCO dans des conditions de craquage relativement sévères. Mais l'inconvénient de ce système avec un dropper et un riser en série est que pour une capacité de charge importante au dropper, le réacteur ascendant travaille avec une quantité non négligeable de catalyseur partiellement désactivé par son passage dans le dropper (la désactivation provenant du dépôt de coke sur le catalyseur). Il en résulte une efficacité diminuée qui ne permet pas de tirer tout le potentiel de cette association. L'autre configuration brevetée par Stone et Webster est celle consistant à implanter deux risers en parallèle en travaillant à partir de catalyseur régénéré dans une zone de régénération commune. Plusieurs types d'interconnexions de recycles sont possibles entre les deux risers, mais ce sont ici des conditions de craquage sensiblement voisines (C/O, température de sortie et temps de séjour) qui ne permettent pas de traiter dans l'un des risers une coupe réellement réfractaire et justiciable d'un craquage en conditions sévère (par exemple, le HCO).
  • C'est ainsi que, selon le brevet US 5009769 il est décrit une unité comprenant deux réacteurs catalytiques à écoulement ascendant fonctionnant en parallèle, dans lesquels circule du catalyseur régénéré dans une zone de régénération comprenant deux régénérateurs. Cette unité serait adaptée à traiter une grande variété de charges mais elle fonctionne dans des conditions de circulation du catalyseur sensiblement identiques (C/O = 5 à 10 et temps de séjour 1 à 4 s pour le premier réacteur et C/O = 3 à 12 et temps de séjour 1 à 5 s pour le second réacteur). Dans ces conditions, l'éventail de produits obtenus par chacun des deux réacteurs est sensiblement le même.
  • Le brevet US 4116814 illustre le cas également des deux réacteurs à écoulement ascendant en parallèle, connectés à un régénérateur de particules. US-A-500976 décrit des procédés d'hydrocraquage dans des réacteurs ascendants.
  • L'idée qui est présentée dans le présent brevet est de tirer tout le potentiel d'une association en parallèle d'un riser travaillant dans des conditions classiques de craquage (par exemple, C/O de 5 à 7 ; température de sortie de 510 à 530 °C ; temps de séjour de 1 à 2 s) et d'un dropper travaillant dans des conditions de craquage sévères (par exemple, C/O de 10 à 20 ; température de sortie de 560 à 620°C; temps de séjour de 0,2 à 0,5 s). Cette association permet de recycler au dropper le HCO ou le LCO produit au riser qui sont des charges réfractaires difficiles à craquer en vue de maximiser la production d'essence. Mais elle permet également de maximiser la production d'oléfines et en particulier de propylène en recyclant au dropper l'essence ou encore seulement une fraction de l'essence (lourde ou légère) produite au riser.
  • Un objet de l'invention est de remédier aux inconvénients de l'art antérieur. L'objet de l'invention est décrit dans les libellés des revendications indépendants 1 et 12. Des caractéristiques optionnelles de l'invention sont décrites dans les libellés des revendications dependants 2-11 et 13-16.
  • Un autre objet est de craquer aussi bien des hydrocarbures lourds que des hydrocarbures légers dans des conditions de réactions qui soient sévères, dans un réacteur adapté à ce type de conditions, le dropper ou réacteur à écoulement descendant et beaucoup moins sévères dans un riser ou réacteur à écoulement ascendant de façon à favoriser la formation de produits très différents répondant aux spécificités de chaque type de réacteur.
  • On a constaté qu'on pouvait ainsi obtenir simultanément, par exemple plus de propylène grâce à un réacteur à écoulement descendant opérant dans des conditions sévères de craquage catalytique et plus d'essence grâce à un réacteur à écoulement ascendant opérant dans des conditions de craquage moins sévères, de manière économique, à partir d'une unité de craquage comportant au moins une étape de régénération de catalyseur et la combinaison desdits réacteurs mis en oeuvre en parallèle sur au moins un régénérateur.
  • Plus précisément, l'invention concerne un procédé de craquage catalytique en lit entraîné ou fluidisé d'au moins une charge d'hydrocarbures dans au moins deux zones réactionnelles, l'une au moins étant à écoulement ascendant, dans lequel on introduit la charge et du catalyseur provenant d'au moins une zone de régénération dans la partie inférieure de la zone réactionnelle à écoulement ascendant, on fait circuler la charge et le catalyseur de bas en haut dans ladite zone, on sépare les premiers gaz produits du catalyseur coké dans une première zone de séparation, on strippe le catalyseur au moyen d'un gaz de stripage, on récupère un premier effluent de craquage et de stripage et on recycle le catalyseur coké dans la zone de régénération et on le régénère au moins en partie au moyen d'un gaz contenant de l'oxygène, le procédé étant caractérisé en ce qu'on introduit du catalyseur provenant d'au moins une zone de régénération et une charge hydrocarbonée dans la partie supérieure d'au moins une zone réactionnelle à écoulement descendant, on y fait circuler de haut en bas le catalyseur et ladite charge dans des conditions appropriées, on sépare le catalyseur coké des seconds gaz produits dans une deuxième zone de séparation, on récupère les seconds gaz produits et on recycle le catalyseur coké dans la zone de régénération.
  • Selon une caractéristique du procédé, la température du catalyseur en sortie du réacteur descendant peut être supérieure à celle en sortie du réacteur ascendant.
  • Selon une autre caractéristique avantageuse, on peut striper le catalyseur provenant de la seconde zone de séparation au moyen d'un gaz de recyclage qui est habituellement de la vapeur et les hydrocarbures en résultant sont récupérés en général avec les gaz de craquage.
  • Il est préférable de régénérer le catalyseur coké dans deux zones de régénération consécutives, chacune d'elle ayant sa propre évacuation de gaz de combustion résultant de la régénération du catalyseur coke. Le catalyseur à régénérer provenant de la première zone de séparation est introduit dans une première zone de régénération fonctionnant à une température appropriée, le catalyseur ainsi au moins en partie régénéré étant envoyé dans la deuxième zone de régénération fonctionnant à une température plus élevée et le catalyseur régénéré provenant de la deuxième zone de régénération est introduit dans la zone réactionnelle d'écoulement ascendant et dans la zone réactionnelle d'écoulement descendant.
  • Le catalyseur coké provenant de la seconde zone de séparation peut être recyclé dans la première zone de régénération soit par écoulement gravitaire, généralement dans la zone dense, soit par écoulement au moyen d'une colonne montante comprenant de l'air de fluidisation comme moteur (lift), généralement dans la zone diluée de la première zone de régénération.
  • Il peut être avantageux de recycler le catalyseur provenant de la seconde zone de séparation dans la seconde zone de régénération au moyen d'un lift, soit dans sa zone dense soit dans sa zone diluée.
  • On peut introduire la charge hydrocarbonée ou chacune des charges, si elles sont différentes, dans la zone réactionnelle ascendante et dans la zone réactionnelle descendante par une injection à co-courant de l'écoulement du catalyseur ou à contre-courant, ou à contre-courant pour l'un et à co-courant pour l'autre. Néanmoins, une injection à contre-courant dans les deux zones paraît préférable pour une meilleure vaporisation des gouttelettes introduites.
  • Les conditions opératoires de craquage catalytique des charges sont habituellement les suivantes :
    • Dans la zone réactionnelle ascendante (RA) :
      • température du catalyseur (sortie RA) : 500-550 °C.
      • catalyseur/charge (C/O) : 4-9 et de préférence 5-7.
      • temps de séjour : 0,5-4 s, de préférence 1-2 s
    • Dans la zone réactionnelle descendante (RD) :
      • température du catalyseur (sortie RD) = 560-620 °C ;
      • C/O : 8-20, de préférence 10-15 ;
      • temps de séjour ; 0,1-2 s, de préférence 0,2-1 s
  • La charge alimentant chacune des zones réactionnelles peut être une charge non craquée dite fraîche, un recycle d'une partie des produits issus d'un fractionnement en aval ou un mélange des deux.
  • La charge de l'une des zones réactionnelles peut être soit plus lourde, soit plus légère que celle circulant dans l'autre zone. Plus particulièrement, la charge de la zone réactionnelle à écoulement ascendant peut être un distillat sous vide ou un résidu atmosphérique ou un recycle d'une partie des produits issus de la zone réactionnelle descendante et la charge de la zone à écoulement descendant est une charge non craquée ou un recycle d'une partie des produits issus de la zone réactionnelle ascendante et de préférence une coupe essence ou une coupe LCO.
  • Selon une caractéristique du procédé, le débit de charge et par exemple de recycle (coupe LCO, HCO ou essence) circulant dans le réacteur descendant peut représenter moins de 50 % en poids du débit de charge à convertir dans la zone réactionnelle ascendante.
  • Les avantages de la configuration selon la présente invention sont les suivants :
    • La possibilité de traiter par la boucle dropper n'importe quelle charge fraîche ou recyclée dans des conditions de craquage sévères indépendantes des conditions de craquage du riser.
    • La simplicité opératoire de la boucle dropper puisqu'elle est indépendante de la boucle riser.
    • La simplicité de mise en oeuvre de la boucle dropper puisque celle-ci peut être placée n'importe où autour du régénérateur, à condition de satisfaire le bilan pression. Ceci serait pratiquement impossible à réaliser avec un second riser, parallèle au premier car le bilan pression impose dans ce cas une hauteur minimale, donc un temps de séjour qui ne peut descendre aux valeurs typiques d'un dropper (inférieur à la seconde). En d'autres termes, il est très difficile en pratique de réellement différencier les conditions de craquage de deux risers fonctionnant en parallèle.
    • La boucle dropper peut être adaptée à la plupart des unités de craquage existantes, à un ou deux régénérateurs et/ou avec une technologie de séparation, de stripage et de transfert du catalyseur la mieux adaptée aux exigences du client.
    • Optimisation des sélectivités en produits valorisables (LPG, essences) grâce à la technologie du réacteur descendant en minimisant les sélectivités en produits non valorisables tels que le coke et les gaz secs par rapport à une technologie conventionnelle tout en maximisant la conversion grâce à l'obtention de conditions de sévérité très importante au dropper.
    • Chaque réacteur (dropper, riser) travaille avec du catalyseur fraîchement régénéré.
    • Il y a indépendance des conditions opératoires de chaque réacteur, en particulier en terme de C/O, ce qui n'est pas le cas dans la configuration série.
    • Il n'y a aucun problème de régulation des conditions de craquage propres à chaque réacteur en terme de température de sortie du réacteur puisqu'il n'y a plus de couplage comme dans la configuration réacteurs en série.
    • La production d'un effet de refroidissement du catalyseur due à la boucle dropper. En effet, pour une charge donnée, il existe à partir d'un certain niveau de circulation dans le dropper (C/O) un effet d'extraction de chaleur, c'est-à-dire une diminution des températures au régénérateur, ou au premier ou au second régénérateur s'il s'agit d'une structure à double étage de régénération suivant le régénérateur vers lequel s'effectue le retour du catalyseur coké issu du dropper.
  • En effet, la technologie du réacteur descendant permet de minimiser la quantité de coke formée. Il en résulte donc une teneur en coke sur le catalyseur beaucoup plus faible que dans un réacteur ascendant équivalent. Combinée à des conditions opératoires adaptées où la circulation de catalyseur est plus élevée par rapport à une même quantité de charge (C/O élevé), on réduit donc la teneur en coke de manière très significative de telle sorte que la quantité de chaleur dégagée par la combustion de ce coke additionnel dans le(s) régénérateur(s) est nettement inférieure à la quantité de chaleur consommée par la vaporisation de la charge et la chaleur de réaction au réacteur dropper. Globalement, le catalyseur côté régénération est refroidi par rapport à la situation antérieure ne comprenant qu'un seul riser traditionnel.
  • Cet effet d'extraction de chaleur, qui peut être obtenu de manière équivalente par un échangeur de chaleur côté régénération (catcooler) ou encore par la vaporisation d'un recycle presque inerte chimiquement (MTC) en aval de l'injection de charge dans le sens de l'écoulement du catalyseur dans un réacteur riser ou dropper, permet soit de traiter des charges a plus fort carbone conradson, soit d'augmenter le débit de charge, soit de profiter de la diminution de température au(x) régénérateur(s) pour augmenter la circulation de catalyseur (C/O) au riser et au dropper. En effet, la chaleur nécessaire à la réaction et à la vaporisation côté réaction est fournie par le catalyseur régénéré, chauffé par combustion du coke au(x) régénérateur(s). Afin de maintenir une température de sortie réacteur constante, l'effet d'extraction de chaleur impose d'augmenter la circulation de catalyseur à débit de charge constant et donc de bénéficier ainsi d'une meilleure activité catalytique (plus de sites actifs). On peut aussi traiter des charges plus réfractaires dans le dropper.
  • Pour toutes ces raisons, la combinaison d'un riser et d'un dropper en parallèle sur un dispositif de régénération commun est très intéressante, aussi bien en rénovation d'unités existantes (revamping) qu'en construction d'unités neuves.
  • L'invention concerne aussi un dispositif de craquage catalytique en lit entraîné ou fluidisé d'une charge hydrocarbonée comportant :
    • Au moins un réacteur ascendant sensiblement vertical ayant une entrée inférieure et une sortie supérieure :
    • un premier moyen d'alimentation en catalyseur régénéré connecté à au moins un régénérateur de catalyseur coké et raccordé à ladite entrée inférieure ;
    • un premier moyen d'alimentation en la charge disposé au dessus de l'entrée inférieure du réacteur ascendant ;
    • une première enceinte de séparation de catalyseur coké et d'une première phase gazeuse raccordée à la sortie supérieure du réacteur ascendant, ladite enceinte de séparation comportant une chambre de stripage du catalyseur et ayant une sortie supérieure d'une phase gazeuse et une sortie inférieure de catalyseur coké et strippé, ladite sortie inférieure étant connectée au régénérateur de catalyseur via des premiers moyens de recyclage du catalyseur;
  • le dispositif étant caractérisé en ce qu'il comporte au moins un réacteur descendant sensiblement vertical ayant une entrée supérieure et une sortie inférieure ;
    • un second moyen d'alimentation en catalyseur régénéré connecté au dit régénérateur de catalyseur coké et raccordé à ladite entrée supérieure du réacteur descendant ;
    • un second moyen d'alimentation en la charge disposé au-dessous du second moyen d'alimentation ;
    • une deuxième enceinte de séparation du catalyseur coké d'une seconde phase gazeuse raccordée à la sortie inférieure du réacteur descendant et ayant une sortie de la seconde phase gazeuse et une sortie de catalyseur coké, et des seconds moyens de recyclage du catalyseur coké raccordés à ladite sortie de catalyseur de la deuxième enceinte de séparation et connectés au régénérateur.
  • Selon une variante du dispositif, la seconde enceinte de séparation du catalyseur des effluents de craquage peut ne pas comporter de chambre de stripage. Dans ce cas, des moyens de préstripage par exemple par de la vapeur d'eau peuvent être introduits dans l'enceinte de séparation et l'évacuation de la vapeur peut être réalisée avec les effluents de craquage et de préstripage.
  • Selon une autre variante, la deuxième enceinte de séparation comporte une chambre de stripage du catalyseur avec injection de vapeur de stripage, en communication avec celle-ci, comme celle décrite par exemple dans la demande de brevet de la Demanderesse FR 98/09.672 . Les effluents de craquage et de stripage sont en général évacués par des moyens communs.
  • Selon une autre caractéristique avantageuse du dispositif, celui-ci peut comprendre deux régénérateurs superposés de catalyseur coké, le second étant situé au-dessus du premier, des moyens de circulation du catalyseur du premier régénérateur vers le second régénérateur. Lesdits premiers et seconds moyens d'alimentation en catalyseur sont connectés au second régénérateur et la sortie inférieure de la première enceinte de séparation est connectée au premier régénérateur via les premiers moyens de recyclage.
  • L'invention sera mieux comprise au vu de la figure jointe qui illustre un mode de réalisation particulièrement avantageux du dispositif comprenant deux régénérateurs de catalyseur coké superposés, connectés en parallèle à deux réacteurs de craquage catalytique, un à écoulement ascendant (riser) et l'autre à écoulement descendant de catalyseur (dropper).
  • Selon la figure, une zone de régénération (1) du catalyseur coké comporte deux enceintes de régénération (2) et (3) superposées dans lesquelles le catalyseur est régénéré en lit fluidisé, de l'air étant introduit à la base de chaque enceinte par des moyens non représentés sur la figure. Chaque enceinte comporte ses propres moyens de dépoussiérage (4, 5) (cyclones) et d'évacuation (9, 10) des effluents de combustion du coke. La pression dans chaque enceinte (2) et (3) peut être contrôlée par des vannes situées sur les lignes permettant l'évacuation des effluents de combustion au moins partiellement dépoussiérés. Le catalyseur est transporté entre les deux enceintes au moyen d'une colonne (6) ascendante (lift). De l'air, en général introduit à la base par un injecteur (7), à une vitesse suffisante permet de transporter le catalyseur entre les deux enceintes. Typiquement, la proportion d'air nécessaire à la régénération est de 30 à 70 % dans l'enceinte inférieure (2) fonctionnant à température plus basse (670°C par exemple) et de 15 à 40 % dans l'enceinte supérieure (3) fonctionnant à température plus élevée (770 °C par exemple), 5 à 20 % d'air circulant dans le lift pour transporter le catalyseur. Une vanne sur solide (8), de type vanne à bouchon permet de contrôler le débit de circulation entre les enceintes (2) et (3).
  • Le catalyseur sensiblement régénéré provenant du second régénérateur situé au dessus du premier (3) est envoyé à partir d'un lit dense (11) dans un puits de désengagement (13) par un conduit (12) incliné d'un angle compris habituellement entre 30 et 70 degrés par rapport à l'horizontale. Dans le puits (13), la circulation du catalyseur est ralentie pour permettre d'évacuer d'éventuelles bulles de gaz vers la deuxième enceinte de régénération (3) à travers une ligne d'équilibrage de pression (14). Le catalyseur est ensuite accéléré et descend à travers un tube de transfert (15) jusqu'à l'entrée d'un réacteur (16) à écoulement descendant (dropper). Durant tout son trajet depuis l'enceinte de régénération, le catalyseur est maintenu dans l'état fluidisé grâce à l'ajout de petites quantités de gaz tout le long du transport. Si le catalyseur est maintenu ainsi à l'état fluidisé, cela permet d'obtenir à l'entrée du dropper une pression supérieure à celle des fumées issues des cyclones externes (5).
  • Le dropper (16) comprend des moyens d'introduction du catalyseur régénéré (17) qui peuvent être une vanne sur solide, un orifice ou simplement l'ouverture d'un conduit, dans une zone de mise en contact (18) située sous la vanne (17), où le catalyseur rencontre à contre courant par exemple, la charge d'hydrocarbures, introduite par des injecteurs (19), généralement constitués d'atomiseurs où la charge est divisée finement en gouttelettes grâce à l'introduction de fluides auxiliaires tels que la vapeur d'eau. Les moyens d'introduction du catalyseur sont situés au-dessus des moyens d'introduction de la charge. Entre la zone de mise en contact (18) et des moyens de séparation des hydrocarbures du catalyseur (20), on peut éventuellement disposer une zone de réaction (21), de forme sensiblement allongée, représentée de manière verticale sur la figure mais cette condition n'est pas exclusive. Le temps de séjour moyen des hydrocarbures dans les zones (18) et (21) sera par exemple inférieur à 650 ms, préférentiellement compris entre 50 et 500 ms. Les effluents du dropper sont ensuite séparés dans le séparateur (20), par exemple tel que décrit dans la demande FR98/09672 où le temps de séjour doit être limité au maximum. Les effluents gazeux (gaz craqués) du séparateur peuvent alors subir une étape supplémentaire de dépoussiérage à travers des cyclones par exemple externes (22) disposés en aval sur une ligne (23). Ces effluents gazeux (gaz craqués) sont évacués par une ligne (24). Il est également possible de refroidir les effluents gazeux, afin de limiter la dégradation thermique des produits, en injectant par exemple des hydrocarbures liquides dans l'effluent sortant par exemple des cyclones (22) par la ligne (24) ou directement à la sortie des gaz craqués du séparateur (20) en amont desdits cyclones. Le catalyseur séparé dans le séparateur (20) est alors soit réinjecté directement à la base d'une colonne montante (25) à travers un conduit (26) dont une vanne (27) contrôle le débit en relation avec la température de sortie du dropper, soit introduit dans un lit fluidisé (28) de stripage à travers un conduit ou une ouverture (30). Le catalyseur dans le lit fluidisé. (28) subit alors un stripage (contactage avec un gaz léger tel que la vapeur d'eau, l'azote, l'ammoniac, l'hydrogène ou même des hydrocarbures dont le nombre d'atomes de carbone est inférieur à 3) par des moyens qui sont bien décrits dans l'art antérieur avant d'être transféré vers la colonne montante (25) à travers le conduit (26). Les effluents gazeux de stripage sont généralement évacués du lit fluidisé (28) à travers les mêmes moyens (23, 22) qui permettent l'évacuation des effluents gazeux du dropper (16) par la ligne (24). Le catalyseur coké est remonté par un gaz de fluidisation (29) dans le lit fluidisé dense du second régénérateur (3).
  • La zone réactionnelle (30) ascendante (riser) est une zone tubulaire sensiblement allongée, dont de nombreux exemples sont décrits dans l'art antérieur. Dans l'exemple donné sur la figure, la charge d'hydrocarbures est introduite par des moyens (31), généralement constitués d'atomiseurs où la charge est divisée finement en gouttelettes, à l'aide généralement de l'introduction de fluides auxiliaires tels que la vapeur d'eau, introduits à travers les moyens (31). Les moyens d'introduction du catalyseur sont situés au-dessous des moyens d'introduction de la charge. L'introduction de la charge est située au-dessus de l'entrée du catalyseur.
  • Ces moyens d'introduction du catalyseur dans le riser (30) comprennent un puits de soutirage (32) conforme à celui (13) qui alimente le dropper, raccordé au lit dense du second régénérateur (3) de catalyseur par un conduit (33) incliné selon sensiblement le même angle que celui du conduit (12). Le puits (32) est par ailleurs raccordé au lit fluidisé dilué par une ligne (34) d'équilibrage de pression. A la base du puits, une ligne (35) d'abord verticale puis inclinée est connectée à la partie inférieure du riser. Une vanne de contrôle (36) disposée sur la ligne (35) régule le débit de catalyseur régénéré à l'entrée du riser en fonction de la température de sortie de catalyseur et des effluents à la partie supérieure du riser. Du gaz de fluidisation introduit à la base du riser par des moyens d'injection (37) font circuler le catalyseur à co-courant avec la charge dans le riser. Selon une variante non représentée, la charge aurait pu être injectée à contre-courant de l'écoulement vers le bas du riser. Au-dessus des injecteurs de charge, une injection d'une coupe légère d'hydrocarbures ou d'une coupe plus lourde (LCO ou HCO par exemple), provenant d'une distillation en aval des effluents de craquage du riser, peut être réalisée dans ce riser. La coupe introduite peut représenter 10 à 50 % en poids de la charge introduite dans le riser et peut contribuer à maximiser la production d'essence.
  • La réaction de craquage s'effectue dans le riser. Les effluents de craquage sont ensuite séparés dans un séparateur (38), par exemple tel que décrit dans la demande PCT FR 98/01866 . Le catalyseur issu de la séparation est alors introduit dans un lit fluidisé (39) d'une chambre de stripage (40) située au-dessous du séparateur, à travers des conduits (41) ou des ouvertures. Le catalyseur dans la chambre (39, 40) subit alors un stripage (contactage avec un gaz léger tel que vapeur d'eau, azote, ammoniac, hydrogène ou même des hydrocarbures de nombre d'atomes de carbone inférieur à 3) par des moyens non représentés sur la figure.
  • Le catalyseur strippé est ensuite transféré vers le lit dense de la première enceinte de régénération (2) par un conduit (45). Les effluents gazeux de craquage et de stripage séparés dans le séparateur (38) sont évacués à travers un conduit (42) vers un séparateur secondaire (43) tel qu'un cyclone par exemple interne à la chambre (39, 40) avant d'être dirigés vers la section de fractionnement aval par un conduit (44).
  • A titre d'exemple et pour illustrer l'invention, on a comparé les résultats obtenus par une unité industrielle munie d'un réacteur ascendant classique traitant une charge lourde et équipée d'un système de double régénération tel que décrit sur la figure avec les résultats que l'on obtient en insérant un réacteur descendant en parallèle, ce nouveau réacteur étant alors alimenté par deux coupes, différentes dans chaque exemple, produites par le réacteur ascendant.
  • Les résultats de cette comparaison sont basés sur les résultats industriels obtenus avec l'unité munie du réacteur ascendant et des tests en pilote de craquage de la coupe considérée. Les nouvelles conditions permettant de satisfaire le bilan thermique de l'unité dans son ensemble sont recalculées avec un modèle de procédé.
  • La charge fraîche (distillat sous vide) possède les caractéristiques les suivantes :
    • Densité d15 : 0,937
    • Teneur en soufre : 0,5 %
    • Carbone conradson : 5,8 %
  • Elle est injectée à la base d'un riser qui est alimenté en catalyseur à partir d'un dispositif à double régénération, conformément à la figure présentée dans la présente invention. Ce catalyseur, à base de zéolithe Y a les caractéristiques suivantes :
    • Granulométrie : 70 micromètres
    • Surface BET(m2/g) : 146
    • Surface zéolitique Y (m2/g) : 111
    • Surface de la matrice (m2/g) : 35
  • Le catalyseur provient du second régénérateur.
  • Les effluents de craquage sont distillés et une partie de la coupe HCO obtenue ainsi que la totalité d'une coupe essence lourde (170°C-200°C) sont recyclées dans le riser. Ce recycle, constitué par 49,3% de HCO et 50,7% de coupe essence lourde, représente 27,1 % poids de la charge fraîche au riser. Une coupe supplémentaire est recyclée en tant que charge dans le dropper qui est alimenté, à son tour, par du catalyseur en provenance du second régénérateur.
  • Le catalyseur coké en provenance du stripeur connecté au riser est recyclé dans la phase dense du premier régénérateur tandis que celui en provenance du stripeur connecté au dropper est recyclé grâce à un lift dans la phase dense du second régénérateur.
  • Exemple 1 :
  • Dans ce premier exemple, 23,4 % poids de la coupe essence produite au riser, soit 10% poids par rapport à la charge fraîche au riser, est recyclée en tant que charge dans le dropper.
  • On maintient les conditions au riser (ROT et recycle) en augmentant le C/O du riser.
  • On note :
    • RA = réacteur ascendant (temps de séjour : 1 s)
    • RD = réacteur descendant (temps de séjour : 0,4s)
    • REG1 = première enceinte de régénération
    • REG2 = deuxième enceinte de régénération
    RA seul RA + RD
    Charge unité FCC (CU FCC) kg/s 48,08 48,08
    Recycle d'hydrocarbures RA % charge fraîche 27,14 27,14
    C/O RA - 6,33 6,87
    T sortie RA (ROT) °C 516 516
    T charge fraîche RA °C 174 174
    Trecyle RA °C 178 178
    T REG1 °C 692 686
    T REG2 °C 778 757
    air utilisé pour la régénération t/h 173,5 194,1
    Proportion (air regl)/(air total) % 65,7 61,2
    C/O RD - - 14,95
    T sortie RD °C - 620
    T charge RD °C - 35
    Rendements
    gaz secs % CU FCC 4,77 4,94
    Propane % CU FCC 0,95 1,25
    Propylene % CU FCC 4,31 6,61
    coupe C3 (propane + propylène) % CU FCC 5,26 7,86
    coupe C4 % CU FCC 6,61 8,08
    Essence % CU FCC 42,72 39,51
    LCO % CU FCC 22,48 21,38
    Slurry % CU FCC 10,03 9,24
    Coke % CU FCC 8,13 8,99
    % CU FCC 100,0 100,0
    Conversion % 67,49 69,38
  • On constate que l'on peut produire du propylène en quantité substantielle (53% en plus) par un craquage vraiment sévère au dropper, tout en maintenant un rendement en essence satisfaisant. En outre, la température du deuxième régénérateur a chuté de 21°C (effet catcooler). On obtient un gain en conversion de la charge fraîche de 1,9% par épuisement du LCO et slurry.
  • Exemple 2 :
  • Dans ce deuxième exemple, 99,7 % poids de la coupe HCO (ou slurry), soit 10% poids par rapport à la charge fraîche, est recyclée en tant que charge dans le dropper.
  • On maintient les conditions au riser (ROT et recycle) en augmentant le C/O du riser.
  • On note :
    RA = réacteur ascendant
    RD = réacteur descendant
    REG1 = première enceinte de régénération
    REG2 = deuxième enceinte de régénération
    RA RA + RD
    Charge unité FCC (CU FCC) kg/s 48,08 48,08
    Recycle d'hydrocarbures RA % charge fraîche 27,14 27,14
    C/O RA - 6,33 6,60
    T sortie RA (ROT) °C 516 516
    T charge fraîche RA °C 174 174
    Trecycle RA °C 178 178
    T REG 1 °C 692 689
    T REG2 °C 778 767
    air utilisé pour la régénération t/h 173,5 190,1
    Proportion (air regl)/(air % 65,7 61,4
    total)
    C/O RD - - 9,7
    T sortie RD °C - 603
    T charge RD °C - 180
    Rendements
    gaz secs % CU FCC 4,77 4,98
    Propane % CU FCC 0,95 1,10
    Propylene % CU FCC 4,31 4,85
    coupe C3 (propane + propylène) % CU FCC 5,26 5,95
    coupe C4 % CU FCC 6,61 7,48
    Essence % CU FCC 42,72 45,07
    LCO % CU FCC 22,48 23,44
    Slurry % CU FCC 10,03 4,27
    Coke % CU FCC 8,13 8,81
    % CU FCC 100,0 100,0
    Conversion % 67,49 72,29
  • On constate que l'on peut convertir le HCO (slurry) de manière substantielle (57% de conversion) par un craquage vraiment sévère au dropper, tout en maintenant un rendement en coke global de l'unité assez bas, En outre, la température du deuxième régénérateur a chuté de 11°C (effet catcooler), On obtient un gain en conversion de la charge fraîche de 4,8% par épuisement du slurry, conduisant à de meilleurs rendements en produits valorisables (plus de 1,5% de LPG et 2,3% d'essence en plus),

Claims (16)

  1. Procédé de craquage catalytique en lit entraîné ou fluidisé d'au moins une charge d'hydrocarbures dans au moins deux zones réactionnelles, l'une (30) au moins étant à écoulement ascendant avec les conditions opératoires suivantes :
    • température de sortie : 500-550 °C,
    • catalyseur/charge (C/O) : 4-9 ,
    • temps de séjour : 0,5-4 s,
    dans lequel on introduit la charge (31) et du catalyseur (35) provenant d'au moins une zone (3) de régénération dans la partie inférieure de la zone réactionnelle à écoulement ascendant, on fait circuler la charge et le catalyseur de bas en haut dans ladite zone, on sépare les premiers gaz produits du catalyseur coké dans une première zone (38) de séparation, on strippe (40) le catalyseur au moyen d'un gaz de stripage, on récupère un premier effluent (42) de craquage et de stripage et on recycle (45) le catalyseur coké dans la zone de régénération et on le régénère au moins en partie au moyen d'un gaz contenant de l'oxygène, le procédé étant caractérisé en ce qu'on introduit du catalyseur (12) provenant d'au moins une zone (3) de régénération et une charge (19) hydrocarbonée dans la partie supérieure d'au moins une zone réactionnelle (16) à écoulement descendant avec les conditions opératoires suivantes :
    • température de sortie : 560-620 °C.
    • catalyseur/charge (CIO) : 8-20,
    • temps de séjour : 0,1-2 s,
    on y fait circuler de haut en bas le catalyseur et ladite charge et on sépare le catalyseur coké de seconds gaz produits, dans une deuxième zone (20) de séparation, on récupère les seconds gaz (24) produits et on recycle (25) le catalyseur coké dans la zone de régénération,
  2. Procédé selon la revendication 1, dans lequel les conditions opératoires sont les suivantes :
    - dans la zone réactionnelle ascendante (RA) :
    • catalyseur/charge (C/O) : 5-7,
    - dans la zone réactionnelle descendante (RD) :
    • C/O: 10-15;
  3. Procédé selon l'une des revendications 1 et 2 dans lequel on strippe le catalyseur provenant de la seconde zone de séparation au moyen d'un gaz de stripage,
  4. Procédé selon l'une des revendications 1 à 2, dans lequel le catalyseur est régénéré dans deux zones de régénération consécutives, le catalyseur à régénérer provenant de la première zone de séparation est introduit dans une première zone de régénération fonctionnant à une température appropriée, le catalyseur ainsi au moins en partie régénéré étant envoyé dans la deuxième zone de régénération fonctionnant à une température plus élevée et le catalyseur régénéré provenant de la deuxième zone de régénération est introduit dans la zone réactionnelle d'écoulement ascendant et dans la zone réactionnelle d'écoulement descendant,
  5. Procédé selon la revendication 4 dans lequel on recycle le catalyseur provenant de la seconde zone de séparation dans la première zone de régénération,
  6. Procédé selon la revendication 5 dans lequel le catalyseur est recyclé dans la zone dense de la première zone de régénération,
  7. Procédé selon la revendication 5, dans lequel le catalyseur est recyclé dans la zone diluée de la première zone de régénération au moyen d'un lift,
  8. Procédé selon la revendication 4, dans lequel on recycle le catalyseur provenant de la seconde zone de séparation dans la seconde zone de régénération au moyen d'un lift,
  9. Procédé selon l'une des revendications 1 à 8, dans lequel on introduit les charges dans la zone réactionnelle ascendante et dans la zone réactionnelle descendante par une injection à contre courant de l'écoulement du catalyseur,
  10. Procédé selon l'une des revendications 1 à 9, dans lequel la charge alimentant chacune des zones réactionnelles est une charge non craquée dite fraîche, un recycle d'une partie des produits issus d'un fractionnement en aval ou un mélange des deux,
  11. Procédé selon la revendication 10 dans lequel la charge de la zone réactionnelle à écoulement ascendant est un distillat sous vide ou un résidu atmosphérique ou un recycle d'une partie des produits issus d'un fractionnement en aval et dans lequel la charge de la zone à écoulement descendant est une charge non craquée ou un recycle d'une partie des produits issus d'un fractionnement en aval et de préférence une coupe essence ou une coupe LCO,
  12. Dispositif de craquage catalytique en lit entraîné ou fluidisé d'une charge hydrocarbonée pour la mise en oeuvre du procédé selon l'une des revendications précédentes comportant :
    - au moins un réacteur ascendant (30) sensiblement vertical ayant une entrée inférieure et une sortie supérieure :
    - un premier moyen (35) d'alimentation en catalyseur régénéré connecté à au moins un régénérateur (3) de catalyseur coké et raccordé à ladite entrée inférieure ;
    - un premier moyen (31) d'alimentation en la charge disposé au dessus de l'entrée inférieure du réacteur ascendant ;
    - une première enceinte (38) de séparation de catalyseur coké et d'une première phase gazeuse raccordée à la sortie supérieure du réacteur (30) ascendant, ladite enceinte de séparation comportant une chambre (40) de stripage du catalyseur et ayant une sortie supérieure d'une phase gazeuse et une sortie inférieure de catalyseur coké et strippé, ladite sortie inférieure étant connectée au régénérateur de catalyseur via des premiers moyens (45) de recyclage du catalyseur,
    le dispositif étant caractérisé en ce qu'il comporte :
    - au moins un réacteur (16) descendant sensiblement vertical ayant une entrée supérieure et une sortie inférieure ;
    - un second moyen (12) d'alimentation en catalyseur régénéré connecté au dit régénérateur (3) de catalyseur coké et raccordé à ladite entrée supérieure du réacteur descendant;
    - un second moyen (19) d'alimentation en la charge disposé au-dessous du second moyen (12) d'alimentation ;
    - une deuxième enceinte (20) de séparation du catalyseur coké d'une seconde phase gazeuse raccordée à la sortie inférieure du réacteur descendant et ayant une sortie de la seconde phase gazeuse et une sortie de catalyseur coké;
    - et des seconds moyens (25) de recyclage du catalyseur coké raccordés à ladite sortie de catalyseur de la deuxième enceinte de séparation et connectés au régénérateur,
  13. Dispositif selon la revendication 12, dans lequel la deuxième enceinte de séparation comporte une chambre de stripage du catalyseur en communication avec celle-ci,
  14. Dispositif selon l'une des revendications 12 et 13 comprenant deux régénérateurs (2, 3) de catalyseur coké consécutifs, des moyens de circulation du catalyseur du premier régénérateur (2) vers le second régénérateur (3) caractérisé en ce que lesdits premiers et seconds moyens d'alimentation (35, 12) en catalyseur sont connectés au second régénérateur (3) et en ce que ladite sortie inférieure de la première enceinte de séparation est connectée au premier régénérateur via les premiers moyens (45) de recyclage,
  15. Dispositif selon la revendication 15, dans lequel les seconds moyens (2, 5) de recyclage comprennent un lift (29) raccordé au second régénérateur,
  16. Dispositif selon l'une des revendications 12 à 15, dans lequel les premiers et les seconds moyens de recyclage du catalyseur comprennent chacun une vanne (27, 36) de réglage de débit asservie à des moyens de mesure de la température du catalyseur en sortie du réacteur ascendant et du réacteur descendant.
EP00983393A 1999-12-14 2000-11-28 Procede et dispositif de craquage catalytique comprenant en parallele au moins un reacteur a ecoulement ascendant et au moins un reacteur a ecoulement descendant Expired - Lifetime EP1242569B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9915747A FR2802211B1 (fr) 1999-12-14 1999-12-14 Procede et dispositif de craquage catalytique comprenant en parallele au moins un reacteur a ecoulement ascendant et au moins un reacteur a ecoulement descendant
FR9915747 1999-12-14
PCT/FR2000/003315 WO2001044409A1 (fr) 1999-12-14 2000-11-28 Procede et dispositif de craquage catalytique comprenant en parallele au moins un reacteur a ecoulement ascendant et au moins un reacteur a ecoulement descendant

Publications (2)

Publication Number Publication Date
EP1242569A1 EP1242569A1 (fr) 2002-09-25
EP1242569B1 true EP1242569B1 (fr) 2011-02-02

Family

ID=9553233

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00983393A Expired - Lifetime EP1242569B1 (fr) 1999-12-14 2000-11-28 Procede et dispositif de craquage catalytique comprenant en parallele au moins un reacteur a ecoulement ascendant et au moins un reacteur a ecoulement descendant

Country Status (10)

Country Link
US (1) US7220351B1 (fr)
EP (1) EP1242569B1 (fr)
JP (1) JP4671089B2 (fr)
AT (1) ATE497527T1 (fr)
DE (1) DE60045600D1 (fr)
ES (1) ES2359623T3 (fr)
FR (1) FR2802211B1 (fr)
MX (1) MXPA02005794A (fr)
WO (1) WO2001044409A1 (fr)
ZA (1) ZA200204751B (fr)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2894849B1 (fr) * 2005-12-20 2008-05-16 Inst Francais Du Petrole Nouveau reacteur a deux zones reactionnelles fluidisees avec systeme de separation gaz/solide integre
US20080011645A1 (en) * 2006-07-13 2008-01-17 Dean Christopher F Ancillary cracking of paraffinic naphtha in conjuction with FCC unit operations
US20080011644A1 (en) 2006-07-13 2008-01-17 Dean Christopher F Ancillary cracking of heavy oils in conjuction with FCC unit operations
FR2909897B1 (fr) * 2006-12-13 2009-06-26 Inst Francais Du Petrole Nouveau systeme de separation gaz solide pour les regenerateurs des unites de craquage catalytique en lit fluidise
FR2932495B1 (fr) * 2008-06-17 2011-03-25 Inst Francais Du Petrole Dispositif de controle des conditions operatoires dans une unite de craquage catalytique a deux risers.
WO2011047540A1 (fr) * 2009-10-22 2011-04-28 中国石油化工股份有限公司 Procédé de conversion catalytique pour augmenter l'indice de cétane d'un baril de diesel
US8415264B2 (en) * 2010-04-30 2013-04-09 Uop Llc Process for regenerating catalyst in a fluid catalytic cracking unit
WO2012004809A1 (fr) 2010-07-08 2012-01-12 Indian Oil Corporation Ltd. Procédé et appareil de craquage catalytique fluide à deux étages
EP2591071B1 (fr) 2010-07-08 2018-12-12 Indian Oil Corporation Ltd. Régénération ascendante de catalyseur fcc pour craquage à plusieurs étages
FR2966160B1 (fr) * 2010-10-14 2013-11-15 IFP Energies Nouvelles Procede de craquage catalytique adapte au traitement de charges a faible carbon conradson comportant le recycle d'une coupe cokante selon une technologie nouvelle
WO2012062173A1 (fr) 2010-11-11 2012-05-18 Shi Baozhen Procédé et appareil de craquage catalytique
EP2737013B1 (fr) * 2011-07-27 2020-11-25 Saudi Arabian Oil Company Craquage catalytique fluidisé de naphta paraffinique dans un réacteur à courant descendant
FR2983208B1 (fr) * 2011-11-24 2015-03-06 IFP Energies Nouvelles Procede de production de distillat moyen a partir d'une charge lourde conventionnelle incluant une etape d'hydrogenation selective de la coupe hco ex fcc
EP2828358B1 (fr) 2012-03-20 2022-01-12 Saudi Arabian Oil Company Traitement par l'hydrogène et craquage catalytique fluide intégré destiné au traitement d'un pétrole brut
JP6262749B2 (ja) * 2012-10-19 2018-01-17 サウジ アラビアン オイル カンパニー 原油の高過酷度接触分解方法
CN104275037A (zh) * 2013-07-09 2015-01-14 刘英聚 一种同轴式防结焦气固分离方法和设备
US9422487B2 (en) 2014-04-09 2016-08-23 Uop Llc Process for fluid catalytic cracking and hydrocracking hydrocarbons
US9243195B2 (en) 2014-04-09 2016-01-26 Uop Llc Process and apparatus for fluid catalytic cracking and hydrocracking hydrocarbons
US9394496B2 (en) 2014-04-09 2016-07-19 Uop Llc Process for fluid catalytic cracking and hydrocracking hydrocarbons
US9399742B2 (en) 2014-04-09 2016-07-26 Uop Llc Process for fluid catalytic cracking and hydrocracking hydrocarbons
CN104437307B (zh) * 2014-11-07 2016-04-13 广德瑞邦涂料有限公司 一种用于合成阴极水溶性电泳漆乳液的乳化釜
US9777229B2 (en) 2015-03-10 2017-10-03 Uop Llc Process and apparatus for hydroprocessing and cracking hydrocarbons
US9890338B2 (en) 2015-03-10 2018-02-13 Uop Llc Process and apparatus for hydroprocessing and cracking hydrocarbons
US9732290B2 (en) 2015-03-10 2017-08-15 Uop Llc Process and apparatus for cracking hydrocarbons with recycled catalyst to produce additional distillate
US9567537B2 (en) 2015-03-10 2017-02-14 Uop Llc Process and apparatus for producing and recycling cracked hydrocarbons
US9809766B2 (en) 2015-03-10 2017-11-07 Uop Llc Process and apparatus for producing and recycling cracked hydrocarbons
US9783749B2 (en) 2015-03-10 2017-10-10 Uop Llc Process and apparatus for cracking hydrocarbons with recycled catalyst to produce additional distillate
US9777228B2 (en) 2015-06-30 2017-10-03 Uop Llc Process for cracking hydrocarbons to make diesel
US9896627B2 (en) 2015-10-14 2018-02-20 Saudi Arabian Oil Company Processes and systems for fluidized catalytic cracking
US10870802B2 (en) 2017-05-31 2020-12-22 Saudi Arabian Oil Company High-severity fluidized catalytic cracking systems and processes having partial catalyst recycle
CN110944741A (zh) * 2017-07-28 2020-03-31 Hte高通量实验公司 在0.1-10秒的停留时间下催化转化化学物质的装置和方法
US10889768B2 (en) 2018-01-25 2021-01-12 Saudi Arabian Oil Company High severity fluidized catalytic cracking systems and processes for producing olefins from petroleum feeds
US11629298B2 (en) 2020-05-14 2023-04-18 Saudi Arabian Oil Company Dual fluid catalytic cracking reactor systems and methods for processing hydrocarbon feeds to produce olefins
US11505754B2 (en) 2020-09-01 2022-11-22 Saudi Arabian Oil Company Processes for producing petrochemical products from atmospheric residues
US11352575B2 (en) 2020-09-01 2022-06-07 Saudi Arabian Oil Company Processes for producing petrochemical products that utilize hydrotreating of cycle oil
US11332680B2 (en) 2020-09-01 2022-05-17 Saudi Arabian Oil Company Processes for producing petrochemical products that utilize fluid catalytic cracking of lesser and greater boiling point fractions with steam
US11434432B2 (en) 2020-09-01 2022-09-06 Saudi Arabian Oil Company Processes for producing petrochemical products that utilize fluid catalytic cracking of a greater boiling point fraction with steam
US11230672B1 (en) 2020-09-01 2022-01-25 Saudi Arabian Oil Company Processes for producing petrochemical products that utilize fluid catalytic cracking
US11230673B1 (en) 2020-09-01 2022-01-25 Saudi Arabian Oil Company Processes for producing petrochemical products that utilize fluid catalytic cracking of a lesser boiling point fraction with steam
US11242493B1 (en) 2020-09-01 2022-02-08 Saudi Arabian Oil Company Methods for processing crude oils to form light olefins
CN116196848A (zh) * 2021-12-01 2023-06-02 中国石油天然气股份有限公司 一种原料油和轻烃催化转化的装置和方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4116814A (en) * 1977-07-18 1978-09-26 Mobil Oil Corporation Method and system for effecting catalytic cracking of high boiling hydrocarbons with fluid conversion catalysts
JPS624784A (ja) * 1985-07-16 1987-01-10 コンパニ−・フランセ−ズ・ド・ラフイナ−ジユ 炭化水素仕込物の接触クラツキングのための方法および装置の改良
US4814067A (en) * 1987-08-11 1989-03-21 Stone & Webster Engineering Corporation Particulate solids cracking apparatus and process
US4873389A (en) * 1988-08-04 1989-10-10 Mobil Oil Corp. Conversion of light olefins to gasoline using low-temperature catalyst regeneration
US5009769A (en) * 1989-02-06 1991-04-23 Stone & Webster Engineering Corporation Process for catalytic cracking of hydrocarbons
FR2667609B1 (fr) * 1990-10-03 1993-07-16 Inst Francais Du Petrole Procede et dispositif de craquage catalytique en lit fluide a courant descendant.
US5126036A (en) * 1991-11-05 1992-06-30 Mobil Oil Corporation Process and apparatus for split feed of spent catalyst to high efficiency catalyst regenerator
CN1089641A (zh) * 1992-08-20 1994-07-20 史东及韦伯斯特工程公司 含高和低康拉逊残炭组分的富石蜡原料的催化裂化方法
US5435906A (en) * 1992-08-20 1995-07-25 Stone & Webster Engineering Corporation Process for catalytically cracking feedstocks paraffin rich comprising high and low concarbon components
FR2785907B1 (fr) * 1998-11-13 2001-01-05 Inst Francais Du Petrole Procede et dispositif de craquage catalytique comprenant des reacteurs a ecoulements descendant et ascendant

Also Published As

Publication number Publication date
US7220351B1 (en) 2007-05-22
ATE497527T1 (de) 2011-02-15
FR2802211B1 (fr) 2002-02-01
ES2359623T3 (es) 2011-05-25
MXPA02005794A (es) 2003-01-28
EP1242569A1 (fr) 2002-09-25
JP4671089B2 (ja) 2011-04-13
ZA200204751B (en) 2003-06-13
WO2001044409A1 (fr) 2001-06-21
JP2003517088A (ja) 2003-05-20
FR2802211A1 (fr) 2001-06-15
DE60045600D1 (de) 2011-03-17

Similar Documents

Publication Publication Date Title
EP1242569B1 (fr) Procede et dispositif de craquage catalytique comprenant en parallele au moins un reacteur a ecoulement ascendant et au moins un reacteur a ecoulement descendant
EP1800742B1 (fr) Réacteur à deux zones réactionnelles fluidisées avec système de séparation gaz/solide intégré
EP0208609B1 (fr) Procédé et dispositif pour le craquage catalytique de charges d'hydrocarbures, avec contrôle de la température de réaction
EP0719850B1 (fr) Procédé et dispositif pour le strippage de solides fluidisés, et utilisation dans un procédé de craquage à l'état fluide
EP0171330B1 (fr) Procédé et appareil pour craquage catalytique en lit fluide
EP2336273B1 (fr) Procédé de craquage catalytique avec maximisation des bases gazoles
EP2627736B1 (fr) Procede de craquage et de stripage multi-etage dans une unite de fcc.
EP1131389B1 (fr) Procede et dispositif de craquage catalytique comprenant des reacteurs a ecoulements descendant et ascendant
EP1656989A1 (fr) Dispositif et procédé pour le craquage catalytique de deux charges distinctes d'hydrocarbures
FR2576906A1 (fr) Procede et dispositif d'injection de catalyseur dans un procede de craquage catalytique a l'etat fluide, notamment de charges lourdes
EP0960929B1 (fr) Procédé et dispositif d'introduction de particules de catalyseur dans un réacteur de craquage catalytique à l'état fluide
EP0489726B1 (fr) Procede et dispositif de vapocraquage d'hydrocarbures en phase fluidisee
FR2574422A1 (fr) Perfectionnements aux procedes et dispositifs pour le craquage catalytique a l'etat fluide de charges d'hydrocarbures
FR2659346A1 (fr) Procede de craquage avec oligomerisation ou trimerisation des olefines presentes dans les effluents.
EP0663434A1 (fr) Procédé de craquage catalytique en lit fluidisé d'une charge d'hydrocarbures, notamment d'une charge à forte teneur en composés azotés basiques
EP0282371B1 (fr) Procédé et dispositif pour le craquage catalytique de charges d'hydrocarbures
EP0874880B1 (fr) Procede et dispositif de craquage catalytique en lit fluidise d'une charge d'hydrocarbures
KR102635041B1 (ko) 나프타 범위의 물질을 개선하기 위한 고형물 분리 장치가 결합된 단계적 유체 촉매 분해 공정
EP3897953A1 (fr) Conversion d'un brut petrolier en lit fluidise comportant des zones a differents temps de contact
EP0291408A1 (fr) Procédé de vapocraquage dans une zone réactionnelle en lit fluide
FR2770225A1 (fr) Procede et dispositif de vaporisation selective des charges d'hydrocarbures en craquage catalytique
US8815762B2 (en) Process for regenerating catalyst
EP1016444B1 (fr) Procédé et dispositif pour la séparation rapide de particules solides et de fluides gazeux et leur utilisation
FR2658833A1 (fr) Procede de craquage a l'etat fluide d'une charge d'hydrocarbures.
WO1991003527A1 (fr) Procede et dispositif de vapocraquage d'hydrocarbures en phase fluidisee

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020715

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17Q First examination report despatched

Effective date: 20050329

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 60045600

Country of ref document: DE

Date of ref document: 20110317

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 60045600

Country of ref document: DE

Effective date: 20110317

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20110400656

Country of ref document: GR

Effective date: 20110412

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2359623

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20110525

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 60045600

Country of ref document: DE

Owner name: IFP ENERGIES NOUVELLES, FR

Free format text: FORMER OWNER: INSTITUT FRANCAIS DU PETROLE, RUEIL-MALMAISON, HAUTS-DE-SEINE, FR

Effective date: 20110331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110202

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110202

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110202

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110202

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20111103

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 60045600

Country of ref document: DE

Effective date: 20111103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110202

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20191127

Year of fee payment: 20

Ref country code: SE

Payment date: 20191128

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20191127

Year of fee payment: 20

Ref country code: IT

Payment date: 20191122

Year of fee payment: 20

Ref country code: GR

Payment date: 20191121

Year of fee payment: 20

Ref country code: FR

Payment date: 20191128

Year of fee payment: 20

Ref country code: ES

Payment date: 20191219

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20191121

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20191128

Year of fee payment: 20

Ref country code: DE

Payment date: 20200130

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60045600

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20201127

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20201127

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 497527

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201128

Ref country code: BE

Ref legal event code: MK

Effective date: 20201128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20201127

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20210309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20201129