EP1080365A1 - Spr-sensor zur gleichzeitigen erfassung einer vielzahl von in fluider form vorliegenden proben - Google Patents

Spr-sensor zur gleichzeitigen erfassung einer vielzahl von in fluider form vorliegenden proben

Info

Publication number
EP1080365A1
EP1080365A1 EP99952120A EP99952120A EP1080365A1 EP 1080365 A1 EP1080365 A1 EP 1080365A1 EP 99952120 A EP99952120 A EP 99952120A EP 99952120 A EP99952120 A EP 99952120A EP 1080365 A1 EP1080365 A1 EP 1080365A1
Authority
EP
European Patent Office
Prior art keywords
spr sensor
sensor according
optical waveguide
strip
thin metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99952120A
Other languages
English (en)
French (fr)
Inventor
Andreas BRÄUER
Norbert Danz
Kristina Schmidt
Dirk Vetter
Ralf WALDHÄUSL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Graffinity Pharmaceuticals AG
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Graffinity Pharmaceutical Design GmbH
Graffinity Pharmaceuticals AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV, Graffinity Pharmaceutical Design GmbH, Graffinity Pharmaceuticals AG filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP1080365A1 publication Critical patent/EP1080365A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/251Colorimeters; Construction thereof
    • G01N21/253Colorimeters; Construction thereof for batch operation, i.e. multisample apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons

Definitions

  • the invention relates to an SPR sensor for the simultaneous detection of a large number of samples in fluid form, which enables rapid sample recognition in the context of a variety of applications.
  • the proposed sensor is used for the parallel or serial detection of samples which have been placed in microtite slats.
  • the background of the invention is the necessity to also provide the sensors used for the measurement in a parallel and miniaturized format, so that the measurements of a large number of samples can be carried out in a very short time and with a minimum sample volume and consumption, in order to increase the throughput characterizing substances to increase.
  • a very sensitive method for characterizing interfaces is known in the literature as surface plasmon resonance spectroscopy, usually called SPR (surface plasmon resonance).
  • SPR surface plasmon resonance
  • the method is based on the optical excitation of surface plasmons in thin metal layers. This method is described in detail by Striebel, Ch .; Brecht, A .; Gauglitz, G. in Biosensors & Bioelectronics 9 (1994), 139-146.
  • the resonance conditions for the excitation of the surface plasmons strongly depend on the optical properties of the dielectric surrounding the metal layer.
  • the determination of refractive index and layer thickness of thin dielectric layers is fundamentally possible with a high degree of accuracy according to the known prior
  • SPR spectroscopy is increasingly used e.g. in biochemical analysis, because with mr the direct investigation of the interaction between biomolecules is possible (e.g. antibodies / antigen reactions).
  • one reaction partner ligand
  • analyte is passed over the surface in solution.
  • the interaction is directly detectable as an increase in layer thickness via the change in refractive index.
  • Conventional SPR sensors see product description from Biacore AB, Rapsgatan 7, S-75450 Uppsala, Sweden 1996) use a prism that carries a thin metal layer.
  • the sample to be measured is brought into contact with the metal or the modified metal surface, and the SPR reflection spectrum of the sample is measured by coupling light and measuring the intensity of the reflected light as a function of the angle of incidence or the wavelength.
  • Newer methods and devices use fiber optic elements to build an SPR sensor.
  • Commercial optical fibers with diameters between 1 ⁇ m and 2000 ⁇ m are used.
  • the fibers are exposed at their ends or other defined areas, that is, the existing sheathing, consisting of waveguide sheath and buffer layer, is removed mechanically, chemically or thermally.
  • the fibers are then provided with a metal layer radially or partially radially, and in the case of a fiber-optic sensor based on end reflection, the end face of the fiber is additionally mirrored.
  • the radial coating is subject to very high requirements with regard to the layer thickness homogeneity, which can only be achieved technologically with great effort.
  • a further disadvantage when using optical fibers is in particular the limited possibility of parallelization, since individual optical fibers must always be arranged manually in an array.
  • the invention makes use of the task of planar waveguides, which are each provided with at least one SPR sensor area.
  • SPR sensors according to the invention can be arranged in parallel and can simultaneously be brought into contact with a large number of samples (greater than 100).
  • planar waveguides used lead the excitation light to the sensor area, which uses the measuring principle of surface plasmon resonance to characterize a solution that has been brought into contact with the sensor. Exactly one sample is brought into contact with each sensor area, so that n-different samples can be characterized with an SPR waveguide array consisting of n waveguides.
  • An SPR waveguide array is to be manufactured using technologies from semiconductor production and integrated optics in order to provide a large number of sensors in parallel and to arrange them at a defined distance from one another.
  • the invention further enables the SPR waveguide arrays in sample holders, e.g. B. integrate microtiter plates.
  • the SPR waveguide arrays should be adaptable to existing formats of microtiter plates (96, 386, 1536, etc.) as well as to different or newly developed formats.
  • Planar waveguides are receiving increasing attention in research and development in the field of integrated optics.
  • a light-guiding layer is applied to a surface of a carrier material.
  • the refractive index of the carrier material or a layer to be provided thereon for this purpose must be smaller than that of the waveguiding layer in order to guarantee an almost loss-free guidance of the light in the waveguide.
  • Such flat waveguides are manufactured using known semiconductor technology and integrated optics, such as CVD processes, sputtering, electron beam evaporation, spin coating or various replication techniques.
  • Known microtechnical processes also make it possible to produce finely structured waveguides and splitters. Waveguides with thicknesses in the range of a few micrometers to a few 100 ⁇ m and widths up to a few 1000 ⁇ m can be produced using a wide variety of structuring processes.
  • the coating of defined waveguide sections with an SPR-capable layer can also be carried out in parallel in a few steps using known technologies.
  • An SPR sensor according to the present invention consists of several planar strip-shaped optical waveguides, each of which has at least one two-dimensional measurement area between two end faces.
  • These measuring areas are provided with an SPR-capable planar metal layer which is in direct contact with both the wave-guiding material and the sample to be characterized.
  • the excitation light reaches the optical waveguide via known coupling mechanisms. There the light spreads along the waveguide and is guided to the sensor area. In the sensor area, the excitation of surface plasmons influences the light guided in the optical waveguide.
  • the modified light is either decoupled from the optical waveguide directly after passing through the sensor region via the known coupling principles and passed on for further processing, or it is reflected in itself by a reflective coating on the end face in the optical waveguide and via the same coupling mechanism, through which the light enters the optical fiber reached, decoupled again and thus passed on for further processing.
  • planar SPR waveguides based on the final reflection. If the coupled light emerges on the second side of the waveguide, one speaks of a waveguide sensor based on inline transmission.
  • FIG. 1 shows a first possible embodiment of an emdimensional SPR sensor that can be expanded into an array
  • FIG. 1 a shows a top view of the SPR sensor according to FIG
  • FIG. 1b a section from FIG. 1,
  • FIG. 2 shows a second embodiment of an SPR sensor which is essentially analogous to FIG. 1
  • FIG. 3a shows a perspective view of an SPR sensor according to FIG. 1 or FIG. 2
  • FIG. 3b shows an arrangement of several SPR sensors 3a to
  • FIG. 4 shows a possibility of inserting a comb-like, sprinkled SPR sensor array consisting of planar SPR sensors according to FIGS. 1 or 2 into a microtitre plate in a sectional view
  • FIG. 5 shows a possible arrangement of SPR sensors, whereby the mutual spacing of which is formed by cuvette walls
  • FIG. 6a shows a possible arrangement of an SPR sensor, the individual sensor being additionally detected by cuvette walls
  • FIG. 6b shows a further embodiment of an SPR sensor array according to FIG. 6a
  • FIG. 6c shows a multiple arrangement a training according to Fig. 6a and Fig. 7 a further training possibility according to Fig. 6b.
  • FIG. 1 shows a partial section of an SPR sensor in a first exemplary embodiment.
  • a plurality of strip-shaped optical waveguides 2, which are arranged at a defined distance from one another, are provided on a planar carrier 1 in such a way that their end faces 21, 22 are flush with the sides 11, 12 of the planar carrier 1, each of the strip-shaped optical waveguides 2, in a section which is to be brought into contact with the fluid samples to be analyzed, which are not shown in FIG. 1, is provided with a thin metal layer 3 which enables the excitation of surface plasmons.
  • a 4 "silicon wafer used in semiconductor technology has been assumed, in which the structures of a plurality of planar carriers 1 have first been transferred and structured. Long, narrow rectangular openings have been structured in the wafer 1.
  • the geometry of a mask used for this purpose in the example is to be designed in such a way that the carcinoma structures that arise after it has been separated can be immersed in 1536-format microtiter plates (32-48 cavities). It can be seen that only a section of this is shown in Fig. 1.
  • a silicon wafer with a crystal orientation (110) is selected, which makes it possible to have rectangular free spaces structure vertical edges on at least two edges structured wafers, in the example using the PE-CVD process, coated with S> 2 .
  • This SiO 2 layer serves as an optical buffer between the optical fibers 2 provided and the Si substrate.
  • the shaping of the optical waveguide 2 in the sense of the present invention is carried out by a customary dry etching process of the silicon oxynitride layer in such a way that parallel strips with widths between 10 ⁇ m to 2000 ⁇ m and distances between 10 ⁇ m and 5000 ⁇ m are formed. It is also possible within the scope of the invention to modify the aforementioned sequence of structure generation in such a way that all the coatings mentioned so far are initially on an unstructured Si wafer be carried out over the entire surface and then the known cam structure is produced in FIG. 1 by means of known selective structuring methods.
  • the structures thus obtained are shown in plan view along a plane XX of FIG. 1.
  • manufacture the optical waveguide 2 from a polymer that can be cured under the influence of UV light.
  • a liquid polymer for example PMMA, polycarbonate, UV-curing adhesives or silicon-containing polymers (Cyclotene or ORMOCERE)
  • the optical waveguides are structured by means of known photolithographic methods using an appropriately designed mask.
  • the exposed areas are crosslinked and hardened by UV irradiation, the unexposed areas are detached again during development, so that the exposed areas remain as optical waveguides 2.
  • the cross section of the optical waveguide 2 is to be made largely square, with manufacturing-related deviations being possible, and in the example according to FIG. 2 it is approximately 190 ⁇ m • 190 ⁇ m, the width b of the fingers f is approximately 550-600 ⁇ m, with the optical waveguide 2 should be arranged centrally on the fingers f.
  • the optical refractive index of the material for the carrier 1 is lower than that of the polymer to be applied and that it is not absorbent, in the example according to FIG. 2 the additional previous application of an optical buffer layer 13, as shown in FIG . 1, to be dispensed with.
  • the structures for the SPR sensors are advantageously produced on the wafer in such a way that the can structures oppose each other before mirroring.
  • a subsequent sawing process for separating the comb structures it is necessary to passivate the optical waveguides 2 with the thin metal layers 3, which enable the excitation of surface plasmon, in order to prevent them from being damaged by splinters or the like. to preserve.
  • a thick protective coating is applied.
  • these recesses 14 can be produced before or after the application of the metal layer 3 mentioned.
  • the application is then carried out at least to the areas of the optical waveguides 2 which are formed by the end face 22 in the area of the metal layer 3.
  • the reflective coating 4 can be applied, for example, by a renewed coating process, for example sputtering an aluminum or silver layer.
  • the entire surface of the wafer is provided with a protective layer prior to the separation process, which guarantees that the structures 2, 3 previously applied are not contaminated during the mirroring of the ends. After the mirror coating, this protective layer is removed.
  • this protective layer is removed.
  • the individual SPR sensor areas formed by the metal layers 3 are separated from one another by the comb-shaped recesses 14, so that each of the optical waveguides 2 can only be assigned to one sample, for example by immersing them in a complementarily distributed receptacle of a microtiter plate is.
  • FIG. 3a shows a perspective view of an SPR sensor according to FIG. 1 or FIG. 2.
  • several such strips are stacked one behind the other and, apart from the areas which are provided with the thin metal layer 3 which enables the excitation of surface plasmons, are grasped by a common holding means and are spaced apart from one another such that their spacing, e.g. corresponds to the recesses of an arbitrarily definable microtitre plate format.
  • Arrays which can be adapted as desired, for example 8 • 12, as shown in FIG. 3b, can thus be produced by SPR sensors.
  • Such an array is advantageously cast into a polymer after assembly in the area that does not carry the SPR-capable metal layer 3 in order to give the SPR waveguide array additional support, as is indicated schematically in FIG. 3 b by a polymer block encapsulation 6 .
  • this SPR waveguide array is brought into contact with a microtitre plate which carries the samples to be characterized.
  • the SPR waveguide array is introduced into the microtitre plate 7 until the SPR-capable metal regions 3 are completely wetted by a sample 8, as is shown schematically in FIG. 4.
  • FIG. 5 Another possible arrangement of the SPR sensors is indicated in FIG. 5.
  • the individual SPR sensors are spaced apart by cuvette walls 71, each one
  • Optical fiber 9 shown which can be precisely positioned by means of an xy sliding table over the respective end faces of the optical waveguides 2.
  • This optical fiber 9 couples light from a white light radiation source (not shown in more detail) into the respective optical waveguide 2, this light being guided to the excitation area of the surface plasmon and subsequently being reflected on the second, mirrored end face.
  • the light is coupled out of the optical waveguide 2 via the end face and transferred into the common arm of a fiber splitter, not shown. From there it reaches, for example, a spectrometer (not shown) where it is spectrally evaluated.
  • the spectrometer control and data acquisition is computer controlled via a PC.
  • Another way of determining the spectrum is to measure the SPR array in transmission.
  • a simple optical fiber 9 is used to couple the light into the optical waveguide 2.
  • a second optical fiber is positioned at the output of the optical waveguide 2. This leads the light to a grating spectrometer.
  • the mirroring of the end face of the optical waveguide 2 is dispensed with.
  • the interaction length decreases, i.e. the effective sensor length by 50%. The signal is less pronounced by this factor.
  • two coupling points have to be positioned, which increases the apperative and adjustment effort.
  • FIGS. 6a and 6b it is provided that the means separating the detection areas of the individual thin metal layers 3 are formed by cuvette walls 15 connected to the planar carrier 1. Both of the above modes of operation are also possible here.
  • An embodiment according to FIG. 6a is designed for an inline operating mode; one by Fig. 6b, by applying a mirror 4, for operation in reflection.
  • FIG. 6c indicates how an SPR sensor array can be generated by a multiple arrangement, comparable to the stacking of individual cells of FIG. 6a carrying several SPR sensors, as described for FIG. 3b.
  • planar carriers 1 are used, which are provided with essentially planar optical fibers, which each have at least one planar SPR-capable metal layer 3 in a sample detection area, each of which represents a sample detection area that is in contact with a sample is feasible. It is also within the scope of the invention to connect the created SPR-compatible areas with open bottoms of flow cells 16, FIG. 7, spaced apart from one another, which have a common inflow 17 and outflow 18. In such an embodiment in particular, one or more of the flow cells formed can be used as reference channels, for example for the compensation of temperature fluctuations.
  • the invention speaks of at least one two-dimensional measurement area, this means that the metal layer 3 provided as the sensor area can also be subdivided into several partial areas 31, 32, 33, as indicated in FIG. 1b.
  • the SPR sensor according to the invention can also be used in such a way that a single sample is first immobilized on the sensor areas 3. This immobilization serves to provide a chemically modified measuring surface with which another sample, preferably in solution, can interact.
  • the immobilized sample one often speaks of ligands, the sample in solution often being referred to as a receptor or analyte.
  • the interaction partners are thus, for example, ligand-receptor pairs.
  • An SPR sensor according to the present invention then allows the simultaneous measurement of a large number of different samples (analytes). All of the features shown in the description, the subsequent claims and the drawing can be essential to the invention both individually and in a combination with one another. Reference list

Landscapes

  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Measuring Cells (AREA)

Abstract

Die Erfindung betrifft einen SPR-Sensor zur gleichzeitigen Erfassung einer Vielzahl von in fluider Form vorliegenden Proben. Die Aufgabe, einen derartigen Sensor anzugeben, der zu einem vorgebbaren Array anordenbar ist, wobei die SPR-Sensoren mittels einer vereinheitlichten Technologie und kostengünstiger als solche nach dem bekannten Stand der Technik herstellbar sein sollen, wird dadurch gelöst, daß auf einem planaren Träger (1) mehrere streifenförmige Lichtwellenleiter (2), die zueinander in einem definierten Abstand angeordnet sind, derart vorgesehen sind, daß sie mit ihren Stirnflächen (21, 22) mit gegenüberliegenden Seiten (11, 12) des planaren Trägers (1) bündig abschließen, wobei jeder der streifenförmigen Lichtwellenleiter (2) in einem Abschnitt, der mit den fluiden Proben in Kontakt zu bringen ist, mit mindestens einer die Anregung von Oberflächenplasmonen ermöglichenden dünnen Metallschicht (3) versehen ist, wobei Mittel (14) vorgesehen sind, die die Erfassungsbereiche der einzelnen dünnen Metallschichten (3) voneinander derart trennen, daß jeder der Lichtwellenleiter (2) nur einer Probe zuordenbar ist.

Description

SPR-Sensor zur gleichzeitigen Erfassung einer Vielzahl von in fluider Form vorhegenden Proben
Beschreibung
Die Erfindung betrifft einen SPR-Sensor zur gleichzeitigen Erfassung einer Vielzahl von in fluider Form vorliegenden Proben, der eine schnelle Probenerkennung im Rahmen vielfältiger Anwendungszwecke ermöglicht. Insbesondere findet der vorgeschlagene Sensor zur parallelen oder seriellen Erfassung von Proben, die in Mikrotite latten verbracht sind, Verwendung.
Durch die weiter vorangetriebene Automatisierung im Bereich der Wirkstoffsuche ist die Fragestellung der Miniaturisierung und Parallelisierung von immer größerem Interesse. Die Miniaturisierung von Probengefäßen und Syntheseapparaturen und die Parallelisierung der ablaufenden Prozesse bedingt eine Vielzahl an zu untersuchenden Substanzen mit immer weniger Volumen. Daher ist es bei der Realisierung neuartiger Detektions- und Sensorsysteme notwendig, diese so auszubilden, daß gleichzeitig mehrere Messungen parallel ablaufen bzw. eine große Anzahl von Proben innerhalb kürzester Zeit hintereinander gemessen werden können und die dafür benötigten Substanzmengen minimiert werden. Eine wichtige Rolle kommt dabei der Erhöhung des Automatisierungsgrades zu. Hintergrund der Erfindung ist die Notwendigkeit auch die für die Messung verwendeten Sensoren in einem parallelen und miniaturisierten Format vorzusehen, so daß die Messungen einer Vielzahl von Proben in kürzester Zeit und mit minimalem Probenvolumen und -verbrauch, realisiert werden können, um damit den Durchsatz an zu charakterisierenden Substanzen zu erhöhen. Es ist eine sehr empfindliche Methode zur Charakterisierung von Grenzflächen bekannt, die als Oberflächenplasmonen-Resonanz- Spektroskopie, üblicherweise als SPR, (Surface Plasmon Resonance) in der Literatur bezeichnet wird. Sie Methode beruht auf der optischen Anregung von Oberflächenplasmonen in dünnen Metallschichten. Diese Methode ist unter anderen nach dem Stand der Technik ausfuhrlich von Striebel, Ch.; Brecht, A.; Gauglitz, G. in Biosensors & Bioelectronics 9 (1994), 139-146 beschrieben. Die Resonanzbedingungen für die Anregung der Oberflächenplasmonen hängen stark von den optischen Eigenschaften des die Metallschicht umgebenden Dielektrikums ab. Die Bestimmung von Brechzahl und Scl ichtdicke dünner dielektrischer Schichten ist grundsätzUch nach dem bekannten Stand der Technik mit einer hohen Genauigkeit möglich.
Die SPR-Spektroskopie findet zunehmend z.B. in der biochemischen Analytik Anwendung, da mit mr die direkte Untersuchung der Wechselwirkung zwischen Biomolekülen möglich ist (z.B. Antiköφer/Antigen-Reaktionen). Dazu wird ein Reaktionspartner (Ligand) auf der Metalloberfläche immobilisiert, der andere Reaktionspartner (Analyt) wird in Lösung über die Oberfläche geleitet. Die Wechselwirkung ist als Schichtdickenzuwachs über die Brechzahländerung direkt nachweisbar. Herkömmliche SPR-Sensoren (vgl. Produktbeschreibung der Fa. Biacore AB, Rapsgatan 7, S-75450 Uppsala, Schweden 1996) verwenden ein Prisma, das eine dünne Metallschicht trägt. Die zu messende Probe wird mit dem Metall bzw. der modifizierten Metalloberfläche in Kontakt gebracht, und das SPR-Reflexionsspektrum der Probe wird durch Einkoppeln von Licht und Messen der Intensität des reflektierten Lichts als Funktion des Einfallswinkels oder der Wellenlänge gemessen.
Neuere Verfahren und Vorrichtungen (WO 94/16312) nutzen faseroptische Elemente, um einen SPR-Sensor aufzubauen. Dabei werden kommerzielle Lichtleitfasern mit Durchmessern zwischen 1 μm bis 2000 μm verwendet. Die Fasern werden an ihren Enden oder anderen definierten Bereichen freigelegt, das heißt, die vorhandene Ummantelung, bestehend aus Wellenleitermantel und Pufferschicht, wird mechanisch, chemisch oder thermisch entfernt. Anschließend werden die Fasern radial oder partiell radial mit einer Metallschicht versehen und im Fall eines auf Endreflexion basierenden faseroptischen Sensors wird zusätzlich die Stirnseite der Faser verspiegelt. An die radiale Beschichtung werden dabei sehr hohe Anforderungen hinsichtlich der Schichtdickenhomogenität gestellt, die technologisch nur mit einem großem Aufwand realisierbar ist. Ein weiterer Nachteil bei der Verwendung von Lichtleitfasern ist besonders die begrenzte Möglichkeit einer Parallelisierung, da immer einzelne Lichtleitfasern manuell zu einem Array angeordnet werden müssen.
Es ist Aufgabe der vorliegenden Erfindung, emen SPR-Sensor zur gleichzeitigen Erfassung einer Vielzahl von in fluider Form vorliegenden Proben anzugeben, der zu einem vorgebbaren Array anordenbar ist, wobei die SPR-Sensoren mittels einer vereinheithchten Technologie und kostengünstiger als solche nach dem bekannten Stand der Technik herstellbar sein sollen.
Die Aufgabe wird durch die kennzeichnenden Merkmale des ersten Patentanspruchs gelöst. Vorteilhafte Ausgestaltungen sind Gegenstand der nachgeordneten Ansprüche.
Die Erfindung bedient sich zur Lösung der Aufgabe planarer Wellenleiter, die jeweils mit mindestens einem SPR-Sensorgebiet versehen sind. SPR-Sensoren nach der Erfindung sind parallel anordenbar und können gleichzeitig mit einer großen Anzahl von Proben (größer 100) in Kontakt gebracht werden.
Die dabei verwendeten planaren Wellenleiter führen das Anregungslicht zu dem Sensorgebiet, welches das Meßprinzip der Oberflächenplasmonenresonanz verwendet, um eine mit dem Sensor in Kontakt gebrachte Lösung zu charakterisieren. Dabei wird mit jedem Sensorgebiet genau eine Probe in Kontakt gebracht, so daß mit einem SPR-Wellenleiterarray bestehend aus n-Wellenleitern n-verschiedene Proben charakterisierbar sind.
Ein SPR-Wellenleiterarray soll mittels Technologien der Halbleiterfertigung und integrierten Optik hergestellt werden, um eine große Anzahl von Sensoren parallel bereitzustellen und in einem definierten Abstand zueinander anzuordnen.
Die Erfindung ermöglicht weiterhin, die SPR-Wellenleiterarrays in Probenhalter, z. B. Mikrotiterplatten, zu integrieren. Dabei sollen die SPR-Wellenleiterarrays an bereits vorhandene Formate von Mikrotiterplatten (96, 386, 1536, etc.) als auch an davon abweichende oder neu entwickelte Formate anpaßbar sein. Planare Wellenleiter finden immer breitere Beachtung in Forschung und Entwicklung auf dem Gebiet der integrierten Optik. Für die Herstellung wird eine lichtleitende Schicht flächig auf einem Trägermaterial aufgebracht. Der Brechungsindex des Trägermaterials oder einer darauf zu diesem Zweck vorzusehenden Schicht muß kleiner sein, als der der wellenleitenden Schicht, um eine nahezu verlustfreie Führung des Lichtes im Wellenleiter zu garantieren. Die Herstellung solcher flächiger Wellenleiter erfolgt mit bekannten Technologien der Halbleitertechnik und integrierten Optik, wie z.B. CVD-Prozessen, Sputtern, Elektronenstrahlverdampfen, Aufschleudern oder verschiedener Replikationstechniken. Mit bekannten mikrotechnischen Verfahren ist auch eine Herstellung fein strukturierter Wellenleiter und -verzweiger möglich. Dabei sind über verschiedenste Strukturierungsverfahren Wellenleiter mit Dicken im Bereich weniger Mikrometer bis einige 100 μm und Breiten bis einige 1000 μm herstellbar. Die Beschichtung definierter Wellenleiterabschnitte mit einer SPR-fähigen Schicht kann ebenfalls mit bekannten Technologien parallel in wenigen Schritten vorgenommen werden. Ein SPR-Sensor nach vorliegender Erfindung besteht aus mehreren planaren streifenförmigen Lichtwellenleitern, die jeweils zwischen zwei Stirnflächen mindestens ein zweidimensionales Meßgebiet aufweisen. Diese Meßgebiete sind mit einer SPR-fähigen planaren Metallschicht versehen, die sowohl mit dem wellenleitenden Material als auch der zu charakterisierenden Probe in direktem Kontakt steht. Das Anregungslicht gelangt über bekannte Koppelmechanismen in den Lichtwellenleiter. Dort breitet sich das Licht entlang des Wellenleiters aus und wird zum Sensorgebiet geführt. Im Sensorbereich wird durch die Anregung von Oberflächenplasmonen das im Lichtwellenleiter geführte Licht beeinflußt. Im weiteren Verlauf wird das modifizierte Licht entweder direkt nach dem Durchlaufen der Sensorregion aus dem Lichtwellenleiter über die bekannten Koppelprinzipien ausgekoppelt und der weiteren Verarbeitung zugeführt, oder es wird durch eine an der Stirnfläche angebrachten reflektierenden Beschichtung im Lichtwellenleiter in sich reflektiert und über den selben Koppelmechanismus, über den das Licht in den Lichtwellenleiter gelangte, wieder ausgekoppelt und so der weiteren Verarbeitung zugeführt.
Im Fall der Ein- und Auskopplung des Lichtes an ein- und derselben Seite des Lichtwellenleiters und Reflexion der Strahlung an dem anderen Ende, handelt es sich um planare SPR-Wellenleiter auf der Basis der Endreflexion. Tritt das eingekoppelte Licht an der zweiten Seite des Wellenleiters aus, spricht man von einem Wellenleitersensor auf Inline-Transmissionsbasis.
Die Erfindung soll nachstehend anhand schematischer Ausfuhrungsbeispiele näher erläutert werden. Es zeigen:
Fig. 1 eine erste Ausführungsmöglichkeit eines zu einem Array ausbaubaren emdimensionalen SPR-Sensors, Fig. la eine Draufsicht auf den SPR-Sensor nach Fig. 1 in einer
Ebene X-X, Fig. lb einen Ausschnitt aus Fig. 1,
Fig. 2 eine zweite Ausfulιrungsmögliclτkeit eines SPR-Sensors, die im wesentlichen analog zu Fig. 1 ausgebildet ist, Fig. 3a eine perspektivische Ansicht eines SPR-Sensors nach Fig. 1 oder Fig. 2, Fig. 3b eine Anordnung mehrerer SPR-Sensoren nach Fig. 3a zur
Bildung eines Arrays, Fig. 4 eine Einbringui gsmöglicl keit eines kammartig ausgebüdeten SPR-Sensor-Arrays bestehend aus planaren SPR-Sensoren nach den Fig. 1 oder 2 in eine Mikrotiteφlatte in einer Schnittdarstellung, Fig. 5 eine Anordnungsmöglichkeit von SPR-Sensoren, wobei deren gegenseitige Beabstandung durch Küvettenwände gebildet ist, Fig. 6a eine Anordnungsmögüchkeit eines SPR-Sensors, wobei der einzelne Sensor zusätzlich von Küvettenwandungen erfaßt ist, Fig. 6b eine weitere Ausbildungsmöglichkeit eines SPR-Sensor- Arrays nach Fig. 6a, Fig. 6c eine Mehrfachanordnung einer Ausbildung nach Fig.6a und Fig. 7 eine weitere Ausbildungsmöghchkeit nach Fig.6b. In Figur 1 ist in einem ersten Ausfuhrungsbeispiel ein SPR-Sensor in einem Teilausschnitt dargestellt. Dabei sind auf einem planaren Träger 1 mehrere streifenförmige Lichtwellenleiter 2, die zueinander in einem definierten Abstand angeordnet sind, derart vorgesehen, daß sie mit Ihren Stirnflächen 21, 22 mit den Seiten 11, 12 des planaren Trägers 1 bündig abschließen, wobei jeder der streifenförmigen Lichtwellenleiter 2 in einem Abschnitt, der mit den zu analysierenden, in Fig. 1 nicht dargestellten fluiden Proben in Kontakt zu bringen ist, mit einer die Anregung von Oberflächenplasmonen ermöglichenden dünnen Metallschicht 3 versehen ist. Im Beispiel nach Fig. 1 ist dabei von einem in der Halbleitertechnik eingesetzten 4"-Siliziumwafer ausgegangen, in den zunächst die Strukturen mehrerer planarer Träger 1 übertragen und strukturiert worden sind. Dabei sind in den Wafer lange, schmale rechteckige Öffnungen strukturiert, die nach erfolgter Vereinzelung die in Fig. 1 dargestellten kaniniförmigen Ausnehmungen 14 bilden. Eine dafür im Beispiel zum Einsatz gelangende Maske soll in ihrer Geometrie so gestaltet sein, daß die nach ihrer Vereinzelung entstehenden Karnmsrrukturen in Mikrotiterplatten vom 1536er Format (32 • 48 Kavitäten) eingetaucht werden können. Es ist ersichtlich, daß davon in Fig. 1 nur ein Ausschnitt gezeigt ist. Um eine möglichst große Stabilität der einzehien Träger 1 zu gewährleisten, ist ein Silizium- Wafer mit einer Kristall-Orientierung (110) ausgewählt, der es ermöglicht, rechteckige Freiräume mit senkrechten Kanten an wenigstens zwei Kanten zu strukturieren. Anschließend wird der strukturierte Wafer, im Beispiel mittels PE-CVD Verfahren, mit S >2 beschichtet. Diese Siθ2-Schicht dient als optischer Puffer zwischen den vorgesehenen Lichtwellenleitern 2 und dem Si-Substrat. Die Lichtwellenleiter nach Fig. 1 bestehen aus einer Siliziumoxynitrid- Schicht, die bspw eine Dicke von etwa 10 μm aufweisen. Die Formgebung der Lichtwellenleiter 2 im Sinne vorliegender Erfindung erfolgt durch einen üblichen Trockenätzprozeß der Siliziumoxynitrid-Schicht derart, daß parallele Streifen mit Breiten zwischen 10 μm bis 2000 μm und Abständen zwischen 10 μm und 5000 μm entstehen. Auch ist es im Rahmen der Erfindung möglich, vorgenannte Reüienfolge der Strukturerzeugungen derart abzuwandeln, daß auf einem unstrukturierten Si- Wafer zunächst alle bislang genannten Beschichtungen ganzflächig vorgenommen werden und daran anschließend vermittels bekannter selektiver Slrukturierungsverfahren die in Fig. 1 ersichtliche Karnmstruktur erzeugt wird. In Figur la sind die so erhaltenen Strukturen in Draufsicht entlang einer Ebene X-X nach Fig. 1 dargestellt. Ebenso liegt es im Rahmen der Erfindung, die Lichtwellenleiter 2 aus einem unter UV-Lichteinwirkung aushärtbarem Polymer zu fertigen. Dazu wird ein flüssiges Polymer, z.B. PMMA, Polycarbonat, UV-härtende Klebstoffe oder siliziumhaltige Polymere (Cyclotene oder ORMOCERE), auf den Wafer aufgeschleudert oder vergossen. Die Stiυkturierung der Lichtwellenleiter erfolgt mittels bekannter fotolithografischer Verfahren vermittels einer entsprechend ausgeführten Maske. Durch eine UV-Bestrallung werden die belichteten Bereiche vernetzt und verhärtet, die unbelichteten Bereiche werden beim Entwickeln wieder herausgelöst, so daß die belichteten Bereiche als Lichtwellenleiter 2 verbleiben.
Der Querschnitt der Lichtwellenleiter 2 soll weitestgehend quadratisch ausgeführt sein, wobei herstellungsbedingt Abweichungen auftreten können, und beträgt im Beispiel nach Fig. 2 etwa 190 μm • 190 μm, die Breite b der Finger f beträgt ca. 550 - 600 μm, wobei die Lichtwellenleiter 2 mittig auf den Fingern f angeordnet sein sollen.
Mit einer solchen Dimensionierung wird eine weitestgehende Anpassung an Lichtleitfasern, auf die weiter nachstehend eingegangen wird, mit gängigen Durchmessern von 200 μm gewährleistet. Die Länge h der die Finger f beinhaltenden Abschnitte beträgt im Beispiel 5 mm.
Unter der Voraussetzung, daß die optische Brechzahl des Materials für den Träger 1 kleiner ist, als die des aufzutragenden Polymers, und daß es nicht absorbierend ist, kann im Beispiel nach Fig. 2 auf die zusätzliche vorherige Aufbringung einer optischen Pufferschicht 13, wie in Fig. 1, verzichtet werden.
Ebenso können auch andere Polymere Verwendung finden, die bspw. durch Prägen oder andere Replikationstechniken in die gewünschte Streifenform gebracht werden, wobei das verbleibende Material an den Stellen, an denen kein Licht geführt werden soll, in seiner Dicke unter der kritischen Cut-off-Dicke liegen muß. Nach der vorstehend beschriebenen Strukturierung der streifenförmigen Lichtwellenleiter wird in beiden bislang beschriebenen Ausführungsformen der gesamte Wafer durch eine Abdeckung bis auf die Bereiche geschützt, die die SPR-fähige Metallschicht 3 tragen sollen. Danach werden diese freiliegenden Bereiche mit der SPR- fähigen Metallage, z.B. mit einer dünnen Goldschicht mittels Sputtern, beschichtet und im Anschluß daran werden die abgedeckten, übrigen Gebiete von der Schutzschicht befreit.
Vorteilhafterweise werden auf dem Wafer die Strukturen für die SPR-Sensoren so erzeugt, daß sich vor dem Vereinzeln die Kanimstrukturen spiegelbüdlich gegenüberstehen. Für einen folgenden Sägeprozeß zur Vereinzelung der Kammstrukturen ist es notwendig, die Lichtwellenleiter 2 mit den die Anregung von Oberflächenplasmonen ermöghchenden dünnen Metallschichten 3 zu passivieren, um diese vor Beschädigungen durch Splitter o.a. zu bewahren. Dazu wird eine dicke Lackschutzschicht aufgebracht. Danach erfolgt ein Trennprozeß, z.B. durch Sägen, wodurch die gewünschten Kammstrukturen erhalten werden und die Stirnflächen 21, 22, über das Licht in die Lichtwellenleiter ein- bzw. auskoppelbar ist, erzeugt.
Je nach verwendeter Technologie zum Einbringen der kammartigen Ausnehmungen in den Trägerkörper 1, können diese Ausnehmungen 14 vor oder nach dem Aufbringen genannter Metallschicht 3 erzeugt werden. In den Beispielen nach den Figuren 1 und 2 erfolgt anschließend die Aufbringung zumindest auf die Bereiche der Lichtwellenleiter 2, die durch die im Bereich der Metallschicht 3 hegenden Stirnfläche 22 gebildet sind. Die Aufbringung der reflektierenden Beschichtung 4 kann zum Beispiel durch einen erneuten Beschichtungsprozeß, z.B. Sputtern einer Aluminium- oder Silberschicht, erfolgen. Dafür wird der Wafer vor dem Trennprozeß ganzflächig mit einer Schutzschicht versehen, die garantiert, daß während der Verspiegelung der Enden die vorher aufgebrachten Strukturen 2, 3 nicht verunreinigt werden. Nach der Verspiegelung wird diese Schutzschicht entfernt. In den Beispielen nach den Figuren 1 und 2 sind die einzelnen durch die Metallschichten 3 gebildeten SPR-Sensorbereiche durch die kammförmigen Ausnehmungen 14 voneinander getrennt, so daß jeder der Lichtwellenleiter 2, z.B. durch Eintauchen in komplementär verteilt angeordnete Aufnahmen einer Mikrotiteφlatte, nur einer Probe zuordenbar ist.
In Figur 3a ist eine perspektivische Ansicht eines SPR-Sensors nach Fig. 1 oder Fig. 2 dargestellt. Zur Realisierung eines Arrays von Sensoren werden mehrere derartiger Streifen hintereinander gestapelt angeordnet und abseits der Bereiche, die mit der die Anregung von Oberflächenplasmonen ermöglichenden dünnen Metallschicht 3 versehen sind, von einem gemeinsamen Haltemittel erfaßt und voneinander derart beabstandet sind, daß ihre Beabstandung bspw. dem Abstand der Ausnehmungen eines beliebig vorgebbaren Mikrotiteφlattenformats entspricht. Damit sind beliebig anpaßbare Arrays, bspw. 8 12, wie nach Fig. 3b, von SPR-Sensoren herstellbar. Ein solches Array wird vorteilhafterweise nach der Montage in dem Bereich, der nicht die SPR-fähige Metallschicht 3 trägt, in ein Polymer eingegossen, um dem SPR-Wellenleiterarray zusätzlichen Halt zu geben, wie es in Fig. 3b schematisch durch einen Polymerblockverguß 6 angedeutet ist. Dieses SPR-Wellenleiterarray wird für Messungen mit einer Mikrotiteφlatte, die die zu charakterisierenden Proben trägt, in Kontakt gebracht. Dabei wird zur Erzielung einer optimalen Messung das SPR-Wellenleiterarray soweit in die Mikrotiteφlatte 7 eingebracht, bis die SPR-fähigen Metallbereiche 3 von einer Probe 8 vollständig benetzt werden, wie es schematisch in Fig. 4 dargestellt ist.
Ein weitere Anordnungsmöglichkeit der SPR-Sensoren ist in Figur 5 angedeutet. In diesem Beispiel erfolgt die gegenseitige Beabstandung der einzelnen SPR-Sensoren durch Küvettenwände 71, die jeweils einen
Finger f genannter Kammstruktur umfassen. In diesem Beispiel ist ein
SPR-Array nach dem Endreflektionsprinzip eingesetzt.
In den Beispielen nach den Figuren 4 und 5 ist weiterhin eine externe
Lichtleitfaser 9 dargestellt, die vermittels eines xy- Verschiebetisches über die jeweiligen stirnseitigen Endflächen der Lichtwellenleiter 2 präzise positionierbar. Dabei koppelt diese Lichtleitfaser 9 Licht einer nicht näher dargestellten Weißlichtstrahlungsquelle in den jeweiligen Lichtwellenleiter 2 ein, wobei dieses Licht zum Anregungsbereich der Oberflächenplasmonen geführt und anschließend an der zweiten, verspiegelten Stirnfläche reflektiert wird. Nachdem das geführte Licht den Anregungsbereich das zweite Mal nach der Reflexion passiert hat, wird das Licht aus dem Lichtwellenleiter 2 über die Stirnfläche ausgekoppelt und in den gemeinsamen Arm eines nicht dargestellten Faserverzweigers überfuhrt. Von dort gelangt es bspw. in ein nicht dargestelltes Spektrometer, wo es spektral ausgewertet wird. Die Spektrometersteuerung und die Datenerfassung erfolgt computergesteuert über ein PC.
Eine weitere Möglichkeit der Bestimmung des Spektrums besteht darin, das SPR-Array in Transmission zu vermessen. An Stelle eines Faserverzweigers wird eine einfache Lichtleitfaser 9 zur Einkopplung des Lichtes in den Lichtwellenleiter 2 benutzt. Am Ausgang des Lichtwellenleiters 2 wird eine zweite Lichtleitfaser positioniert. Diese führt das Licht zu einem Gitterspektrometer. Bei einer derartigen Konfiguration wird auf die Verspiegelung der Endfläche des Lichtwellenleiters 2 verzichtet. Allerdings verringert sich die Wechselwirkungslänge, d.h. die effektive Sensorlänge um 50 %. Das Signal ist um diesen Faktor weniger ausgeprägt. Zum anderen müssen zwei Koppelstellen positioniert werden, wodurch sich der apperative und der Justageaufwand erhöhen.
Je nach eingesetzter Meß- und Rechentechnik ist aber ebenso möglich, jedem der vorgesehenen Lichtwellenleiter 2 eine Lichtleitfaser 9 zuzuordnen, wodurch eine simultane Auswertung aller eingesetzten Proben ermöglicht ist.
In zwei weiteren Ausführungsformen nach den Figur 6a und 6b ist vorgesehen, daß die die Erfassungsbereiche der einzehien dünnen Metallschichten 3 voneinander trennenden Mittel durch mit den planaren Träger 1 verbundene Küvettenwandungen 15 gebildet sind. Auch dabei sind beide vorgenannte Betriebsweisen möglich. So ist eine Ausführung nach Fig. 6a für eine Inline-Betriebsweise ausgelegt; eine nach Fig. 6b, durch Aufbringung einer Verspiegelung 4, für den Betrieb in Reflexion. In Figur 6c ist angedeutet, wie durch eine Mehrfachanordnung, vergleichbar der zu Fig. 3b beschrieben Stapelung von einzelnen, mehrere SPR-Sensoren tragenden ZeÜen nach Fig. 6a, ein SPR-Sensor-Array erzeugbar ist.
Die Erfindung ist nicht auf die dargestellten Ausführungsbeispiele beschränkt. Wesentlich ist in jedem Fall, daß planare Träger 1 zum Einsatz gelangen, die mit im wesentlichen planaren Lichtwellenleitern versehen sind, welche in einem Probenerfassungsgebiet jeweils mindestens eine planare SPR-fahige Metallschicht 3 aufweisen, die jeweils ein Probenerfassungsgebiet darstellt, das mit einer Probe in Kontakt bringbar ist. Auch liegt es im Rahmen der Erfindung, die geschaffenen SPR-fähigen Bereiche mit offenen Böden voneinander beabstandeter Durchflußküvetten 16, Fig. 7, in Verbindung zu bringen, die einen gemeinsamen Zufluß 17 und Abfluß 18 aufweisen. Insbesondere bei einer derartigen Ausführungsform können einer oder mehrere der gebildeten Durchflußküvetten als Referenzkanäle, bspw. für die Kompensation von Temperaturschwankungen, verwendet werden. Wenn im Rahmen der Erfindung von mindestens einem zweidimensionalen Meßgebiet die Rede ist, ist darunter zu verstehen, daß die als Sensorgebiet vorgesehenen Metallschicht 3 auch in mehrere Teilgebiete 31, 32, 33 unterteilbar ist, wie es in Fig. lb angedeutet ist. Ebenso ist der erfindungsgemäße SPR-Sensor derart verwendbar, daß zunächst eine einzige Probe auf den Sensorgebieten 3 immobilisiert wird. Diese Immobilisierung dient der Bereitstellung einer chemisch modifizierten Meßoberfläche, mit der eine weitere Probe, bevorzugt in Lösung, wechselwirken kann. Im Falle der immobilisierten Probe spricht man häufig von Liganden, wobei die Probe in Lösung häufig als Rezeptor oder Analyt bezeichnet wird. Die Interaktionspartner sind somit beispielsweise Ligand-Rezeptor Paare. Ein SPR-Sensor nach vorliegender Erfindung erlaubt dann die gleichzeitige Messung einer Vielzahl unterschiedlicher Proben (Analyten). Alle in der Beschreibung, den nachfolgenden Ansprüchen und der Zeichnung dargestellten Merkmale können sowohl einzeln als auch in behebiger Kombination miteinander erfindungswesentlich sein. Bezugszeichenliste
1 - planarer Träger
11, 12 - gegenüberliegende Seiten des Trägers 1
13 - Beschichtung (Pufferschicht)
14 - Ausnehmungen
15 - Küvettenwandungen
16 - Durchflußküvetten
17 - Zufluß
18 - Abfluß
2 - Lichtwellenleiter
21, 22 - Strinflächen des Lichtwellenleiters 2
3 - SPR-fahige Metallschicht
31, 32, 33 - Teilgebiete der Metallschicht 3
4 - hchtreflektierende Beschichtung
6 - Verguß b - Breite der Finger f f - Finger h - Länge der Finger f
X-X - Ebene

Claims

Patentansprüche
1. SPR-Sensor zur gleichzeitigen Erfassung einer Vielzahl von in fluider Form vorliegenden Proben, dadurch gekennzeichnet, daß auf einem planaren Träger (1) mehrere streifenförmige Lichtwellenleiter (2), die zueinander in einem definierten Abstand angeordnet sind, derart vorgesehen sind, daß sie mit Ihren Stirnflächen (21, 22) mit gegenüberliegenden Seiten (11, 12) des planaren Trägers (1) bündig abschließen, wobei jeder der streifenförmigen Lichtwellenleiter (2) in einem Abschnitt, der mit den fluiden Proben in Kontakt zu bringen ist, mit mindestens einer die Anregung von Oberflächenplasmonen ermöglichenden dünnen Metallschicht (3) versehen ist, wobei Mittel (14; 15) vorgesehen sind, die die Erfassungsbereiche der einzelnen dünnen Metallschichten (3) voneinander derart trennen, daß jeder der
Lichtwellenleiter (2) nur einer Probe zuordenbar ist.
2. SPR-Sensor nach Anspruch 1, dadurch gekennzeichnet, daß den streifenförmigen Lichtwellenleitern (2) im wesentlichen ein quadratischer Querschnitt gegeben ist.
3. SPR-Sensor nach Anspruch 2, dadurch gekennzeichnet, daß die flächenmäßige Ausdehnung des Querschnitts der stteifenförmigen Lichtwellenleiter (2) der flächenmäßigen Ausdehnung des Querschnitts von lichtleitenden Kerne üblicher Lichtleitfasern (9) angepaßt ist.
4. SPR-Sensor nach Anspruch 1 und/oder 2, dadurch gekennzeichnet, daß eine im Bereich der Proben vorgesehene Stirnfläche (22) der stteifenförmigen Lichtwellenleiter (2) mit einer lichtreflektierenden Beschichtung (4) versehen ist.
5. SPR-Sensor nach Anspruch 1, dadurch gekennzeichnet, daß die die Erfassungsbereiche der einzelnen dünnen Metallschichten (3) voneinander trennenden Mittel durch in den planaren Träger (1) eingebrachte kammförmige Ausnehmungen (14) gebüdet sind.
6. SPR-Sensor nach Anspruch 1, dadurch gekennzeichnet, daß die die Erfassungsbereiche der einzelnen dünnen Metallschichten (3) voneinander trennenden Mittel durch mit den planaren Träger (1) verbundene Küvettenwandungen (15) gebildet sind.
7. SPR-Sensor nach Anspruch 1, dadurch gekennzeichnet, daß der planare Träger (1) aus Süizium gefertigt und zumü dest unterhalb der streifenförmigen Lichtwellenleiter (2) mit einer Beschichtung (13), bspw. Siθ2, versehen ist, deren optischer Brechungsindex kleiner ist, als der optische Brechungsindex des Materials, bspw.
Siliziumoxynitrid, das für die streifenförmigen Lichtwellenleiter (2) eingesetzt ist.
8. SPR-Sensor nach Anspruch 1 oder 7, dadurch gekennzeichnet, daß für den planaren Träger (1) ein Siliziumwafer mit einer
(110)-Kristallorientierung gewählt ist.
9. SPR-Sensor nach Anspruch 1, dadurch gekennzeichnet, daß der planare Träger (1) aus einem Material gefertigt ist, dessen optischer Brechungsindex kleiner ist, als der optische Brechungsindex des
Materials, bspw. einem Polymer, das für die stteifenförmigen Lichtwellenleiter (2) eingesetzt ist.
10. SPR-Sensor nach Anspruch 6, dadurch gekennzeichnet, daß die die Erfassungsbereiche der einzelnen dünnen Metallschichten (3) voneinander trennenden Küvettenwandungen (16) untereinander über einen gemeinsamen Zufluß (17) und Abfluß (18) verbunden sind.
11. SPR-Sensor nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die Finger (f) des planaren Trägers (1), die von diesen getragenen streifenförmigen Lichtwellenleiter (2) mit ihren die Anregung von Oberflächenplasmonen ermöghchenden dünnen Metallschichten (3) jeweils von Ausnehmungen (8) einer Mikrotiteφlatte (7) aufhehmbar sind.
12. SPR-Sensor nach Anspruch 11, dadurch gekennzeichnet, daß die streifenförmigen Lichtwellenleiter (2) mit ihren die Anregung von Oberflächenplasmonen ermöglichenden dünnen Metallschichten (3) und gegebenenfalls mit einer reflektierenden stirnseitigen Beschichtung (4) versehenen Lichtwellenleiter (2) jeweils unter Zwischenanordnung einer Schicht mit einem niedrigeren optischen Brechungsindex als der des Lichtwellenleiters an einer Wandung einer Ausnehmung einer Mikrotiteφlatte (7) angebracht sind.
13. SPR-Sensor nach einem oder mehreren der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß mehrere die streifenfönnigen Lichtwellenleiter (2) und die übrigen genannten Baugruppen (3 und ggf. 13, 4) tragende planare Träger (1) abseits der Bereiche, die mit der die Anregung von Oberflächenplasmonen ermöglichenden dünnen Metallschicht (3) versehen sind, von einem gemeinsamen Haltemittel erfaßt und voneinander derart beabstandet sind, daß ihre Beabstandung dem Abstand der Ausnehmungen eines behebig vorgebbaren Mikrotiteφlattenformats entspricht.
14. SPR-Sensor nach 13, dadurch gekennzeichnet, daß das gemeinsame Haltemittel durch einen Verguß (6) gebildet ist, der die lichtwellenleitenden Eigenschaften der streifenförmigen Lichtwellenleiter (2) und die erste Stirnfläche (21) optisch unbeeinflußt läßt.
EP99952120A 1998-05-20 1999-05-19 Spr-sensor zur gleichzeitigen erfassung einer vielzahl von in fluider form vorliegenden proben Withdrawn EP1080365A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19822557 1998-05-20
DE19822557 1998-05-20
PCT/EP1999/003596 WO1999060382A1 (de) 1998-05-20 1999-05-19 Spr-sensor zur gleichzeitigen erfassung einer vielzahl von in fluider form vorliegenden proben

Publications (1)

Publication Number Publication Date
EP1080365A1 true EP1080365A1 (de) 2001-03-07

Family

ID=7868353

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99952120A Withdrawn EP1080365A1 (de) 1998-05-20 1999-05-19 Spr-sensor zur gleichzeitigen erfassung einer vielzahl von in fluider form vorliegenden proben

Country Status (7)

Country Link
US (1) US6373577B1 (de)
EP (1) EP1080365A1 (de)
JP (1) JP2002518663A (de)
AU (1) AU771043B2 (de)
CA (1) CA2319429A1 (de)
DE (1) DE19923820C2 (de)
WO (1) WO1999060382A1 (de)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002530668A (ja) * 1998-11-20 2002-09-17 グラフィニティー、ファーマスーティカル、デザイン、ゲゼルシャフト、ミット、ベシュレクテル、ハフツング Sprセンサの並列読出しのための測定集成装置
US6728429B1 (en) * 2000-02-16 2004-04-27 Biotell, Inc. Optical detection
DE10008006C2 (de) 2000-02-22 2003-10-16 Graffinity Pharm Design Gmbh SPR-Sensor und SPR-Sensoranordnung
DE50112007D1 (de) 2000-02-22 2007-03-22 Santhera Pharmaceuticals Deuts Spr-sensorsystem
US20020127706A1 (en) 2001-01-25 2002-09-12 Fuji Photo Film Co., Ltd. Surface plasmon resonance measuring chip and method of manufacture thereof
WO2002103321A2 (en) * 2001-06-14 2002-12-27 Anadys Pharmaceuticals, Inc. Methods of screening for ligands of target molecules
GB2393246A (en) * 2002-09-21 2004-03-24 Sonoptix Ltd Transducer sensor
KR100480340B1 (ko) * 2002-11-02 2005-03-31 한국전자통신연구원 정렬된 나노 크기의 금속 구조체들을 사용하는 국소 표면플라즈몬 센서 및 그 제조 방법
US7088449B1 (en) * 2002-11-08 2006-08-08 The Board Of Trustees Of The Leland Stanford Junior University Dimension measurement approach for metal-material
EP2368578A1 (de) 2003-01-09 2011-09-28 Macrogenics, Inc. Identifizierung und Herstellung von Antikörpern mit abweichenden FC-Regionen und Anwendungsverfahren dafür
JP2007525149A (ja) 2003-01-13 2007-09-06 マクロジェニクス,インコーポレーテッド 可溶性FcγR融合タンパク質およびその使用法
WO2005048917A2 (en) * 2003-06-06 2005-06-02 Medimmune, Inc. Use of epha4 and modulator or epha4 for diagnosis, treatment and prevention of cancer
CN100520394C (zh) * 2005-03-08 2009-07-29 中国科学院电子学研究所 一种单通道多参数表面等离子体谐振测试仪
EP1868650B1 (de) 2005-04-15 2018-10-03 MacroGenics, Inc. Kovalente diabodies und ihre verwendung
US9889197B2 (en) 2005-04-15 2018-02-13 Macrogenics, Inc. Covalently-associated diabody complexes that possess charged coil domains and that are capable of enhanced binding to serum albumin
DK2573114T3 (en) 2005-08-10 2016-07-04 Macrogenics Inc The identification and production of antibodies with variant Fc regions, and methods of using same
EP2027291A2 (de) 2006-04-27 2009-02-25 Pikamab, Inc. Verfahren und zusammensetzungen für antikörpertherapie
DK2029173T3 (en) 2006-06-26 2016-11-07 Macrogenics Inc FC-RIIB-specific antibodies and methods of use thereof
US20080129980A1 (en) * 2006-11-30 2008-06-05 North Carolina State University In-line fiber optic sensor devices and methods of fabricating same
CA2685213C (en) 2007-05-04 2017-02-21 Technophage, Investigacao E Desenvolvimento Em Biotecnologia, Sa Engineered rabbit antibody variable domains and uses thereof
CA2691434C (en) 2007-06-21 2020-07-21 Macrogenics, Inc. Covalent diabodies and uses thereof
HUE029925T2 (en) 2008-04-02 2017-04-28 Macrogenics Inc HER2 / neu-specific antibodies and methods using them
ES2589912T3 (es) 2008-04-02 2016-11-17 Macrogenics, Inc. Anticuerpos específicos para el complejo BCR y procedimientos de uso de los mismos
EP2282770B1 (de) 2008-06-04 2018-03-07 MacroGenics, Inc. Antikörper mit veränderter bindung an fcrn und verwendungsverfahren dafür
DE102008041825A1 (de) 2008-09-05 2010-03-11 Manroland Ag Zerstörungsfreies Prüfverfahren des Aushärtungs- oder Trocknungsgrades von Farben und Lacken
ES2732191T3 (es) 2008-12-19 2019-11-21 Macrogenics Inc Diacuerpos covalentes y usos de los mismos
NO2486141T3 (de) 2009-10-07 2018-06-09
PL2635607T3 (pl) 2010-11-05 2020-05-18 Zymeworks Inc. Projekt stabilnego przeciwciała heterodimerowego z mutacjami w domenie FC
EP2714079B2 (de) 2011-05-21 2019-08-28 MacroGenics, Inc. Entimmunisierte serumbindende domänen und ihre verwendung zur verlängerung der serumhalbwertzeit
CA2849409A1 (en) 2011-09-23 2013-03-28 Technophage, Investigacao E Desenvolvimento Em Biotecnologia, Sa Anti-tumor necrosis factor-alpha agents and uses thereof
CN103958542A (zh) 2011-09-23 2014-07-30 抗菌技术,生物技术研究与发展股份有限公司 经修饰的白蛋白结合结构域及其用于改善药代动力学的用途
CN109897103B (zh) 2011-11-04 2024-05-17 酵活英属哥伦比亚有限公司 在Fc结构域中具有突变的稳定异源二聚的抗体设计
EP2847230B1 (de) 2012-05-10 2020-08-12 Zymeworks Inc. Heteromultimerkonstrukte aus schweren immunoglobulinketten mit mutationen in der fc-domäne
MX2015006758A (es) 2012-11-28 2016-06-10 Zymeworks Inc Pares de cadena pesada-cadena ligera de inmunoglobulina modificados geneticamente y usos de estos.
US11306156B2 (en) 2014-05-28 2022-04-19 Zymeworks Inc. Modified antigen binding polypeptide constructs and uses thereof
CN107787332B (zh) 2015-04-24 2022-09-09 豪夫迈·罗氏有限公司 多特异性抗原结合蛋白
RU2018116846A (ru) 2015-10-08 2019-11-08 Займворкс Инк. Антигенсвязывающие полипептидные конструкции, содержащие легкие цепи каппа и лямбда, и их применения
KR102611853B1 (ko) 2017-06-30 2023-12-08 자임워크스 비씨 인코포레이티드 안정화된 키메라 fabs
SG11202100979QA (en) 2018-08-17 2021-03-30 Univ Rochester Optical biosensor comprising disposable diagnostic membrane and permanent photonic sensing device
CN114813654B (zh) * 2022-04-18 2024-07-02 北京英柏生物科技有限公司 自黏贴片式spr传感芯片

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8700851A (nl) * 1987-04-10 1988-11-01 Tno Werkwijze en inrichting voor het detecteren van zeer lage concentraties van een in een meetmedium aanwezige chemische component onder toepassing van oppervlakte-plasmonresonantie en elektrochemisch gestimuleerde adsorptie.
GB8811919D0 (en) * 1988-05-20 1988-06-22 Amersham Int Plc Biological sensors
SE462408B (sv) * 1988-11-10 1990-06-18 Pharmacia Ab Optiskt biosensorsystem utnyttjande ytplasmonresonans foer detektering av en specific biomolekyl, saett att kalibrera sensoranordningen samt saett att korrigera foer baslinjedrift i systemet
US5359681A (en) * 1993-01-11 1994-10-25 University Of Washington Fiber optic sensor and methods and apparatus relating thereto
FI96800C (fi) 1994-02-16 1996-08-26 Valtion Teknillinen Laite analyysin suorittamiseksi
JP3256647B2 (ja) * 1995-07-19 2002-02-12 オルガノ株式会社 被処理水中の過酸化水素の除去方法及び水処理装置
AT403745B (de) 1996-02-29 1998-05-25 Avl Verbrennungskraft Messtech Messanordnung mit einem für anregungs- und messstrahlung transparentem trägerelement
JP3926409B2 (ja) 1996-04-30 2007-06-06 富士フイルム株式会社 表面プラズモンセンサー
US5917607A (en) * 1996-04-25 1999-06-29 Fuji Photo Film Co., Ltd. Surface plasmon sensor for multiple channel analysis
DE69830529T2 (de) * 1997-02-07 2006-05-11 Fuji Photo Film Co., Ltd., Minami-Ashigara Oberflächen-Plasmonen-Sensor
DE19806681B4 (de) * 1998-02-18 2006-07-27 Carl Zeiss Jena Gmbh Mikrotiterplatte
US6111652A (en) * 1998-07-14 2000-08-29 Texas Instruments Incorporated High throughput surface plasmon resonance analysis system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9960382A1 *

Also Published As

Publication number Publication date
WO1999060382A1 (de) 1999-11-25
DE19923820C2 (de) 2001-05-10
US6373577B1 (en) 2002-04-16
CA2319429A1 (en) 1999-11-25
AU771043B2 (en) 2004-03-11
AU4266499A (en) 1999-12-06
DE19923820A1 (de) 2000-01-20
JP2002518663A (ja) 2002-06-25

Similar Documents

Publication Publication Date Title
DE19923820C2 (de) SPR-Sensor zur gleichzeitigen Erfassung einer Vielzahl von in fluider Form vorliegenden Proben
EP1257809B1 (de) Spr-sensor und spr-sensoranordnung
DE69902023T2 (de) Nachweis einer substanz durch brechzahländerung
DE19725050C2 (de) Anordnung zur Detektion biochemischer oder chemischer Substanzen mittels Fluoreszenzlichtanregung und Verfahren zu deren Herstellung
DE69405087T2 (de) Optischer Detektor
DE19955556B4 (de) Meßanordnung zum parallelen Auslesen von SPR-Sensoren
DE69119750T2 (de) Messzelle für chemische oder biochemische proben
EP1068511B1 (de) Anordnung für die oberflächenplasmonen-resonanz-spektroskopie
EP0938660B1 (de) Mikromechanische transmissionsmesszelle
DE68929019T2 (de) Optische schnittstelle
WO2001069256A2 (de) Sensorelement zur optischen detektion von chemischen oder biochemischen analyten
EP1000342A1 (de) Optische detektoreinrichtung
WO2001063256A1 (de) Spr-sensorsystem
EP1805502B1 (de) Verfahren zur untersuchung biochemischer wechselwirkungen
DE19647644C2 (de) Mikromechanische Transmissionsmeßzelle
DE10324973B4 (de) Anordnung und Verfahren zur optischen Detektion von in Proben enthaltenen chemischen, biochemischen Molekülen und/oder Partikeln
EP2718691B1 (de) Verfahren und vorrichtung zum bestimmen der konzentration eines in einer flüssigen probe enthaltenen analyten
DE102004015906B4 (de) Mikrofluidische Vorrichtung für die optische Analyse
DE4228534C2 (de) Verfahren zur Analyse einer Fremdsubstanz
DE10052165A1 (de) SPR-Sensorsystem
WO2004025282A1 (de) Anordnung zur bestimmung von schichtdickenänderungen
AT5152U1 (de) Spr-sensorsystem
DE19817470A1 (de) Transducer-Anordnung für einen optischen Sensor basierend auf der Oberflächenplasmonenresonanz

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000707

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DERANGEWAND

Owner name: GRAFFINITY PHARMACEUTICALS AKTIENGESELLSCHAFT

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WALDHAEUSL, RALF

Inventor name: VETTER, DIRK

Inventor name: SCHMIDT, KRISTINA

Inventor name: DANZ, NORBERT

Inventor name: BRAEUER, ANDREAS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DERANGEWAND

Owner name: GRAFFINITY PHARMACEUTICALS AKTIENGESELLSCHAFT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWAN

Owner name: GRAFFINITY PHARMACEUTICALS AKTIENGESELLSCHAFT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20071201