EP1073778B1 - Verfahren zur herstellung einer gesinterten metallschicht mit offener porosität - Google Patents

Verfahren zur herstellung einer gesinterten metallschicht mit offener porosität Download PDF

Info

Publication number
EP1073778B1
EP1073778B1 EP98922732A EP98922732A EP1073778B1 EP 1073778 B1 EP1073778 B1 EP 1073778B1 EP 98922732 A EP98922732 A EP 98922732A EP 98922732 A EP98922732 A EP 98922732A EP 1073778 B1 EP1073778 B1 EP 1073778B1
Authority
EP
European Patent Office
Prior art keywords
layer
suspension
process according
sintered
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98922732A
Other languages
English (en)
French (fr)
Other versions
EP1073778A1 (de
Inventor
Peter Neumann
Andreas Kuhstoss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GKN Sinter Metals GmbH
Original Assignee
GKN Sinter Metals GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GKN Sinter Metals GmbH filed Critical GKN Sinter Metals GmbH
Publication of EP1073778A1 publication Critical patent/EP1073778A1/de
Application granted granted Critical
Publication of EP1073778B1 publication Critical patent/EP1073778B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/082Coating starting from inorganic powder by application of heat or pressure and heat without intermediate formation of a liquid in the layer
    • C23C24/085Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/082Coating starting from inorganic powder by application of heat or pressure and heat without intermediate formation of a liquid in the layer
    • C23C24/085Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • C23C24/087Coating with metal alloys or metal elements only

Definitions

  • the invention relates to a method for producing a thin metal layer with open porosity from a sinterable Metal powder.
  • Filter body made of ceramic material must be made relatively thick due to the risk of breakage Filter body made of pressed and sintered metal powders are proportionate for manufacturing reasons thick. Because of the thickness that cannot be reduced, especially with fine-pored material, correspondingly large flow resistances on. The use of plastics as Filter material is limited by its lower strength and the low temperature resistance.
  • metallic materials as a porous layer known in the form of fabrics made from metal fibers or fleeces.
  • EP-B-0 525 325 describes a method for producing porous, metallic sintered workpieces known in the first a metal powder is suspended in a carrier liquid, which consists of a binder dissolved in a solvent and which is adjusted so that the suspension is pourable is. This suspension is poured into a mold. Subsequently the solvent is evaporated off so that the remaining binder the metal powder in the through the Form predetermined geometry is solidified and a manageable Green body forms. After separating from the mold the green body is sintered in the usual way.
  • This previously known Process is preferably proportional to the production Thick-walled sintered parts are provided due to their geometry better than a casting process in the conventional method by pressing a metal powder have it made into a mold. Thin-layered, open, Porous parts cannot be produced with this process.
  • the invention is based on the object, the known To improve the process so that even thin, porous, and provided required, self-supporting metal layers are also produced can be.
  • the sinterable powder with a predetermined Size distribution of the powder particles in a carrier liquid, formed by one with an evaporable solvent liquefied binder that is suspended Suspension in at least one thin layer on a carrier body applied, dried and the green layer thus formed is sintered, the layer thickness of the applied Suspension at least the thickness s of the to be generated Corresponds to the metal layer after sintering, where s is at least corresponds to 3 times the average diameter D of the powder particles, with D 1 ⁇ m to 50 ⁇ m, the layer thickness of the finished metal layer is a maximum of 500 microns.
  • the size of the porosity can influenced by the particle size of the metal powder used be so that there are very thin porous metal layers have the pore size specified. Because in the making Inhomogeneities and voids can occur the layer thickness is at least 3 times the diameter D of the Correspond to powder particles. By the ratio mentioned between the layer thickness s and the particle diameter D. ensured that there were always several "layers" of powder particles are stacked and continuous "holes" that larger than the desired porosity can be avoided. It is particularly expedient here if the layer thickness s 5 to 15 times, preferably 10 to 15 times Diameter D of the powder particles. "Through holes" can be avoided.
  • Diameter D is the mean particle diameter to understand the metal powder used.
  • Powder in The meaning of the invention is not only powders made of pure metals, but also powders from metal alloys and / or powder mixtures made of different metals and metal alloys to understand.
  • this includes steels, preferably Chrome-nickel steels, bronzes, nickel-based alloys such as Hastalloy, Inconel or the like, where powder mixtures can also contain high-melting components, such as platinum or the like.
  • the one to use Metal powder and its particle size is different from each Depending on the application.
  • the consistency of the to be set via the carrier liquid Suspension essentially depends on how the suspension is applied to the support body. When pouring, if necessary with subsequent wiping of an excess from the cast suspension layer, the suspension can set in a somewhat viscous consistency become. In a so-called. Pouring foil or spraying a fluid consistency must be specified.
  • the carrier liquid through a with an evaporable Solvent liquefied binder is formed. This ensures that the green layer as a result the adhesion of the individual powder particles to one another has sufficient strength over the binder.
  • the suspension in several thin sub-layers one after the other is applied to the carrier body.
  • the individual Sub-layers of suspensions with different size distributions for the metal powder used and / or different Use metal powders. This allows it for example, on the one hand to use metal powder that the Sintered metal layer has a particularly good porosity on the other hand, it is also possible to have at least one metal layer manufacture that in their metal composition has particularly favorable properties for the application, for example, has catalytic properties.
  • the partial layer applied in each case at least dried before applying the next sub-layer becomes. This ensures that the first applied sub-layer is sufficiently solidified so that it by the application method, for example by spraying the next sub-layer is not deformed. on the other hand is due to the remaining solvent content in the previously applied, dried partial layer represents that the next sub-layer is reliable and is connected with the same packing density and the finished Green layer has the desired strength.
  • the suspension as a layer on a flat, flexible Carrier body applied and after drying as a green layer separated from the carrier body and separated into one membrane-like, porous finished part is sintered.
  • This procedure is that first a proportionate large green layer can be produced can, from which after drying by punching or cutting Pieces of film and green sheet in the desired shape can be produced. With these sections peeled off the green sheet from the support body and then sintered as an independent part.
  • Can as a carrier plastic or metal foils are used here.
  • the Carrier body is expedient before the suspension is applied coated with a release agent.
  • the suspension as a layer a high-temperature resistant, preferably flat support body is applied, dried on this, sintered and then as a membrane-like, porous, metallic finished part is removed from the carrier body.
  • a carrier body used as a carrier body one is a material that does not bond during sintering with the green layer on the support body, as is the case, for example, with ceramic materials If this is the case, this procedure offers the possibility of membrane-like metallic porous finished parts industrially with a low Share of manual work with extensive automation to manufacture.
  • the particular advantage here is that the dry, still sensitive green layer to carry out the sintering process is not lifted off the carrier body and must be handled here, but that they only after the Sintering is removed.
  • the suspension can be poured or spraying can be applied to the carrier body.
  • a contour mask of the suspension on the carrier body is launched. This makes it possible to apply the suspension to apply the carrier already in the intended final contour, so that a subsequent cutting process is omitted.
  • Another advantage of using a contour mask is in that the applied in particular by a spraying process Suspension also in that limited by the contour mask Edge area has the predetermined layer thickness.
  • the finished sintered porous membrane is calibrated by rolling.
  • the pore size in the The metal layer defines shrink because of the small Thick not only the surface areas, but the metal layer overall "deformed". But that's also given the opportunity to start with something greater thickness and a somewhat coarser and therefore cheaper Produce metal powder and then by the rolling process to reproducibly reduce the pore size.
  • the carrier body is also part of the finished part and accordingly the metal layer is solid with it is to be connected is in a different embodiment provided that the suspension on at least one surface of a metallic carrier body applied, dried and the green layer then sintered firmly onto the carrier body becomes.
  • the carrier body can in turn be a Sintered molded part, also a porous sintered molded part with coarser Pore structure.
  • the suspension can in turn be cast by thin film, Spray or dip on the surface of the Carrier body are applied.
  • the metal layer can ever depending on the intended use on the outer wall and / or the inner wall be applied.
  • the metallic carrier body is replaced by a tubular one Carrier body formed, then is in an embodiment of the invention Process provided that when applying the Suspension and at least during part of the dry season the carrier body is rotated about the pipe axis. This is ensures that the layer thickness until the solidification Get suspension as a green layer on the support body remains. It is useful here, especially when thin-film casting and when spraying when the suspension exits defined in addition to the rotation relative to the surface is moved.
  • one is made from one sinterable metal powder and a carrier liquid formed suspension with the help of a spray or pouring head 1 on a carrier body 2 in the form of a larger film section from a plastic or metal foil as a thin Layer 3 is applied.
  • the one with a thin suspension layer 3 coated carrier body 2 is here by a larger film section then in a drying facility 4 guided, in the heat of the carrier liquid, evaporated, for example, ethanol or isopropanol becomes.
  • a binder dissolved in the carrier liquid remains in the thin to increase the green strength Layer.
  • the die-cut is also punched out Part 2.1 of the carrier film is peeled off from the green sheet 3.1, which are then introduced as green compact 3.2 into a sintering furnace 9 and there among those for the respective powder composition specified conditions is sintered. From the Sintering furnace 9 can then produce the finished part 3.3 in the form of a solid thin metal layer with open porosity removed become.
  • a mask 10 which with a cutout 11 is provided which corresponds to the desired final contour corresponds to the porous metal layer part to be produced. Then - as described with reference to FIG. 1 - the support body 2.2 provided with a corresponding mask With the help of a spray or pouring head 1 with the metal suspension sprayed so that on the support body 2.2 through the cutout 11 the mask 10 delimited a corresponding area, thin suspension layer 3 is applied.
  • a spray or pouring head 1 with the metal suspension sprayed so that on the support body 2.2 through the cutout 11 the mask 10 delimited a corresponding area, thin suspension layer 3 is applied.
  • Mask 10 with a corresponding plurality of cutouts 11 be provided.
  • the mask 10 is removed, so that the carrier body 2.2 with the remaining thin Suspension layer 3 are introduced into the drying oven 4 can, in which the carrier liquid is evaporated.
  • the carrier body 2.2 the green layer 3 removed which is shown schematically here a bending of the carrier body 2.2 on the edge of a cutting edge 12 is indicated, so that subsequently the isolated green body is sintered again in the sintering furnace 9.
  • the finished part 3.3 in the form of a solid, thin Metal layer with open porosity can be removed.
  • the stamping step 5 is omitted because through the mask 10 with its cutout 11 the required contour already exists. The carrier body remains intact and can be used again.
  • the method shown schematically in FIG. 3 corresponds in its sequence up to the process step of drying in Drying oven 4 the method described with reference to FIG. 2, so that reference is made to the previous description can.
  • the only difference is that the carrier body 2.2 made of a high temperature resistant material there is no connection with the on the sintering Carrier body located green layer 3 comes in as this for example in the case of a ceramic material.
  • the carrier body 2.2 with the green compact 3.2 on it in the sintering furnace 9 introduced and also together with the carrier body 2.2 removed from the sintering furnace 9 again. Only that done sintered, porous metal layer part 3.3. is then from the carrier body 2.2 decreased.
  • the method described with reference to FIG. 3 also offers furthermore the advantage that initially only one layer the temperature-resistant support body 2.2 applied and on the Carrier body is sintered. Then the ready sintered, still on the carrier body 2.2 porous metal layer, a further layer of an optionally differently composed suspension applied then - as described above - dried and sintered. The sintering process results in a firm bond between the first and the second as well as each further, in metal layer applied in this way.
  • the advantage is there in doing so in that the second and each additional one still to be applied Metal layer in terms of its different composition also sintered under other temperature conditions can be.
  • a high powder metal composition Sintering temperature as a porous layer and then sintering metal powder compositions in the second and each additional layer to sinter as a porous layer, which is due to their compositions at lower temperatures have to be sintered. This ensures that the desired by adapted sintering conditions Porosity of the individual layers is preserved.
  • Contour masks are also given the option of applying the suspension in the spray process after each Form the main layer additional overflows in the edge area perform so as to have a porous metal layer part reinforced edge.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Filtering Materials (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Herstellung einer dünnen Metallschicht mit offener Porosität aus einem sinterfähigen Metallpulver.
In der Technik werden für die vielfältigsten Anwendungszwecke poröse Körper benötigt, die von einem strömenden Medium durchströmt werden, wobei entweder reaktive Vorgänge unterstützt werden sollen oder aber im strömungsfähigen Medium enthaltene Feststoffteilchen zurückgehalten, d. h. ausgefiltert werden sollen. Filterkörper aus keramischem Material müssen wegen der Bruchgefahr relativ dick ausgebildet werden.Auch Filterkörper aus gepreßten und gesinterten Metallpulvern sind aus herstellungstechnischen Gründen verhältnismäßig dick. Wegen der nicht zu vermindernden Dicke treten, besonders bei feinporigem Material, entsprechend große Strömungswiderstände auf. Der Verwendung von Kunststoffen als Filtermaterial sind Grenzen gesetzt durch die geringere Festigkeit und die geringe Temperaturbeständigkeit. Eine Verwendung von metallischen Werkstoffen als poröse Schicht ist bekannt in Form von aus Metallfasern hergestellten Geweben oder Vliesen.
Bei einer derartigen, von einem Medium durchströmten porösen Schicht besteht das Bedürfnis, unerwünschte Strömungswiderstände zu minimieren, so daß möglichst dünne Schichtdicken anzustreben sind. Aus metallischem Gewebe oder Vlies lassen sich zwar entsprechend dünne Schichten, beispielsweise in einer Dicke von etwa 100µm, herstellen. Diese sind jedoch wenig formstabil, weisen verhältnismäßig große Poren und hinsichtlich der Porosität große Toleranzen auf. Da zur Herstellung derartiger Gewebe und Vliese entsprechend dünne und daher auch teure Drähte verwendet werden müssen, sind die hieraus hergestellten Gewebe und Vliese entsprechend teuer.
Aus US 5 592 686 ist ein Verfahren zur Herstellung von porösen Metallteilen mit mikro- und/oder makroporösen Eigenschaften bekannt, bei welchem Pulverpartikel mit einem Dudrchmesser von maximal 300µm mit einem Bindemittel in einem Lösemittel suspendiert werden, hieraus Grünling-Schichten in einer Dicke von 0,05 bis 2 mm hergestellt werden, mehrere dieser Schichten aufeinandergelegt, unter Druck laminiert und anschließend gesintert werden.
Aus EP-B-0 525 325 ist ein Verfahren zum Herstellen von porösen, metallischen Sinterwerkstücken bekannt, bei dem zunächst ein Metallpulver in einer Trägerflüssigkeit suspendiert wird, die aus einem in einem Lösungsmittel aufgelösten Binder besteht und die so eingestellt ist, daß die Suspension gießfähig ist. Diese Suspension wird in eine Form gegossen. Anschließend wird das Lösungsmittel abgedampft, so daß durch den verbleibenden Binder das Metallpulver in der durch die Form vorgegebenen Geometrie verfestigt wird und einen handhabbaren Grünkörper bildet. Nach dem Trennen aus der Form wird der Grünkörper in üblicher Weise gesintert. Dieses vorbekannte Verfahren ist vorzugsweise zur Herstellung von verhältnismäßig dickwandigen Sinterteilen vorgesehen, die sich aufgrund ihrer Geometrie besser durch einen Gießvorgang als im herkömmlichen Verfahren durch ein Pressen eines Metallpulvers in eine Form herstellen lassen. Dünnschichtige, offene, poröse Teile lassen sich mit diesem Verfahren nicht herstellen.
Der Erfindung liegt nun die Aufgabe zugrunde, das vorbekannte Verfahren so zu verbessern, daß auch dünne, poröse, und sofern erforderlich, auch selbsttragende Metallschichten hergestellt werden können.
Diese Aufgabe wird nach dem erfindungsgemäßen Verfahren dadurch gelöst, daß das sinterfähige Pulver mit einer vorgegebenen Größenverteilung der Pulverteilchen in einer Trägerflüssigkeit, gebildet durch einen mit einem verdampfbaren Lösungsmittel verflüssigten Binder, suspendiert wird, daß die Suspension in wenigstens einer dünnen Schicht auf einen Trägerkörper aufgebracht, getrocknet und die so gebildete Grünschicht gesintert wird, wobei die Schichtdicke der aufgetragenen Suspension mindestens der Dicke s der zu erzeugenden Metallschicht nach der Sinterung entspricht, wobei s mindesten dem 3-fachen mittleren Durchmesser D der Pulverteilchen entspricht, mit D = 1µm bis 50µm, wobei die Schichtdicke der fertigen Metallschicht maximal 500 µm beträgt. Hierbei wird mit Vorteil ausgenutzt, daß sich beim Sintern die einzelnen Pulverteilchen zwar fest miteinander verbinden, jedoch zwischen den Pulverteilchen Freiräume verbleiben, die in bezug auf die Dicke der Metallschicht eine offene Porosität ergeben, so daß die Metallschicht für strömende Medien durchlässig wird. Die Größe der Porosität kann über die Teilchengröße des eingesetzten Metallpulvers beeinflußt werden, so daß sich sehr dünne poröse Metallschichten mit vorgebbarer Porengröße herstellen lassen. Da bei der Herstellung Inhomogenitäten und Hohlräume auftreten können, muß die Schichtdicke mindestens dem 3-fachen Durchmesser D der Pulverteilchen entsprechen. Durch das genannte Verhältnis zwischen der Schichtdicke s und dem Teilchendurchmesser D ist sichergestellt, daß immer mehrere "Lagen" von Pulverteilchen übereinander angeordnet sind und durchgehende "Löcher", die größer als die gewünschte Porosität sind, vermieden werden. Hierbei ist es besonders zweckmäßig, wenn die Schichtdicke s dem 5- bis 15-fachen , vorzugsweise 10- bis 15-fachen des Durchmessers D der Pulverteilchen beträgt. "Durchgehende Löcher" können hierdurch vermieden werden.
Unter Durchmesser D ist jeweils der mittlere Teilchendurchmesser des eingesetzten Metallpulvers zu verstehen. Pulver im Sinne der Erfindung sind nicht nur Pulver aus reinen Metallen, sondern auch Pulver aus Metallegierungen und/oder Pulvermischungen aus unterschiedlichen Metallen und Metallegierungen zu verstehen. Dazu gehören insbesondere Stähle, vorzugsweise Chrom-Nickel-Stähle, Bronzen, Nickelbasislegierungen wie Hastalloy, Inconel oder dergleichen, wo-bei Pulvermischungen auch hochschmelzende Bestandteile enthalten können, wie beispielsweise Platin oder dergleichen. Das zu verwendende Metallpulver und seine Teilchengröße ist vom jeweiligen Einsatzzweck abhängig.
Die über die Trägerflüssigkeit einzustellende Konsistenz der Suspension richtet sich im wesentlichen danach, wie die Suspension auf den Trägerkörper aufgetragen wird. Bei einem Gießen, gegebenenfalls mit nachfolgendem Abstreichen eines Überschusses von der gegossenen Suspensionsschicht, kann die Suspension in einer etwas dickflüssigen Konsistenz eingestellt werden. Bei einem sogenannten. Foliengießen oder einem Aufsprühen muß eine dünnflüssige Konsistenz vorgegeben werden. Um den Trägerkörper mit der aufgebrachten Grünschicht nach dem Trocknen handhaben zu können, ist es auch hier zweckmäßig, daß die Trägerflüssigkeit durch einen mit einem verdampfba-ren Lösungsmittel verflüssigten Binder gebildet wird. Hierdurch ist sichergestellt, daß auch die Grünschicht infolge der Haftung der einzelnen Pulverteilchen untereinander über den Binder eine ausreichende Festigkeit aufweist.
In besonders zweckmäßiger Ausgestaltung ist es vorgesehen, daß die Suspension in mehreren dünnen Teilschichten nacheinander auf den Trägerkörper aufgebracht wird. Hierbei können die einzelnen Teilschichten jeweils aus einer identischen Suspension aufgebaut werden. Es ist in einer weiteren Ausgestaltung der Erfindung aber auch möglich, für die einzelnen Teilschichten jeweils Suspensionen mit unterschiedlichen Größenverteilungen für das verwendete Metallpulver und/oder unterschiedlichen Metallpulvern zu verwenden. Dies erlaubt es beispielsweise, einerseits Metallpulver zu verwenden, die der fertiggesinterten Metallschicht eine besonders gute Porosität geben, andererseits ist es auch möglich, wenigstens eine Metalischicht herzustellen, die in ihrer Metallzusammensetzung für den Anwendungszweck besonders günstige Eigenschaften aufweist, beispielsweise katalytische Eigenschaften besitzt.
Zweckmäßig ist es, wenn die jeweils aufgebrachte Teilschicht vor dem Aufbringen der nächsten Teilschicht zumindest angetrocknet wird. Hierdurch ist sichergestellt, daß die zunächst aufgebrachte Teilschicht genügend verfestigt ist, so daß sie durch das Aufbringverfahren, beispielsweise durch ein Aufsprühen der nächsten Teilschicht, nicht deformiert wird. Andererseits ist durch den verbleibenden Lösungsmittelanteil in der zuvor aufgetragenen, angetrockneten Teilschicht sicherge stellt, daß auch die nächstfolgende Teilschicht zuverlässig und mit gleicher Packungsdichte angebunden wird und die fertige Grünschicht die gewünschte Festigkeit aufweist.
In einer anderen Ausgestaltung der Erfindung ist vorgesehen, daß die jeweilige Teilschicht vor dem Aufbringen der nächsten Teilschicht gesintert wird. Dieses Verfahren ist insbesondere dann vorteilhaft, wenn bei einem mehrschichtigen Aufbau unterschiedliche Metallpulver eingesetzt werden, die stark divergierende Sintertemperaturen benötigen. Dadurch ist es möglich, daß zunächst die Teilschicht auf dem Trägerkörper aufgebracht wird, die das Metallpulver mit der höchsten Sintertemperatur enthält, und nach dem Sintern der ersten Metallschicht in entsprechender Reihenfolge die nächstfolgen-den Teilschichten mit den jeweils niedigeren Sintertemperaturen aufgebracht und gesintert werden können. Dies hat den Vorteil, daß durch die einzelnen Sinterschritte die gewünschte Porosität der einzelnen Teilschichten erhalten bleibt, die verloren ginge, wenn man die Suspension mit einer derartig heterogenen Pulvermischung in einer Schicht auftragen und in einem Schritt sintern würde. Hierbei würden aufgrund der notwendigen hohen Sintertemperaturen für nur einen Anteil im Pulvergemisch die übrigen, niedrig sinternden Pulveranteile dichtsintern, so daß die Porosität weitgehend verloren ginge.
In einer bevorzugten Ausgestaltung der Erfindung ist vorgesehen, daß die Suspension als Schicht auf einen ebenen, biegsamen Trägerkörper aufgebracht und nach dem Trocknen als Grünschicht von dem Trägerkörper getrennt und gesondert zu einem membranartigen, porösen Fertigteil gesintert wird. Der Vorteil dieses Verfahrens besteht darin, daß zunächst eine verhältnismäßig großflächige Grünschicht hergestellt werden kann, aus der nach dem Trocknen durch Stanzen oder Schneiden Teilstücke von Folie und Grünschicht in der gewünschten Formgebung hergestellt werden können. Bei diesen Teilstücken wird die Grünschicht von dem Trägerkörper abgezogen und anschließend als selbständiger Teil gesintert. Als Träger können hierbei Kunststoff oder Metallfolien verwendet werden. Der Trägerkörper wird vor dem Aufbringen der Suspension zweckmäßigerweise mit einem Trennmittel beschichtet.
In einer besonders vorteilhaften anderen Ausgestaltung der Erfindung ist vorgesehen, daß die Suspension als Schicht auf einen hochtemperaturfesten, vorzugsweise ebenen Trägerkörper aufgebracht wird, auf diesem getrocknet, gesintert und anschließend als membranartiges, poröses, metallisches Fertigteil vom Trägerkörper abgenommen wird. Als Trägerkörper verwendet man ein Material, das beim Sintern keine Verbindung mit der auf dem Trägerkörper befindlichen Grünschicht eingeht, wie dies beispielsweise bei keramischen Materialien der Fall ist, bietet dieses Verfahren die Möglichkeit, membranartige metallische poröse Fertigteile industriell mit einem geringen Anteil an Handarbeit bei weitgehender Automatisierung zu fertigen. Der besondere Vorteil liegt hierbei darin, daß die trockene, noch empfindliche Grünschicht zur Durchführung des Sinterverfahrens nicht vom Trägerkörper abgehoben und hierbei gehandhabt werden muß, sondern daß sie erst nach dem Sintern abgenommen wird. Hierdurch wird der Ausschuß reduziert und ferner die Möglichkeit gegeben, für die Trägerflüssigkeit zur Bildung der Suspension einen geringeren Binderanteil vorzusehen, da nur soviel Binder zuzufügen ist, um eine sichere Handhabung des Trägerkörpers nach dem Aufspritzen der Schicht bis zur Einführung in den Sinterofen zu gewährleisten.
Auch bei diesem Verfahren kann die Suspension durch Gießen oder Sprühen auf den Trägerkörper aufgebracht werden. Um ein Schneiden oder Stanzen der Grünschicht mit dem Trägerkörper oder der fertigen porösen Metallmembran zu vermeiden, ist es zweckmäßig, wenn in Ausgestaltung der Erfindung vor dem Aufbringen der Suspension auf den Trägerkörper eine Konturmaske aufgelegt wird. Hierdurch ist es möglich, die Suspension auf den Träger bereits in der vorgesehenen Endkontur aufzubringen, so daß ein nachfolgender Schneidvorgang entfällt. Ein weiterer Vorteil der Verwendung einer Konturmaske besteht darin, daß die insbesondere durch einen Sprühvorgang aufgebrachte Suspension auch in dem durch die Konturmaske begrenzten Randbereich die vorgegebene Schichtdicke aufweist. Es besteht sogar die Möglichkeit, durch einen entsprechenden zusätzlichen Sprühlauf, bei dem in einem Überlauf nur der Randbereich mit Suspension besprüht wird, der fertigen porösen Mebran im Randbereich eine etwas größere Dicke zu geben, so daß hier eine bessere Formsteifigkeit und ein genügendes Verformungsvolumen vorhanden ist, wenn beispielsweise eine derartige poröse Membran randseitig eingespannt werden soll.
Bei Anwendung des vorstehend erläuterten erfindungsgemäßen Verfahrens zur Herstellung derartiger gesinterter Metallschichten in Form einer dünnen, porösen Membran, die an die Stelle von Geweben oder Vliesen eingesetzt werden kann, hat es sich überraschend gezeigt, daß die fertiggesinterte Membran duktil, mechanisch stabil und innerhalb gewisser Grenzen auch elastisch ist, wobei hier der besondere Vorteil gegeben ist, daß eine derartige Membran mit einer mit engen Toleranzen definierten Porosität und geringem Strömungswiderstand hergestellt werden kann, wobei die Porosität im wesentlichen durch die Vorgabe der Teilchengröße und der Strömungswiderstand durch die Dicke und die Teilchengröße der gesinterten Metallschicht bestimmt wird. Durch die Auswahl der einzusetzenden Metalle, Metallegierungen und/oder der Metallpulvermischungen für das Metallpulver läßt sich praktisch jede Anforderung hinsichtlich mechanischer, thermischer und/oder chemischer Widerstandsfähigkeit erfüllen.
In vorteilhafter weiterer Ausgestaltung des erfindungsgemäßen Verfahrens ist ferner vorgesehen, daß die fertiggesinterte poröse Membran durch Walzen kalibriert wird. Durch diese Maßnahme läßt sich eine definierte Dicke einstellen und die Oberfläche glätten. Ferner läßt sich die Porengröße in der Metallschicht definiert verkleinern, da bei der geringen Dicke nicht nur die Oberflächenbereiche, sondern die Metallschicht insgesamt "durchverformt" wird. Damit ist aber auch die Möglichkeit gegeben, die Membran zunächst mit einer etwas größeren Dicke und einem etwas gröberem und damit preisgünstigerem Metallpulver herzustellen und danach durch den Walzvorgang die Porengröße reproduzierbar zu verkleinern.
Sofern der Trägerkörper zugleich auch Bestandteil des Fertigteils ist und dementsprechend die Metallschicht fest mit diesem verbunden sein soll, ist in einer anderen Ausgestaltung vorgesehen, daß die Suspension auf wenigstens eine Fläche eines metallischen Trägerkörpers aufgebracht, getrocknet und die Grünschicht anschließend auf den Trägerkörper fest aufgesintert wird. Der Trägerkörper kann hierbei seinerseits ein Sinterformteil, auch ein poröses Sinterformteil mit gröberer Porenstruktur sein. Die Suspension kann wiederum durch Dünnschichtgießen, Sprühen oder Tauchen auf die Oberfläche des Trägerkörpers aufgebracht werden. Die Metallschicht kann je nach Verwendungszweck auf der Außenwandung und/oder der Innenwandung aufgebracht werden.
Wird der metallische Trägerkörper durch einen rohrförmigen Trägerkörper gebildet, dann ist in Ausgestaltung des erfindungsgemäßen Verfahrens vorgesehen, daß beim Auftragen der Suspension und zumindest während eines Teils der Trockenzeit der Trägerkörper um die Rohrachse gedreht wird. Hierdurch ist gewährleistet, daß die Schichtdicke bis zur Verfestigung der Suspension als Grünschicht auf dem Trägerkörper erhalten bleibt. Hierbei ist es zweckmäßig, insbesondere beim Dünnschichtgießen und beim Sprühen, wenn der Suspensionsaustritt zusätzlich zur Rotation gegenüber der Oberfläche definiert bewegt wird.
Als Fertigteil hergestellte poröse Membranen oder auf einen porösen Trägerkörper aufgebrachte poröse Metallschichten eignen sich insbesondere zur Verwendung als Filter und bei entsprechender Einstellung der Porosität der Metallschicht auch als Mikrofilter. Bei undurchlässigen Trägerkörpern kann ein derartiges Bauteil bei entsprechender Zusammensetzung hinsichtlich der verwendeten Metallpulver und bei entsprechender Porosität auch als Katalysatoren eingesetzt werden. Nachfolgend wird das erfindungsgemäße Verfahren anhand von schematischen Flußdiagrammen näher erläutert für den Einsatzfall der Herstellung dünner, poröser Metallschichten, die als eigenständiges Teil verwendbar sind. Es zeigen:
Fig. 1
einen Verfahrensablauf, bei dem das Teil durch einen Stanzschritt geformt wird,
Fig. 2
einen Verfahrensablauf, bei dem das Teil durch einen Spritzvorgang geformt und eigenständig gesintert wird,
Fig. 3
einen Verfahrensablauf, bei dem das Teil durch einen Spritzvorgang geformt und mit Hilfe eines Trägerkörpers gesintert wird.
Bei dem in Fig. 1 dargestellten Verfahren wird eine aus einem sinterfähigen Metallpulver und einer Trägerflüssigkeit gebildete Suspension mit Hilfe eines Sprüh- oder Gießkopfes 1 auf einen Trägerkörper 2 in Form eines größeren Folienabschnitts aus einer Kunststoffolie oder Metallfolie als dünne Schicht 3 aufgebracht wird. Der mit einer dünnen Suspensionsschicht 3 beschichtete Trägerkörper 2 wird hierbei durch einen größeren Folienabschnitt anschließend in eine Trocknungseinrichtung 4 geführt, in der unter Wärmeeinwirkung die Trägerflüssigkeit, beispielsweise Ethanol oder Isopropanol abgedampft wird. Ein etwa in der Trägerflüssigkeit gelöster Binder verbleibt zur Erhöhung der Grünfestigkeit in der dünnen Schicht.
Der so getrocknete und nunmehr mit einer festen Grünschicht 3.1 versehene Folienabschnitt wird anschließend einer Stanzeinrichtung 5 zugeführt, in der mit Hilfe eines Stanzmessers 6 ein Teil 7 in der gewünschten Außenkontur zusammen mit dem als Trägerkörper 2 anhaftenden Folienteil ausgestanzt wird. Zur Vereinfachung ist hier nur das Ausstanzen eines Teils 7 dargestellt. Es besteht hierbei jedoch die Möglichkeit, in einem oder in aufeinanderfolgenden Stanzschritten mehrere Teile 7 aus dem mit der Grünschicht versehenen Folienabschnitt auszustanzen.
In einem anschließenden Trennschritt 8 wird der mitausgestanzte Teil 2.1 der Trägerfolie von der Grünschicht 3.1 abgezogen, die dann als Grünling 3.2 in einen Sinterofen 9 eingebracht und dort unter den für die jeweilige Pulverzusammensetzung vorzugebenden Bedingungen gesintert wird. Aus dem Sinterofen 9 kann dann das fertige Teil 3.3 in Form einer festen, dünnen Metallschicht mit offener Porosität herausgenommen werden.
Bei dem Verfahren gemäß Fig. 2 wird auf einen biegsamen, im übrigen jedoch formstabilen Trägerkörper 2.2, beispielsweise aus einem Silikonkautschuk, eine Maske 10 aufgelegt, die mit einem Ausschnitt 11 versehen ist, der der gewünschten Endkontur des herzustellenden porösen Metallschichteils entspricht. Anschließend wird - wie anhand von Fig. 1 beschrieben - der mit einer entsprechenden Maske versehene Trägerkörper 2.2 mit Hilfe eines Sprüh- oder Gießkopfes 1 mit der Metallsuspension besprüht, so daß auf dem Trägerkörper 2.2 der durch den Ausschnitt 11 der Maske 10 begrenzte Bereich eine entsprechende, dünne Suspensionsschicht 3 aufgebracht ist. Auch hier kann bei entsprechender Flächengröße des Trägerkörpers 2.2 die Maske 10 mit einer entsprechenden Vielzahl von Ausschnitten 11 versehen sein.
In einem nächsten Schritt wird die Maske 10 abgenommen, so daß der Trägerkörper 2.2 mit der darauf verbleibenden, dünnen Suspensionsschicht 3 in den Trockenofen 4 eingeführt werden kann, in dem die Trägerflüssigkeit abgedampft wird.
In einem anschließenden Trennschritt 8 wird vom Trägerkörper 2.2 die Grünschicht 3 abgenommen, was hier schematisch durch ein Biegen des Trägerkörpers 2.2 am Rande einer Schneide 12 angedeutet ist, so daß anschließend der vereinzelte Grünling wiederum im Sinterofen 9 gesintert wird. Aus dem Sinterofen 9 kann dann das fertige Teil 3.3 in Form einer festen, dünnen Metallschicht mit offener Porosität herausgenommen werden. Bei dieser Verfahrensweise entfällt der Stanzschritt 5, da durch die Maske 10 mit ihrem Auschnitt 11 die geforderte Kontur bereits vorhanden ist. Der Trägerkörper bleibt erhalten und kann wieder verwendet werden.
Das in Fig. 3 schematisch dargestellte Verfahren entspricht in seinem Ablauf bis zum Verfahrensschritt der Trocknung im Trockenofen 4 dem anhand von Fig. 2 beschriebenen Verfahren, so daß auf die voraufgegangene Beschreibung verwiesen werden kann. Der Unterschied besteht hierbei lediglich darin, das der Trägerkörper 2.2 aus einem hochtemperaturfesten Material besteht, der beim Sintern keine Verbindung mit der auf dem Trägerkörper befindlichen Grünschicht 3 eingeht, wie dies beispielsweise bei einem keramischen Material der Fall ist.
Im Unterschied zum Verfahren gemäß Fig. 2 wird der Trägerkörper 2.2 mit dem darauf befindlichen Grünling 3.2 in den Sinterofen 9 eingeführt und auch zusammen mit dem Trägerkörper 2.2 aus dem Sinterofen 9 wieder entnommen. Erst das fertig gesinterte, poröse Metallschichtteil 3.3. wird dann vom Trägerkörper 2.2 abgenommen.
Bei allen Verfahren ist es möglich, durch mehrere Sprüh- bzw. Gießüberläufe mit unterschiedlich strukturierten Suspensionen einen mehrschichtigen Aufbau für das herzustellende Metallschichtteil zu verwirklichen.
Das anhand von Fig. 3 beschriebene Verfahren bietet darüber hinaus noch den Vorteil, daß zunächst nur eine Schicht auf den temperaturfesten Trägerkörper 2.2 aufgebracht und auf dem Trägerkörper fertig gesintert wird. Anschließend wird auf die fertig gesinterte, noch auf dem Trägerkörper 2.2 befindliche poröse Metallschicht, eine weitere Schicht aus einer gegebenenfalls anders zusammengesetzten Suspension aufgebracht, die dann - wie vorbeschrieben - getrocknet und gesintert wird. Durch den Sintervorgang ergibt sich ein fester Verbund zwischen der ersten und der zweiten sowie jeder weiteren, in dieser Weise aufgebrachten Metallschicht. Der Vorteil besteht hierbei darin, daß die zweite und auch jede weitere noch aufzubringende Metallschicht im Hinblick auf ihre andere Zusammensetzung auch unter anderen Temperaturbedingungen gesintert werden kann. So ist es beispielsweise möglich, in einer ersten Schicht eine Metallpulverzusammensetzung mit hoher Sintertemperatur als poröse Schicht zu sintern und anschließend in der zweiten und jeder weiteren Schicht Metallpulverzusammensetzungen als poröse Schicht aufzusintern, die aufgrund ihrer Zusammensetzungen jeweils bei niedrigeren Temperaturen gesintert werden müssen. Hierdurch ist gewährleistet, daß durch jeweils angepaßte Sinterbedingungen die gewünschte Porosität der einzelnen Schichten erhalten bleibt.
Durch die in den Verfahren gemäß Fig. 2 und 3 verwendeten Konturmasken ist auch die Möglichkeit gegeben, bei einem Aufbringen der Suspension im Sprühverfahren jeweils nach dem Bilden der Hauptschicht noch zusätzliche Überläufe im Randbereich durchzuführen, um so ein poröses Metallschichtteil mit verstärktem Rand herzustellen.

Claims (13)

  1. Verfahren zur Herstellung einer dünnen Metallschicht mit offener Porosität aus einem sinterfähigen Pulver aus reinen Metallen, Metallegierungen und/oder Pulvermischungen aus unterschiedlichen Metallen und Metallegierungen, dadurch gekennzeichnet, daß das Metallpulver mit einer vorgegebenen Größenverteilung der Pulverteilchen in einer Trägerflüssigkeit, gebildet durch einen mit einem verdampfbaren Lösungsmittel verflüssigten Binder, suspendiert wird, daß die Suspension in wenigstens einer dünnen Schicht auf einen Trägerkörper aufgebracht, getrocknet und die so gebildete Grünschicht gesintert wird, wobei die Schichtdicke der aufgetragenen Suspension mindestens der Dicke s der zu erzeugenden Metallschicht nach der Sinterung entspricht, wobei s mindestens dem 3-fachen mittleren Durchmesser D der Pulverteilchen entspricht, mit D = 1µm bis 50µm, wobei die Schichtdicke der fertigen Metallschicht maximal 500µm beträgt.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Suspension in mehreren Teilschichten nacheinander auf den Trägerkörper aufgebracht wird.
  3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß für die einzelnen Teilschichten jeweils Suspensionen mit unterschiedlichen Größenverteilungen und/oder unterschiedlichen Metallen verwendet werden.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die jeweilige Teilschicht vor dem Aufbringen der nächsten Teilschicht zumindest angetrocknet wird.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die jeweilige Teilschicht vor dem Aufbringen der nächsten Teilschicht gesintert wird.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Suspension als Schicht auf einen ebenen, biegsamen Trägerkörper aufgebracht und nach dem Trocknen als Grünschicht von dem Trägerkörper getrennt und gesondert zu einem membranartigen porösen Fertigteil gesintert wird.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Suspension als Schicht auf einen hochtemperaturfesten, vorzugsweise ebenen, Trägerkörper aufgebracht wird, auf diesem getrocknet und gesintert und anschließend als membranartiges, poröses, metallisches Fertigteil vom Trägerkörper abgenommen wird.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß auf den Trägerkörper vor dem Aufbringen der Suspension eine Konturmaske aufgelegt wird.
  9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Suspension auf wenigstens eine der Wandungen eines rohrörmigen metallischen Trägerkörpers aufgebracht, getrocknet und die so gebildete Grünschicht anschließend auf den Trägerkörper fest aufgesintert wird.
  10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß der rohrförmige Trägerkörper beim Auftragen der Suspension und zumindest während eines Teils der Trocknungszeit um die Rohrachse gedreht wird.
  11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die Suspension durch Dünnschichtgießen, Sprühen oder Tauchen auf den Trägerkörper aufgebracht wird.
  12. Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß beim Auftragen der Suspension der Suspensionsaustritt relativ zum Trägerkörper bewegt wird.
  13. Verfahren nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß die fertig gesinterte poröse Membran durch Walzen kalibriert wird.
EP98922732A 1998-04-17 1998-04-17 Verfahren zur herstellung einer gesinterten metallschicht mit offener porosität Expired - Lifetime EP1073778B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP1998/002254 WO1999054524A1 (de) 1998-04-17 1998-04-17 Verfahren zur herstellung einer gesinterten metallschicht mit offener porosität

Publications (2)

Publication Number Publication Date
EP1073778A1 EP1073778A1 (de) 2001-02-07
EP1073778B1 true EP1073778B1 (de) 2002-01-30

Family

ID=8166941

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98922732A Expired - Lifetime EP1073778B1 (de) 1998-04-17 1998-04-17 Verfahren zur herstellung einer gesinterten metallschicht mit offener porosität

Country Status (8)

Country Link
US (1) US6652804B1 (de)
EP (1) EP1073778B1 (de)
JP (1) JP2002512308A (de)
KR (1) KR20010041043A (de)
AT (1) ATE212681T1 (de)
DE (1) DE59802992D1 (de)
ES (1) ES2171025T3 (de)
WO (1) WO1999054524A1 (de)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19963698A1 (de) * 1999-12-29 2001-07-12 Gkn Sinter Metals Gmbh Dünne poröse Schicht mit offener Porosität und Verfahren zu ihrer Herstellung
DE10015614B4 (de) * 2000-03-29 2009-02-19 Ceramtec Ag Gesinterter Formkörper mit poröser Schicht auf der Oberfläche sowie Verfahren zu seiner Herstellung und seine Verwendungen
DE10111892C1 (de) 2001-03-13 2002-08-22 Gkn Sinter Metals Gmbh Gesinterter, hochporöser Körper
US20020192537A1 (en) * 2001-06-15 2002-12-19 Xiaoming Ren Metallic layer component for use in a direct oxidation fuel cell
DE10347897B4 (de) * 2003-10-15 2017-07-27 Hjs Emission Technology Gmbh & Co. Kg Vorrichtung zum Füllen von Öffnungen eines Trägers mit einem Sintermetallpulver-Bindemittel-Gemisch sowie Verfahren
WO2005123305A2 (de) * 2004-06-17 2005-12-29 Imr Metalle Und Technologie Gm Verfahren zum herstellen von erzeugnissen aus metall
DE102004035311A1 (de) * 2004-07-21 2006-02-16 Robert Bosch Gmbh Verfahren zum Herstellen mindestens eines Bereichs einer Filterstruktur, insbesondere für einen Partikelfilter im Abgassystem einer Brennkraftmaschine
US7722735B2 (en) * 2006-04-06 2010-05-25 C3 Materials Corp. Microstructure applique and method for making same
US20080081007A1 (en) * 2006-09-29 2008-04-03 Mott Corporation, A Corporation Of The State Of Connecticut Sinter bonded porous metallic coatings
US9149750B2 (en) 2006-09-29 2015-10-06 Mott Corporation Sinter bonded porous metallic coatings
AT507187B1 (de) 2008-10-23 2010-03-15 Helmut Dr Buchberger Inhalator
EP2484805B1 (de) 2011-02-03 2016-07-20 Mott Corporation Verfahren zur Herstellung durch Sintern gebundene poröse metallische Beschichtungen
AT510837B1 (de) 2011-07-27 2012-07-15 Helmut Dr Buchberger Inhalatorkomponente
EP2672847B1 (de) 2011-02-11 2015-04-22 Batmark Limited Inhalatorkomponente
PL2753202T3 (pl) 2011-09-06 2016-11-30 Podgrzewanie materiału przeznaczonego do palenia
KR101870335B1 (ko) 2011-09-06 2018-07-20 브리티시 아메리칸 토바코 (인베스트먼츠) 리미티드 가열식 끽연 가능 물질
AT511344B1 (de) 2011-10-21 2012-11-15 Helmut Dr Buchberger Inhalatorkomponente
GB201207039D0 (en) 2012-04-23 2012-06-06 British American Tobacco Co Heating smokeable material
GB2504076A (en) 2012-07-16 2014-01-22 Nicoventures Holdings Ltd Electronic smoking device
GB2513639A (en) 2013-05-02 2014-11-05 Nicoventures Holdings Ltd Electronic cigarette
GB2513637A (en) 2013-05-02 2014-11-05 Nicoventures Holdings Ltd Electronic cigarette
GB2513638A (en) 2013-05-02 2014-11-05 Nicoventures Holdings Ltd Electronic cigarette
GB201407426D0 (en) 2014-04-28 2014-06-11 Batmark Ltd Aerosol forming component
GB2528673B (en) 2014-07-25 2020-07-01 Nicoventures Holdings Ltd Aerosol provision system
GB2533135B (en) 2014-12-11 2020-11-11 Nicoventures Holdings Ltd Aerosol provision systems
CN104759629B (zh) * 2015-04-01 2017-07-18 成都易态科技有限公司 用于过滤的柔性多孔金属箔及柔性多孔金属箔的制备方法
CN104923782B (zh) * 2015-06-25 2017-03-01 武汉大学 一种基于自蔓延反应的3d打印设备
GB201511349D0 (en) 2015-06-29 2015-08-12 Nicoventures Holdings Ltd Electronic aerosol provision systems
US20170055584A1 (en) 2015-08-31 2017-03-02 British American Tobacco (Investments) Limited Article for use with apparatus for heating smokable material
US11924930B2 (en) 2015-08-31 2024-03-05 Nicoventures Trading Limited Article for use with apparatus for heating smokable material
US20170119046A1 (en) 2015-10-30 2017-05-04 British American Tobacco (Investments) Limited Apparatus for Heating Smokable Material
CA3022340C (en) 2016-04-27 2021-09-21 Nicoventures Holdings Limited Electronic aerosol provision system and vaporizer therefor
KR101971645B1 (ko) 2018-06-29 2019-04-23 한국기계연구원 플레이크 형상의 분말 코팅층을 포함하는 필터 및 이의 제조방법
CN113714502B (zh) * 2021-09-08 2022-05-20 西北有色金属研究院 一种具有微小渗透通量管状多孔金属元件的制备方法
CN113737171B (zh) * 2021-09-10 2022-09-02 西北有色金属研究院 一种多孔钽膜的制备方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2267918A (en) * 1940-03-27 1941-12-30 Gen Motors Corp Porous article and method of making same
US5132080A (en) * 1944-11-28 1992-07-21 Inco Limited Production of articles from powdered metals
CA962806A (en) * 1970-06-04 1975-02-18 Ontario Research Foundation Surgical prosthetic device
DE2323878A1 (de) * 1973-05-11 1974-11-21 Union Carbide Corp Verfahren und vorrichtung zum beschichten von metallsubstraten
FR2463636A1 (fr) * 1973-09-28 1981-02-27 Commissariat Energie Atomique Procede de fabrication de supports de filtres poreux
JPS5445440A (en) * 1977-09-19 1979-04-10 Oiles Industry Co Ltd Double layer bearing and method of producing same
JPS5788967A (en) * 1980-11-21 1982-06-03 Showa Alum Corp Formation of porous layer on metallic surface
IT1206312B (it) * 1982-01-22 1989-04-14 Thermo Electron Corp Metodo per formare uno stoppino per un tubo di calore.
US4793968A (en) * 1982-12-29 1988-12-27 Sermatech International, Inc. Surface modified powder metal parts and methods for making same
JPS60230909A (ja) * 1984-04-28 1985-11-16 Nitto Electric Ind Co Ltd 金属粉末成形体の焼結時固定用組成物
JPS61238304A (ja) * 1985-04-17 1986-10-23 Ngk Insulators Ltd セラミックフィルタの製造方法
US4629483A (en) * 1986-01-06 1986-12-16 Refractron Corp. Ceramic filter with plural layers of different porosity
JPS63111312A (ja) * 1986-10-29 1988-05-16 N D C Kk 複層軸受ならびのその製造方法
US4888114A (en) * 1989-02-10 1989-12-19 E. I. Du Pont De Nemours And Company Sintered coating for porous metallic filter surfaces
DE4000302C1 (de) * 1990-01-08 1991-07-25 Degussa Ag, 6000 Frankfurt, De
DE4120706C2 (de) 1991-06-22 1994-10-13 Forschungszentrum Juelich Gmbh Verfahren zur Herstellung poröser oder dichter Sinterwerkstücke
FR2701719B1 (fr) * 1993-02-19 1995-04-14 Maubeuge Fer Procédés et installations pour réaliser en continu plusieurs revêtements à base d'alliage métallique sur une bande d'acier.
US5592686A (en) * 1995-07-25 1997-01-07 Third; Christine E. Porous metal structures and processes for their production
CA2190238A1 (en) * 1996-07-15 1998-01-15 Ryutaro Motoki Sintered metal filters
EP0852298B1 (de) * 1996-12-14 2003-03-19 Federal-Mogul Deva GmbH Gleitlagerwerkstoff und Verfahren zu seiner Herstellung

Also Published As

Publication number Publication date
DE59802992D1 (de) 2002-03-14
JP2002512308A (ja) 2002-04-23
US6652804B1 (en) 2003-11-25
KR20010041043A (ko) 2001-05-15
ATE212681T1 (de) 2002-02-15
WO1999054524A1 (de) 1999-10-28
ES2171025T3 (es) 2002-08-16
EP1073778A1 (de) 2001-02-07

Similar Documents

Publication Publication Date Title
EP1073778B1 (de) Verfahren zur herstellung einer gesinterten metallschicht mit offener porosität
EP1251987B1 (de) Verfahren zur herstellung einer dünnen porösen schicht mit offener porosität
DE602004000465T2 (de) Offenporiger formkörper, verfahren zu dessen herstellung und verwendung dieses körpers
DE3612280C2 (de)
DE3546328C2 (de)
DE3704546A1 (de) Verfahren zur herstellung eines filters und danach hergestelltes filter
DE3780136T2 (de) Gesinterter verbundpresskoerper mit grosser haerte.
DE69934802T2 (de) Verfahren um poröse anorganische strukturen zu bilden
DE1567489B2 (de) Vorrichtung zum abtrennen von wasserstoff aus gasgemischen
EP0266717B1 (de) Verfahren und Vorrichtung zum Herstellen von reibschlüssigen Elementen, insbesondere von Synchronisierungskörpern in Stufengetrieben von Kraftfahrzeugen
DE4222856C1 (de)
DE102005010248A1 (de) Verfahren zur Herstellung eines offenporigen Metallschaumkörpers, ein so hergestellter Metallschaumkörper sowie seine Verwendungen
DE1904548A1 (de) Filter
EP0554683A1 (de) Verfahren zur Umwandlung von Gussoberflächen durch Pulverimprägnation
EP0554682A1 (de) Verfahren zur Herstellung verschleissfester Oberflächenschichten
DE102009034390A1 (de) Verfahren zur Herstellung von in Gehäuse integrierten Metallschaumkörpern
EP1351752B1 (de) Gradiert aufgebaute filter und verfahren zu ihrer herstellung
WO2005106068A1 (de) Trägerplatte für sputtertargets
WO2006008222A1 (de) Verfahren zum herstellen mindestens eines bereichs einer filterstruktur, insbesondere für einen partikelfilter im abgassystem einer brennkraftmaschine
DE10034508A1 (de) Verfahren zur Herstellung eines endkonturnahen Formgebungswerkzeug und danach hergestelltes Formgebungswerkzeug
DE102007042494B4 (de) Bauteil sowie seine Verwendung
DE3537672C1 (en) Filter body
DE1156051B (de) Verfahren zur Herstellung eines Membranfilters
DE10052226B4 (de) Verfahren zur Herstellung einer metallischen Folie mit gradierter Porosität und nach diesem Verfahren hergestellte Folie
DE10039272C1 (de) Plattenförmiger Filtrationskörper

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000930

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB IE IT LI NL SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20010504

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FI FR GB IE IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020130

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020130

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020130

REF Corresponds to:

Ref document number: 212681

Country of ref document: AT

Date of ref document: 20020215

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59802992

Country of ref document: DE

Date of ref document: 20020314

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020430

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020430

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020430

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020407

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2171025

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20050421

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20050422

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060418

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060418

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060430

Year of fee payment: 9

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20060418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070417

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120423

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120423

Year of fee payment: 15

Ref country code: FR

Payment date: 20120511

Year of fee payment: 15

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131101

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130417

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20131231

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59802992

Country of ref document: DE

Effective date: 20131101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130430