EP1021815A1 - Relais electrostatique micromecanique et son procede de production - Google Patents

Relais electrostatique micromecanique et son procede de production

Info

Publication number
EP1021815A1
EP1021815A1 EP98947333A EP98947333A EP1021815A1 EP 1021815 A1 EP1021815 A1 EP 1021815A1 EP 98947333 A EP98947333 A EP 98947333A EP 98947333 A EP98947333 A EP 98947333A EP 1021815 A1 EP1021815 A1 EP 1021815A1
Authority
EP
European Patent Office
Prior art keywords
layer
fixed contact
spring tongue
base substrate
spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP98947333A
Other languages
German (de)
English (en)
Other versions
EP1021815B1 (fr
Inventor
Helmut Schlaak
Lothar Kiesewetter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TE Connectivity Solutions GmbH
Original Assignee
Tyco Electronics Logistics AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tyco Electronics Logistics AG filed Critical Tyco Electronics Logistics AG
Publication of EP1021815A1 publication Critical patent/EP1021815A1/fr
Application granted granted Critical
Publication of EP1021815B1 publication Critical patent/EP1021815B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H59/00Electrostatic relays; Electro-adhesion relays
    • H01H59/0009Electrostatic relays; Electro-adhesion relays making use of micromechanics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H59/00Electrostatic relays; Electro-adhesion relays
    • H01H59/0009Electrostatic relays; Electro-adhesion relays making use of micromechanics
    • H01H2059/0081Electrostatic relays; Electro-adhesion relays making use of micromechanics with a tapered air-gap between fixed and movable electrodes

Definitions

  • the invention relates to a micromechanical electrostatic relay
  • the invention also relates to a method for producing such a relay.
  • both the armature spring tongue and the fixed contact are each provided with a magnetic layer and the switch is actuated via a magnetic field applied from the outside.
  • a magnetic field With such a magnetic field, the necessary contact force can be generated even with the relatively small contact distance that can be achieved with the sacrificial layer technology between the movable contact and the rigid fixed contact.
  • this requires an additional device for generating the magnetic field, for example a coil, which requires considerably more space than is required for certain te A nthinks registered for a micromechanical relay for Ver ⁇ addition has.
  • Object of the present invention is a micromechanical relay of the type mentioned at the outset so troublezubil ⁇ that larger with the electrostatic drive Kon ⁇ clock forces can be produced structurally, but the functional elements of the relay are provided on the base substrate by machining from one side can.
  • this object is achieved in that the at least one fixed contact is arranged on a fixed contact spring tongue, which, opposite to the armature spring tongue, is connected on one side to a carrier layer and is elastically curved away from the base substrate in the idle state, and in that the at least one movable contact is formed on the free end of the armature spring tongue projecting over this and overlapping the fixed contact.
  • the fixed contact is no longer rigidly arranged on the base substrate, but instead sits like the movable contact on a curved spring tongue, as a result of which an additional switching path can be achieved.
  • the movable contact sits on the armature tongue and overlaps the fixed contact. Due to the pre-curvature of the two spring tongues facing each other, a sufficient overstroke to generate the desired contact force can be achieved when switching from the start of contacting to the end position of the armature.
  • Silicon is preferably used as the base substrate, the carrier layer for the spring tongues being deposited or bonded as a silicon layer with the interposition of the required functional and insulating layers and etched free in the corresponding operations.
  • the base substrate can also consist of glass or ceramic; these materials are much cheaper than silicon. Kermaik, however, requires an additional surface treatment in order to obtain the smooth surface required for the relay structures.
  • the carrier layer forming the spring tongues can consist, for example, of deposited polysilicon or polysilicon with recrystallization or can be present as an exposed doped silicon layer of a bonded-on silicon wafer. This layer can be produced by epitaxy or diffusion in a silicon wafer.
  • a deposited layer of a spring metal such as nickel, a nickel-iron alloy or nickel with other additives can also be used. Other metals can also be considered; it is important that the material shows good spring properties and low fatigue.
  • An advantageous method for producing a relay according to the invention has the following steps: a carrier layer made of metal is applied to a base substrate provided with a metallic layer as the base electrode, with the interposition of an insulating layer and an intermediate space, two spring tongues which are connected on one side and face one another with their free ends are formed in the carrier layer,
  • the spring tongues are provided at least in sections with a tension layer on their upper side, a - preferably shorter - spring tongue is provided with at least one fixed contact at its free end,
  • the - preferably longer - spring tongue is provided with at least one movable contact, which overlaps the fixed contact with the interposition of a sacrificial layer, and - by etching the spring tongues free from and from each other
  • Substrate is reached upward curvature away from the substrate.
  • FIG. 1 shows the structure of the essential functional layers of a micromechanical relay according to the invention in a sectional view
  • FIG. 2 shows the micromechanical relay from FIG. 1 in the final state (without housing) in the rest position
  • FIG. 3 shows the relay from FIG. 2 in the working position
  • FIG. 4 shows a top view of the relay from FIG. 3, which forms a normally open contact
  • FIG. 5 shows the same view as FIG. 4, but with an embodiment which forms a bridge contact
  • FIG. 6 shows a modified embodiment of a bridge contact arrangement
  • Figure 7 is a view corresponding to Figure 1 but with egg ⁇ ner tensile stress layer over a partial section of the armature spring tongue
  • FIG. 8 shows a view corresponding to FIG. 2 with spring tongue sections of different curvature
  • FIG. 9 shows a layer structure of a base substrate which is somewhat modified compared to FIG. 1 up to the construction of a carrier layer made of polysilicon for the spring tongues
  • FIG. 10 shows a layer structure modified compared to FIG. 9 with a carrier layer made of metal for the spring tongues
  • FIG. 11 shows a layer structure modified compared to FIGS a lost-wafer layer bonded to the base substrate to form the carrier layer for the spring tongues
  • FIG. 12 shows a modified layer structure using a semi-finished SOI wafer.
  • FIGS. 1 to 3 show the functional layer structure of a micromechanical relay based on silicon according to the invention.
  • the base substrate 1 consists of silicon.
  • This base substrate also serves as a base electrode; if necessary, however, a corresponding electrode layer can also be formed by suitable doping.
  • a first sacrificial layer 3, which is later etched out, lies on this in turn. It consists, for example, of silicon dioxide and has a thickness di of preferably less than 0.5 ⁇ m.
  • a carrier layer 4 lies above the sacrificial layer 3 to form spring tongues.
  • This layer is electrically conductive and consists, for example, of polysilicon with a thickness of 5 to 10 ⁇ m.
  • An armature spring tongue 41 and a fixed contact spring tongue 42 are later etched free from this carrier layer 4. When the layer structure, they are first by a second sacrificial layer 5 ⁇ separated. On the two spring tongues 41 and 42 there is an insulating tensile stress layer 6 which, after the spring tongues are etched free, causes the spring tongues to curve upward away from the base substrate due to their tensile stress. This state is shown in Figure 2.
  • a fixed contact 7 is deposited on the fixed contact spring tongue 42 by appropriate coating methods, while a movable contact 8 is formed on the free end of the armature spring tongue 41 such that it overlaps the fixed contact 7 with the interposition of the second sacrificial layer 5.
  • the height of the switch contacts can be selected as desired, typically between 2 and 10 ⁇ m. Depending on the requirements, the thicknesses or the material compositions of the
  • Switch contacts can also be asymmetrical. As shown in FIG. 4, the two spring tongues 41 and 42 engage in a tooth-like manner, so that a central projection 44 of the spring tongue 42 is surrounded by two lateral projections 43 of the armature spring tongue 41 in the form of pliers. In this way, the movable contact 8 rests with three side sections on the armature spring tongue. In this embodiment, it forms a simple normally open contact with the fixed contact 7. In addition, it can be seen that the movable contact 8 has an S-shaped or Z-shaped cross section in order to ensure the overlap with the fixed contact 7.
  • the intermediate sacrificial layer 2 typically has a thickness d 2 of less than 0.5 ⁇ m.
  • the other required layers are formed in a known manner, for example a supply line 71 to the fixed contact 7, a supply line 81 to the movable contact 8 and a further insulating layer 9 for passivating the upper side of the armature spring tongue.
  • FIG. 2 shows the finished arrangement after the spring tongues have been exposed by etching out the two sacrificial layers 3 and 5, wherein below the armature spring tongue 41, a free ⁇ space 31 is formed.
  • the two spring ⁇ bend tongues 41 and 42 due to the tensile stress layer 6 upward, so that the assembly formed in accordance with Figure 2 with open clock con-.
  • the anchor spring tongue bends due to the preload to a clear opening x x at the spring end.
  • FIG. 3 shows the closed switching state of the relay.
  • the armature spring tongue 41 lies directly on the counter electrode, ie it touches the insulation layer 2 of the counter electrode or the base substrate.
  • FIG. 4 shows a top view of the spring tongues 41 and 42 according to FIGS. 1 to 3.
  • the shape and arrangement of the contacts can be seen, namely the fixed contact 7 on the projection 44 of the spring tongue 42 and the movable contact 8 with three sides Suspended on the projections 43 of the spring tongue 41.
  • a hole pattern 10 for etching free the first sacrificial layer 3 is shown.
  • FIG. 5 shows an embodiment modified compared to FIG. 4 with a bridge contact.
  • the spring tongue 42 has two separate fixed contacts 7 with corresponding connecting tracks on two outer projections 46, while the spring tongue 41 forms a central projection 47 on which the movable contact 8 lies.
  • a slot 42a in the fixed contact spring tongue 42 ensures sions-compliance for a high gate ⁇ so in unequal burn both contacts close securely. In this example, this serves as a bridge contact in that it overlaps the fixed contacts 7 on both sides.
  • an anchor spring tongue 141 is provided with a central projection 147, on which a movable bridge contact 148 projecting on both sides lies. This works together with two fixed contacts 144 and 145, which sit on two separate fixed contact spring tongues 142 and 143.
  • These fixed contact spring tongues 142 and 143 are transverse to the armature spring tongue 141, i.e. their clamping lines 142a and 143a are perpendicular to the clamping line 141a of the armature spring tongue.
  • FIGS. 7 and 8 schematically show an embodiment during manufacture and in the finished state in which the armature spring tongue is only partially curved.
  • a tension layer 61 extends only over part of the armature spring tongue 41, so that a curved zone 62 of the armature spring tongue extends onto the area of the clamping point, while a zone 63 runs straight or with less curvature towards the end of the spring.
  • the silicon Carrier layer 4 shows an intrinsically stress-free insulation layer 64, which forms the electrical isolation of the load circuit with the lead 81 from the spring tongue.
  • the tension layer 61 already mentioned lies above this.
  • FIG. 9 shows the basic layer structure on the base substrate 1, as it takes place according to the so-called additive technique.
  • the movable spring tongues or their carrier layer are obtained from a material that is only deposited on the substrate during manufacture.
  • a wafer made of p-silicon serves as the substrate.
  • a control base electrode 11 is n-diffused on this
  • a barrier layer 12 is formed between the n-silicon of the electrode and the p-silicon of the base substrate.
  • the insulation layer 2 is applied and structured above the sacrificial layer 3.
  • the carrier layer 4 with a thickness of e.g. 5 to 10 ⁇ m deposited. It consists of poly-silicon or of poly-silicon with recrystallization.
  • the structure of the spring tongues is produced using conventional masking technology. The further construction takes place according to FIG. 1.
  • the various functional layers, namely an insulation layer between the load circuit and the movable drive electrode, optionally an additional tension layer and the required load circuit conductor tracks are deposited.
  • the contacts described with the intermediate second sacrificial layer and any passivation insulation required for the conductor tracks are generated.
  • the substrate consists of glass. But it could also be made from a silicon substrate Insulation layer or ceramic ⁇ with the corresponding upper surface treatment are made.
  • a base electrode 11 in the form of a metal layer is produced over this substrate.
  • a galvanically applied metal layer which consists of nickel or a nickel alloy (for example nickel-iron) or another metal alloy, serves as the carrier layer.
  • the spring characteristic with low fatigue of this metal is important.
  • a corresponding current flow in the electroplating process can be used to produce inhomogeneous nickel layers which later bend the structured spring tongues.
  • the further construction is carried out analogously to FIG. 9 or FIG. 1.
  • the top of the wafer 20 is then etched back with an electrochemical etching stop, so that only the epitaxial layer 21 remains, which serves as a carrier layer for the movable spring tongues.
  • the joining step of the lost wafer on the base substrate can also take place without the first sacrificial layer 3 (see FIG. 1) if a free space 31 can be formed without the insulation layer 2 being firmly bonded to the doped silicon layer 21.

Landscapes

  • Micromachines (AREA)
  • Contacts (AREA)

Abstract

Le relais micromécanique selon l'invention présente un substrat de base (81) sur lequel une lame flexible d'induit (41) fixée d'un seul côté, comprenant un contact mobile (8) est structurée de sorte qu'elle soit courbée, au repos, de façon élastique, en s'éloignant du substrat. Un contact fixe (7) coopérant avec le contact mobile est également disposé sur une lame flexible de contact fixe (42) courbée également en s'éloignant du substrat de base, de sorte que les deux lames flexibles se font face avec leurs extrémités libres et de sorte que le contact mobile (8) recouvre le contact fixe. Cette disposition des contacts sur deux lames flexibles permet d'obtenir une surcourse relativement importante au niveau des contacts, en dépit d'un faible parcours d'induit possible dans le cas d'un entraînement électrostatique, ce qui permet de produire une force de contact suffisante.
EP98947333A 1997-08-22 1998-07-24 Relais electrostatique micromecanique et son procede de production Expired - Lifetime EP1021815B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19736674 1997-08-22
DE19736674A DE19736674C1 (de) 1997-08-22 1997-08-22 Mikromechanisches elektrostatisches Relais und Verfahren zu dessen Herstellung
PCT/DE1998/002092 WO1999010907A1 (fr) 1997-08-22 1998-07-24 Relais electrostatique micromecanique et son procede de production

Publications (2)

Publication Number Publication Date
EP1021815A1 true EP1021815A1 (fr) 2000-07-26
EP1021815B1 EP1021815B1 (fr) 2002-01-23

Family

ID=7839913

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98947333A Expired - Lifetime EP1021815B1 (fr) 1997-08-22 1998-07-24 Relais electrostatique micromecanique et son procede de production

Country Status (8)

Country Link
US (1) US6191671B1 (fr)
EP (1) EP1021815B1 (fr)
JP (1) JP2001514434A (fr)
CN (1) CN1310854A (fr)
CA (1) CA2300956A1 (fr)
DE (2) DE19736674C1 (fr)
TW (1) TW385465B (fr)
WO (1) WO1999010907A1 (fr)

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6807734B2 (en) 1998-02-13 2004-10-26 Formfactor, Inc. Microelectronic contact structures, and methods of making same
US6672875B1 (en) 1998-12-02 2004-01-06 Formfactor, Inc. Spring interconnect structures
KR100841127B1 (ko) 1998-12-02 2008-06-24 폼팩터, 인크. 리소그래피 접촉 소자
US6255126B1 (en) 1998-12-02 2001-07-03 Formfactor, Inc. Lithographic contact elements
JP3119255B2 (ja) * 1998-12-22 2000-12-18 日本電気株式会社 マイクロマシンスイッチおよびその製造方法
IT1307131B1 (it) * 1999-02-02 2001-10-29 Fiat Ricerche Dispositivo di micro-rele' a controllo elettrostatico.
TW490832B (en) * 1999-12-29 2002-06-11 Formfactor Inc Spring interconnect structures and methods for making spring interconnect structures
WO2001063634A2 (fr) * 2000-02-23 2001-08-30 Tyco Electronics Amp Gmbh Microrupteur etson procede de production
DE10065025A1 (de) * 2000-12-23 2002-07-04 Bosch Gmbh Robert Mikromechanisches Bauelement
US6560861B2 (en) * 2001-07-11 2003-05-13 Xerox Corporation Microspring with conductive coating deposited on tip after release
WO2003028059A1 (fr) 2001-09-21 2003-04-03 Hrl Laboratories, Llc Commutateurs mems et leurs procedes de fabrication
KR100421222B1 (ko) * 2001-11-24 2004-03-02 삼성전자주식회사 저전압 구동의 마이크로 스위칭 소자
EP1465832B1 (fr) * 2002-01-16 2007-03-14 Matsushita Electric Industrial Co., Ltd. Microdispositif
US7109560B2 (en) 2002-01-18 2006-09-19 Abb Research Ltd Micro-electromechanical system and method for production thereof
DE10210344A1 (de) * 2002-03-08 2003-10-02 Univ Bremen Verfahren zur Herstellung mikromechanischer Bauteile und nach dem Verfahren hergestellte Bauteile
DE10310072B4 (de) * 2002-03-08 2005-07-14 Erhard Prof. Dr.-Ing. Kohn Mikromechanischer Aktor
US6784389B2 (en) * 2002-03-13 2004-08-31 Ford Global Technologies, Llc Flexible circuit piezoelectric relay
US6753747B2 (en) * 2002-04-01 2004-06-22 Intel Corporation Integrated microsprings for high speed switches
US6686820B1 (en) 2002-07-11 2004-02-03 Intel Corporation Microelectromechanical (MEMS) switching apparatus
US7551048B2 (en) * 2002-08-08 2009-06-23 Fujitsu Component Limited Micro-relay and method of fabricating the same
US6621022B1 (en) * 2002-08-29 2003-09-16 Intel Corporation Reliable opposing contact structure
CN100565740C (zh) * 2002-09-18 2009-12-02 麦克弗森公司 层压机电***
JP4076829B2 (ja) * 2002-09-20 2008-04-16 株式会社東芝 マイクロスイッチ及びその製造方法
US6943448B2 (en) * 2003-01-23 2005-09-13 Akustica, Inc. Multi-metal layer MEMS structure and process for making the same
US7190245B2 (en) * 2003-04-29 2007-03-13 Medtronic, Inc. Multi-stable micro electromechanical switches and methods of fabricating same
US7221495B2 (en) * 2003-06-24 2007-05-22 Idc Llc Thin film precursor stack for MEMS manufacturing
US7215229B2 (en) * 2003-09-17 2007-05-08 Schneider Electric Industries Sas Laminated relays with multiple flexible contacts
US7388459B2 (en) * 2003-10-28 2008-06-17 Medtronic, Inc. MEMs switching circuit and method for an implantable medical device
CN1317728C (zh) * 2004-01-16 2007-05-23 清华大学 一种用牺牲层材料做支撑梁的微机械开关及制作工艺
DE102004010150B9 (de) * 2004-02-27 2012-01-26 Eads Deutschland Gmbh Hochfrequenz-MEMS-Schalter mit gebogenem Schaltelement und Verfahren zu seiner Herstellung
US6912082B1 (en) * 2004-03-11 2005-06-28 Palo Alto Research Center Incorporated Integrated driver electronics for MEMS device using high voltage thin film transistors
JP4754557B2 (ja) * 2004-04-23 2011-08-24 リサーチ・トライアングル・インスティチュート フレキシブル静電アクチュエータ
DE102004062992B4 (de) * 2004-12-22 2012-03-01 Eads Deutschland Gmbh Schaltbares Hochfrequenz-MEMS-Element mit bewegbarem Schaltelement und Verfahren zu seiner Herstellung
DE102004064163B4 (de) * 2004-12-22 2011-11-24 Eads Deutschland Gmbh Schaltbares Hochfrequenz-MEMS-Element mit bewegbarem Schaltelement und Verfahren zu seiner Herstellung
US7816745B2 (en) * 2005-02-25 2010-10-19 Medtronic, Inc. Wafer level hermetically sealed MEMS device
US7968364B2 (en) * 2005-10-03 2011-06-28 Analog Devices, Inc. MEMS switch capping and passivation method
KR20080066762A (ko) * 2005-10-03 2008-07-16 아나로그 디바이시즈 인코포레이티드 Mems 스위치 접촉 시스템
US7453339B2 (en) * 2005-12-02 2008-11-18 Palo Alto Research Center Incorporated Electromechanical switch
KR101188438B1 (ko) * 2006-02-20 2012-10-08 삼성전자주식회사 하향형 멤스 스위치의 제조방법 및 하향형 멤스 스위치
US7939994B2 (en) * 2006-05-17 2011-05-10 Microgan Gmbh Micromechanical actuators comprising semiconductors on a group III nitride basis
JP4234737B2 (ja) * 2006-07-24 2009-03-04 株式会社東芝 Memsスイッチ
US7936240B2 (en) * 2007-08-16 2011-05-03 Simon Fraser University Lithographically controlled curvature for MEMS devices and antennas
WO2009036215A2 (fr) * 2007-09-14 2009-03-19 Qualcomm Mems Technologies, Inc. Procédés de gravure utilisés dans une production de mem
EP2107038B1 (fr) * 2008-03-31 2012-05-16 Imec Dispositif MEMS d'activation électrostatique à chargement de substrat réduit
JP5118546B2 (ja) * 2008-04-25 2013-01-16 太陽誘電株式会社 電気式微小機械スイッチ
CN102640410B (zh) 2009-10-01 2014-12-31 卡文迪什动力有限公司 具有改良rf热切换性能及可靠性的微机械数字电容器
TWI425547B (zh) * 2011-05-06 2014-02-01 Nat Chip Implementation Ct Nat Applied Res Lab Cmos微機電開關結構
CN102867699B (zh) * 2011-07-08 2016-03-02 富士康(昆山)电脑接插件有限公司 微开关及其制造方法
GB201414811D0 (en) * 2014-08-20 2014-10-01 Ibm Electromechanical switching device with electrodes comprising 2D layered materials having distinct functional areas
CN108352277B (zh) * 2015-11-16 2021-02-26 卡文迪什动力有限公司 用于esd保护的自然闭合的mems开关
DE102020203576A1 (de) 2020-03-19 2021-09-23 Robert Bosch Gesellschaft mit beschränkter Haftung System, insbesondere mikroelektromechanisches System, Verfahren zur Herstellung eines Systems, Verfahren zum Betrieb eines Systems

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4959515A (en) * 1984-05-01 1990-09-25 The Foxboro Company Micromechanical electric shunt and encoding devices made therefrom
US4570139A (en) * 1984-12-14 1986-02-11 Eaton Corporation Thin-film magnetically operated micromechanical electric switching device
US5260596A (en) * 1991-04-08 1993-11-09 Motorola, Inc. Monolithic circuit with integrated bulk structure resonator
CA2072199C (fr) * 1991-06-24 1997-11-11 Fumihiro Kasano Relais electrostatique
US5258591A (en) * 1991-10-18 1993-11-02 Westinghouse Electric Corp. Low inductance cantilever switch
DE4205029C1 (en) * 1992-02-19 1993-02-11 Siemens Ag, 8000 Muenchen, De Micro-mechanical electrostatic relay - has tongue-shaped armature etched from surface of silicon@ substrate
EP0602538B1 (fr) 1992-12-15 1997-06-04 Asulab S.A. Contacteur "reed" et procédé de fabrication de microstructures métalliques tridimensionnelles suspendues
DE4437259C1 (de) * 1994-10-18 1995-10-19 Siemens Ag Mikromechanisches Relais
DE4437261C1 (de) * 1994-10-18 1995-10-19 Siemens Ag Mikromechanisches elektrostatisches Relais
DE4437260C1 (de) * 1994-10-18 1995-10-19 Siemens Ag Mikromechanisches Relais
US5578224A (en) * 1995-06-07 1996-11-26 Analog Devices, Inc. Method of making micromachined device with ground plane under sensor
US5578976A (en) * 1995-06-22 1996-11-26 Rockwell International Corporation Micro electromechanical RF switch
US6057520A (en) * 1999-06-30 2000-05-02 Mcnc Arc resistant high voltage micromachined electrostatic switch

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9910907A1 *

Also Published As

Publication number Publication date
CN1310854A (zh) 2001-08-29
CA2300956A1 (fr) 1999-03-04
DE19736674C1 (de) 1998-11-26
JP2001514434A (ja) 2001-09-11
US6191671B1 (en) 2001-02-20
TW385465B (en) 2000-03-21
EP1021815B1 (fr) 2002-01-23
WO1999010907A1 (fr) 1999-03-04
DE59802921D1 (de) 2002-03-14

Similar Documents

Publication Publication Date Title
EP1021815B1 (fr) Relais electrostatique micromecanique et son procede de production
DE69417725T2 (de) Micro-bearbeitetes relais und verfahren zur herstellung des relais
EP0685109B1 (fr) Relais micromecanique a actionnement hybride
EP0938738B1 (fr) Procede de production d'un relais micromecanique
DE4437260C1 (de) Mikromechanisches Relais
DE69705025T2 (de) In mengen angefertigtes elektromagnetisches mikro-relais/mikro-schalter und verfahren zu ihrer herstellung
DE2637479A1 (de) Mos-feldeffekt-transistor
EP0713235A1 (fr) Relais micromécanique électrostatique
DE1614872A1 (de) Vielschichtiges Leitungssystem mit ohmischen Kontakten fuer integrierte Schaltkreise
DE19823690C1 (de) Mikromechanisches elektrostatisches Relais
DE4305033A1 (de) Mikromechanisches Relais mit Hybridantrieb
DE4205340C1 (en) Micro-mechanical electrostatic relay with parallel electrodes - has frame shaped armature substrate with armature contacts above base electrode contacts on base substrate
DE2838214A1 (de) Piezoelektrische schaltvorrichtung
DE102021202238A1 (de) Elektrisch betätigbarer MEMS-Schalter
WO1999043013A1 (fr) Relais micromecanique electrostatique
EP2297797B1 (fr) Composant piézoélectrique et procédé de fabrication d'un contact électrique
DE19928187C1 (de) Piezoaktor
DE19935819A1 (de) Relais und Verfahren zu dessen Herstellung
DE19854450C2 (de) Mikromechanisches elektrostatisches Relais
DE10015598A1 (de) Mikroaktoranordnung
DE19646667C2 (de) Verfahren zum Herstellen eines mikromechanischen Relais
EP4057317A1 (fr) Élément commutateur mems encapsulé, dispositif et procédé de fabrication
DE19950964B4 (de) Mikromechanisches Relais und Verfahren zur Herstellung
DE10043549C1 (de) Mikroschalter und Verfahren zu dessen Herstellung
WO1993017459A2 (fr) Procede de fabrication d'une structure semi-conductrice et structure semi-conductrice realisee d'apres le procede

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000322

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20010426

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 59802921

Country of ref document: DE

Date of ref document: 20020314

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020410

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080829

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080729

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080729

Year of fee payment: 11

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090724

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100202