EP1006264B1 - Kühlbarer Mantel für eine Turbomaschine - Google Patents

Kühlbarer Mantel für eine Turbomaschine Download PDF

Info

Publication number
EP1006264B1
EP1006264B1 EP99811095A EP99811095A EP1006264B1 EP 1006264 B1 EP1006264 B1 EP 1006264B1 EP 99811095 A EP99811095 A EP 99811095A EP 99811095 A EP99811095 A EP 99811095A EP 1006264 B1 EP1006264 B1 EP 1006264B1
Authority
EP
European Patent Office
Prior art keywords
segments
guide
casing
casing according
guide segments
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99811095A
Other languages
English (en)
French (fr)
Other versions
EP1006264A3 (de
EP1006264A2 (de
Inventor
Christoph Pfeiffer
Ulrich Wellenkamp
Christoph Nagler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of EP1006264A2 publication Critical patent/EP1006264A2/de
Publication of EP1006264A3 publication Critical patent/EP1006264A3/de
Application granted granted Critical
Publication of EP1006264B1 publication Critical patent/EP1006264B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/14Adjusting or regulating tip-clearance, i.e. distance between rotor-blade tips and stator casing
    • F01D11/20Actively adjusting tip-clearance
    • F01D11/24Actively adjusting tip-clearance by selectively cooling-heating stator or rotor components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • F01D25/246Fastening of diaphragms or stator-rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/201Heat transfer, e.g. cooling by impingement of a fluid

Definitions

  • the invention relates to a coolable jacket of a gas turbine or the like according to the preamble of claim 1.
  • the mantle is formed by several arcuate shell segments formed, which in the circumferential direction adjoining a shroud form, which surrounds a rotor of a high-pressure turbine stage.
  • an annular jacket cooling chamber provided, extending in the radial direction between the shroud segments and arcuate guide segments extends.
  • the leading segments are off Sheet sections formed, which provided with a plurality of through holes are.
  • an air guide chamber is present, extending in the radial direction between the guide segments and a housing-side carrier or carrier segment extends.
  • the carrier further comprises an air supply passage, the opens into the air duct chamber.
  • Cooling air is fed into the air supply duct to cool the jacket. From there it passes through the through-holes, using high-speed air jets form, which is essentially perpendicular to the Impact rear side of the shell segments. After the impact, they are redirected and there is a cross flow in the jacket cooling chamber.
  • the invention seeks to avoid the disadvantages described. She is the one
  • the object of the invention is to specify a coolable jacket of the type mentioned in the introduction, the constructively simple constructed without serious loss of cooling efficiency is, whereby both the manufacturing and the repair and Reduce maintenance costs.
  • the mechanical stresses reduced in the described transient processes and thus an increased life can be achieved.
  • this is achieved by providing a coolable jacket according to the preamble of claim 1, the guide segments loose and with radial Game are stored.
  • This type of storage are relative movements between the carrier or carrier segment and the sheath segments possible.
  • the radial clearance is such that a largely unimpeded relative movement Also for the worst transient operating state is possible. This occurs during the run-up phase, in which the guide segments acted upon with cooling air which has a comparatively high temperature, by contrast the carrier is still comparatively cold.
  • a particularly simple structural design can then be realized if the guide segments are guided loosely between the carrier and spacers, the spacers projecting in the radial direction at the back of the Sheath segments are attached.
  • the impinging on the guide segments cooling air flow pushes it against the spacers, creating a fixed distance maintained between the leading segments and the back of the shell segments becomes.
  • the jacket cooling chamber is fixed in the radial direction, the radial extent of which corresponds to the height of the spacers.
  • the comparatively high pressure, under which the cooling air is supplied, ensures that the Guide segments during the period of exposure to cooling air safely against the spacers are kept pressed.
  • a particularly secure storage of the guide segments can then be achieved if they are provided with at least two radial webs, which with low axial play engage in corresponding guide grooves of the carrier.
  • the low clearance allows on the one hand the radial displacement movement of the guide segments, On the other hand minimizes the leakage due to lateral flow around the guide segments even with a comparatively high overpressure of the cooling air supply.
  • the configuration of the guide segments with a U-shaped Cross-sectional profile that is particularly easy to manufacture.
  • a non-cutting Forming process can each be formed laterally thighs, as in Circumferentially passing webs the exact guidance of the respective guide segment to ensure.
  • the guide segments are arranged overlapping in the circumferential direction. This creates a continuous, uninterrupted separation surface in the circumferential direction between the jacket cooling chamber and the air supply duct, so that Leakage losses at the crossing points of two adjacent arranged Lead segments are further minimized.
  • an increased number of through holes may be provided to be in this area also the formation of cooling air jets in to provide sufficient quantities. This takes the effect into account carried that by the loose storage of the individual Leitsegmente the relative allocation can vary in the circumferential direction, associated with the risk that im Overlap area too few through holes of two overlapping guide segments be brought to cover.
  • each shell segment and carrier In the contact area between each shell segment and carrier are in the circumferential direction extending flange portions provided so that shell segment and Carrier by means of retaining clips, which each adjoining flange sections embrace, are detachably connected to each other.
  • the retaining clips On the one hand press the shell segments and carrier firmly together, so that Leakage losses due to exiting cooling air between the two components largely is prevented.
  • the retaining clips allow a simple Loosen and restore the connection so that not only the assembly of the Mantels, but especially the repair by replacing individual Elements is greatly simplified.
  • flange sections ensure a virtually complete seal in the contact area between shell segment and carrier. This can be the Keep cooling demand at a low level.
  • Fig. 1 It is a section of the first high-pressure turbine stage a gas turbine, consisting of an impeller 110 and a stator 120 shown.
  • the impeller 110 is in the radial direction of a shroud surrounded, consisting of several, lined up in the circumferential direction shell segments 10 is constructed.
  • Each shell segment 10 is associated with a carrier segment 20, which in not shown in detail on a housing 100 is fixed.
  • the carrier segment 20 is in a substantially radial direction from an air supply passage 26 passes through the cooling air from a non-illustrated Cooling air supply is supplied.
  • a cooling air for example, a partial air flow used from one of the upstream compressor stages.
  • the air supply duct 26 opens into a circumferentially continuous recess 24, which is part of an air guide chamber 25.
  • the air guiding chamber 25 becomes radial bounded on the inside by a guide segment 30.
  • the guide segment 30 has a U-shaped basic shape with two webs 32, which designed in corresponding Guide grooves 22 of the carrier segment 20 engage.
  • the guide segment 30 is supported on two formed as ribs Spacers 12 from extending in the circumferential direction and in radial Direction protruding at the back of the shell segment 10 are attached.
  • a jacket cooling chamber 15th arises in the radial direction between the shell segment 10 and the Guide segment 30, a jacket cooling chamber 15th
  • the guide segments 30 are of a plurality provided by passage openings 34, which has a fluid connection between represent the air guide chamber 25 and the jacket cooling chamber 15 and the Training of cooling air jets serve.
  • the carrier segment 20 and the shell segment 10 have flange portions 28 or 18, which are covered by retaining clips 80 and thus the Carrier segment 20 and the shell segment 10 connect together.
  • the retaining clips 80 have an approximately U-shaped cross-sectional profile with two axial webs 89, in the corresponding axial grooves 29, 19 of the support segment 20th or the shell segment 10 engage. This creates an axial aligned transition from the carrier segment 20 to the shell segment 10th
  • Sealing elements 90 are in corner regions between the retaining clips 80 on the one hand and the flange portions 28 of the support segment 20 and the Flange portions 18 of the shroud segment 10 on the other hand used to a largely pressure-tight closure between the air-conducting areas, in particular the jacket cooling chamber 15 and the air guide chamber 25 and to ensure the environment.
  • the guide segments 30 are for forming in the circumferential direction continuous air-conducting channels arranged overlapping. As can be seen from FIG. 2, two abutting guide segments 30 are arranged in each case an overlap area 38 results. For this purpose, the leading segments Each formed at one end so that they in the adjacent Guide segment 30 can be inserted. The outer contour gives way to this slightly inward back, so that in the transition region 38 a kind Leadership results.
  • the peculiarity of the present design consists in the fact that the guide segments 30 are loosely supported with some radial play and thus a relative movement between the carrier segment 20 and the guide segment 30 allows becomes.
  • This relative movement allows in particular the tension-free compensation different thermal expansion during transient operating conditions, such as during startup of the gas turbine, in which the components have different temperatures.
  • the carrier segment 20 still cold (for example ambient temperature)
  • the guide segment 30 already by cooling air higher temperature from one of the compressor stages is heated strongly.
  • cooling air acts on the guide segment 30 and pushes this radially inwardly directed against the ribs 12 of the Shroud segment 10.
  • Continuous cooling air supply creates a pressure difference maintained between the air guide chamber 25 and the jacket cooling chamber 15, so that the guide segment 30 is securely fixed during operation.
  • the maintenance of the pressure difference is necessary to the aimed to realize impact cooling by cooling air jets, which by the Through openings 34 are generated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

Technisches Gebiet
Die Erfindung betrifft einen kühlbaren Mantel einer Gasturbine oder dergleichen gemäß dem Oberbegriff des Anspruchs 1.
Stand der Technik
Aus der US 4 565 492 A1 und aus der EP 0 516 322 B1, von der die Erfindung ausgeht, ist ein kühlbarer Mantel für eine Gasturbine bekannt. Der Mantel wird durch mehrere bogenförmige Mantelsegmente gebildet, die in Umfangsrichtung aneinandergrenzend einen Mantelring bilden, der ein Laufrad einer Hochdruckturbinenstufe umgibt. Zur Kühlung der dem Laufrad abgewandten Seite der Mantelsegmente ist eine ringförmige Mantelkühlkammer vorgesehen, die sich in radialer Richtung zwischen den Mantelsegmenten und bogenförmigen Leitsegmenten erstreckt. Die Leitsegmente sind aus Blechabschnitten geformt, die mit einer Vielzahl von Durchgangsöffnungen versehen sind. Ferner ist eine Luftführungskammer vorhanden, die sich in radialer Richtung zwischen den Leitsegmenten und einem gehäuseseitigen Träger bzw. Trägersegment erstreckt. Der Träger weist ferner einen Luftzuführungskanal auf, der in die Luftführungskammer mündet.
Zur Kühlung des Mantels wird Kühlluft in den Luftzuführungskanal eingespeist. Von dort tritt sie durch die Durchgangsöffnungen hindurch, wobei sich Hochgeschwindigkeits-Luftstrahlen ausbilden, die im Wesentlichen senkrecht auf die Rückseite der Mantelsegmente aufprallen. Nach dem Aufprall werden sie umgelenkt und es stellt sich eine Querströmung in der Mantelkühlkammer ein.
Die mit dieser Einrichtung erzielbare hohe Kühlwirkung beruht insbesondere auf der Kombination von Prall- und Konvektionskühlung. Um den besonders günstigen Wärmeübergang der sich einstellenden Prallkühlung optimal zu nutzen, kommt es im besonderen Maße darauf an, eine möglichst hohe Geschwindigkeit der durch die Durchgangsöffnungen austretenden Kühlluftstrahlen zu realisieren. Grundvoraussetzung hierfür ist die Einstellung einer möglichst hohen Druckdifferenz zwischen der Luftführungskammer und der Mantelkühlkammer.
Problematisch ist in diesem Zusammenhang der Leckverlust, der sich durch Seitenumströmungen der Leitsegmente ergibt. Zur Vermeidung solcher Leckagen sind deshalb die einzelnen Leitsegmente mit dem Träger vollständig und umlaufend verlötet. Der hierfür erforderliche Aufwand ist enorm und führt deshalb zu hohen Herstellkosten. Darüberhinaus ist diese Konzeption auch deshalb problematisch, weil derartige Mantelsegmente speziell bei modernen Gasturbinen mit extrem hohen Turbineneintrittstemperaturen stark beschädigungsgefährdet sind. Im Falle eines notwendigen Austausches oder einer Reparatur der Leitsegmente fallen überproportional hohe Kosten an, die unter anderem auf die damit verbundenen Lötarbeiten zurückzuführen sind.
Auch ist diese Art der Anbindung der Leitsegmente an den Träger bei instationären Vorgängen, wie beispielsweise beim Hochfahren der Gasturbine oder bei Lastwechseln, problematisch, da bei diesen Betriebszuständen hohe Temparaturgradienten innerhalb der Bauteile und Baugruppen auftreten und zu hohen mechanischen Spannungen führen können. Besonders gefährdet ist hierbei die Lötverbindung zwischen den Leitsegmenten und dem Träger.
Darstellung der Erfindung
Die Erfindung versucht, die beschriebenen Nachteile zu vermeiden. Ihr liegt die Aufgabe zugrunde, einen kühlbaren Mantel der eingangs genannten Art anzugeben, der ohne gravierende Einbuße an Kühleffektivität konstruktiv einfach aufgebaut ist, wodurch sich sowohl die Herstellungs- als auch die Reparatur- und Wartungskosten reduzieren lassen. Darüber hinaus sollen die mechanischen Belastungen bei den beschriebenen instationären Vorgängen verringert und somit eine erhöhte Lebensdauer erzielt werden.
Erfindungsgemäß wird dies dadurch erreicht, dass bei einem kühlbaren Mantel gemäß dem Oberbegriff des Anspruchs 1 die Leitsegmente lose und mit radialem Spiel gelagert sind. Durch diese Art der Lagerung sind Relativbewegungen zwischen dem Träger bzw. Trägersegment und den Mantelsegmenten möglich. Das radiale Spiel ist so bemessen, dass eine weitgehend ungehinderte Relativbewegung auch für den ungünstigsten instationären Betriebszustand möglich ist. Dieser tritt während der Hochlaufphase auf, bei der die Leitsegmente mit Kühlluft beaufschlagt werden, die eine vergleichsweise hohe Temperatur besitzt, wodurch hingegen der Träger noch vergleichsweise kalt ist.
Ein besonders einfacher konstruktiver Aufbau lässt sich dann realisieren, wenn die Leitsegmente lose zwischen dem Träger und Abstandshaltern geführt sind, wobei die Abstandshalter in radialer Richtung abstehend an der Rückseite der Mantelsegmente angebracht sind. Der auf die Leitsegmente auftreffende Kühlluftstrom drückt diese gegen die Abstandshalter, wodurch ein fest vorgegebener Abstand zwischen den Leitsegmenten und der Rückseite der Mantelsegmente eingehalten wird. Damit ist in radialer Richtung die Mantelkühlkammer festgelegt, deren radiale Erstreckung der Höhe der Abstandshalter entspricht. Der vergleichsweise hohe Druck, unter dem die Kühlluft zugeführt wird, sorgt dafür, dass die Leitsegmente während der Dauer der Beaufschlagung mit Kühlluft sicher gegen die Abstandshalter gedrückt gehalten sind.
Als Abstandshalter haben sich besonders Rippen bewährt, die eine durchgehende Unterstützung der Leitsegmente längs einer durchgehenden Linie erlauben. Ebenso eignen sich punktuelle Stützelemente, wie beispielsweise Pins oder Erhebungen in zylindrischer beziehungsweise kegeliger Ausgestaltung, deren Anordnung prinzipiell beliebig ist und dadurch eine noch bessere Vergleichmäßigung der Kühlwirkung zulassen.
Eine besonders sichere Lagerung der Leitsegmente lässt sich dann erreichen, wenn diese mit zumindest zwei radialen Stegen versehen sind, die mit geringem axialem Spiel in korrespondierende Führungsnuten des Trägers eingreifen. Das geringe Spiel erlaubt einerseits die radiale Verschiebebewegung der Leitsegmente, minimiert andererseits die Leckverluste infolge seitlichen Umströmens der Leitsegmente auch bei vergleichsweise hohem Überdruck der Kühlluftzufuhr.
Besonders günstig ist die Ausgestaltung der Leitsegmente mit einem U-förmigen Querschnittsprofil, das sich besonders einfach herstellen lässt. Durch einen spanlosen Umformvorgang können jeweils seitlich Schenkel gebildet werden, die als in Umfangsrichtung durchlaufende Stege die exakte Führung des jeweiligen Leitsegmentes sicherstellen.
Bevorzugt sind die Leitsegmente in Umfangsrichtung überlappend angeordnet. Damit entsteht in Umfangsrichtung eine durchgängige, nicht unterbrochene Trennfläche zwischen der Mantelkühlkammer und dem Luftzuführungskanal, so dass Leckverluste an den Übergangsstellen von jeweils zwei benachbart angeordneten Leitsegmenten weiter minimiert werden.
Im Überlappungsbereich kann eine erhöhte Zahl von Durchgangsbohrungen vorgesehen sein, um auch in diesem Bereich die Ausbildung von Kühlluftstrahlen in ausreichender Menge zur Verfügung zu stellen. Damit wird dem Effekt Rechnung getragen, dass durch das lose Lagern der einzelnen Leitsegmente die relative Zuordnung in Umfangsrichtung variieren kann, verbunden mit der Gefahr, dass im Überlappungsbereich zu wenig Durchgangsbohrungen zweier überlappender Leitsegmente zur Deckung gebracht werden.
Selbstverständlich ist es auch möglich, anstelle einer erhöhten Zahl von Durchgangsbohrungen im Überlappungsbereich bei jeweils einem der beiden Leitsegmente Durchgangsöffnungen mit vergrößertem Querschnitt in Umfangsrichtung vorzusehen, so dass unabhängig von der augenblicklich eingenommenen Rela tivlage zweier benachbarter Leitsegmente die Durchgangsbohrungen freibleiben.
Im Kontaktbereich jeweils zwischen Mantelsegment und Träger sind in Umfangsrichtung verlaufende Flanschabschnitte vorgesehen, so dass Mantelsegment und Träger mittels Halteklammern, die die jeweils aneinandergrenzenden Flanschabschnitte umgreifen, miteinander lösbar verbunden sind. Die Halteklammern pressen einerseits die Mantelsegmente und Träger fest aneinander, so dass Leckverluste durch zwischen den beiden Bauteilen austretende Kühlluft weitgehend unterbunden wird. Andererseits gestatten die Halteklammern ein einfaches Lösen und Wiederherstellen der Verbindung, so dass nicht nur die Montage des Mantels, sondern im besonderen Maße auch die Reparatur durch Austausch einzelner Elemente stark vereinfacht ist.
Zusätzliche Dichtelemente zwischen den Halteklammern einerseits und den Flanschabschnitten andererseits gewährleisten eine praktisch vollständige Abdichtung im Kontaktbereich zwischen Mantelsegment und Träger. Damit lässt sich der Kühlluftbedarf auf niedrigem Niveau halten.
Kurze Beschreibung der Zeichnung
In der Zeichnung ist ein Ausführungsbeispiel der Erfindung anhand eines kühlbaren Mantels des ersten Laufrades einer Hochdruck-Turbinenstufe dargestellt.
Es zeigen:
Fig. 1
Kühlbarer Mantel im Axialschnitt (Teilansicht);
Fig. 2
Überlappungsbereich zweier aneinandergrenzender Leitsegmente in perspektivischer Ansicht.
Es sind nur die für das Verständnis der Erfindung wesentlichen Elemente gezeigt.
Weg zur Ausführung der Erfindung
Das der Erfindung zugrundeliegende Konzept eines kühlbaren Mantels ergibt sich insbesondere aus Fig. 1. Es ist ein Ausschnitt aus der ersten Hochdruck-Turbinenstufe einer Gasturbine, bestehend aus einem Laufrad 110 und einem Leitrad 120 dargestellt. Das Laufrad 110 ist in radialer Richtung von einem Mantelring umgeben, der aus mehreren, in Umfangsrichtung aneinandergereihten Mantelsegmenten 10 aufgebaut ist.
Jedes Mantelsegment 10 ist einem Trägersegment 20 zugeordnet, welches in nicht näher dargestellter Art und Weise an einem Gehäuse 100 fixiert ist. Das Trägersegment 20 wird in im Wesentlichen radialer Richtung von einem Luftzuführungskanal 26 durchsetzt, durch den Kühlluft aus einer nicht näher dargestellten Kühlluftversorgung zugeführt wird. Als Kühlluft wird beispielsweise ein Teilluftstrom aus einer der vorangeschalteten Verdichterstufen verwendet. Der Luftzuführungskanal 26 mündet in eine in Umfangsrichtung durchgehende Vertiefung 24, die Teil einer Luftführungskammer 25 ist. Die Luftführungskammer 25 wird radial innenliegend von einem Leitsegment 30 begrenzt. Das Leitsegment 30 besitzt eine U-förmige Grundform mit zwei Stegen 32, die in korrespondierend gestaltete Führungsnuten 22 des Trägersegmentes 20 eingreifen.
Gegenüberliegend stützt sich das Leitsegment 30 an zwei als Rippen ausgebildeten Abstandshaltern 12 ab, die in Umfangsrichtung verlaufend und in radialer Richtung abstehend an der Rückseite des Mantelsegmentes 10 angebracht sind. Somit entsteht in radialer Richtung zwischen dem Mantelsegment 10 und dem Leitsegment 30 eine Mantelkühlkammer 15.
Wie sich insbesondere aus Fig. 2 ergibt, sind die Leitsegmente 30 mit einer Vielzahl von Durchgangsöffnungen 34 versehen, die eine Fluidverbindung zwischen der Luftführungskammer 25 und der Mantelkühlkammer 15 darstellen und der Ausbildung von Kühlluftstrahlen dienen.
Das Trägersegment 20 und das Mantelsegment 10 weisen Flanschabschnitte 28 beziehungsweise 18 auf, die von Halteklammern 80 umfaßt werden und damit das Trägersegment 20 und das Mantelsegment 10 miteinander verbinden. Die Halteklammern 80 besitzen ein in etwa U-förmiges Querschnittsprofil mit zwei Axialstegen 89, die in korrespondierende Axialnuten 29, 19 des Trägersegments 20 beziehungsweise des Mantelsegmentes 10 eingreifen. Hierdurch entsteht ein axial fluchtender Übergang vom Trägersegment 20 zum Mantelsegment 10.
Dichtungselemente 90 sind in Eckbereichen zwischen den Halteklammern 80 einerseits und den Flanschabschnitten 28 des Trägersegments 20 und den Flanschabschnitten 18 des Mantelsegments 10 andererseits eingesetzt, um einen weitgehend druckdichten Abschluss zwischen den luftführenden Bereichen, insbesondere der Mantelkühlkammer 15 beziehungsweise der Luftführungskammer 25 und der Umgebung sicherzustellen.
In Umfangsrichtung sind die Leitsegmente 30 zur Bildung von in Umfangsrichtung durchgehenden luftführenden Kanälen überlappend angeordnet. Wie sich aus Fig. 2 ergibt, sind jeweils zwei aneinanderstoßende Leitsegmente 30 so angeordnet, dass sich ein Überlappungsbereich 38 ergibt. Zu diesem Zweck sind die Leitsegmente 30 jeweils an einem Ende so geformt, dass sie in das benachbarte Leitsegment 30 eingeschoben werden können. Hierzu weicht die Außenkontur geringfügig nach innen zurück, so dass sich im Übergangsbereich 38 eine Art Führung ergibt.
Die Besonderheit der vorliegenden Konstruktion besteht nun darin, dass die Leitsegmente 30 lose mit etwas radialem Spiel gelagert sind und somit eine Relativbewegung zwischen dem Trägersegment 20 und dem Leitsegment 30 ermöglicht wird. Diese Relativbewegung gestattet insbesondere den spannungsfreien Ausgleich unterschiedlicher thermischer Expansion bei instationärem Betriebszuständen, wie beispielsweise beim Hochfahren der Gasturbine, bei denen die Bauteile unterschiedliche Temperaturen aufweisen. Im Falle einer Startphase ist das Trägersegment 20 noch kalt (beispielsweise Umgebungstemperatur), wohingegen das Leitsegment 30 bereits durch Kühlluft höherer Temperatur aus einer der Verdichterstufen stark erwärmt wird.
Die über den Luftführungskanal 26 zugeführte Kühlluft beaufschlagt das Leitsegment 30 und drückt dieses radial einwärts gerichtet gegen die Rippen 12 des Mantelsegmentes 10. Durch permanente Kühlluftzufuhr wird eine Druckdifferenz zwischen der Luftführungskammer 25 und der Mantelkühlkammer 15 aufrechterhalten, so dass das Leitsegment 30 während des Betriebes sicher fixiert ist. Darüber hinaus ist die Aufrechterhaltung der Druckdifferenz erforderlich, um die angestrebte Prallkühlung durch Kühlluftstrahlen zu realisieren, welche durch die Durchgangsöffnungen 34 erzeugt werden.
Zur Vermeidung von Leckverlusten infolge Seitenumströmung der Leitsegmente 30 im Bereich der Stege 32 ist es erforderlich, das axiale Spiel der Stege 32 in den korrespondierenden Führungsnuten 22 möglichst eng zu bemessen.
Darüber hinaus wird deutlich, dass infolge der losen Lagerung der einzelnen Leitsegmente 30 auch eine Relativbewegung in Umfangsrichtung zwischen den einzelnen Leitsegmenten 30 auftreten kann. Der Überlappungsbereich 38 muss deshalb so dimensioniert sein, dass gewisse Relativbewegungen ermöglicht werden. Zweckmäßigerweise sind deshalb im Überlappungsbereich 38 zusätzliche Durchgangsöffnungen vorgesehen (in Fig. 2 nicht dargestellt), um die Ausbildung von Kühlluftstrahlen auch in diesem Bereich sicherzustellen.
Bezugszeichenliste
10
Mantelsegment
12
Abstandshalter, Rippe
15
Mantelkühlkammer
18
Flanschabschnitt
19
Axialnut
20
Trägersegment
22
Führungsnut
24
Vertiefung
25
Luftführungskammer
26
Luftzuführungskanal
28
Flanschabschnitt
29
Axialnut
30
Leitsegment
32
Steg
34
Durchgangsöffnung
38
Überlappungsbereich
80
Halteklammer
89
Axialsteg
90
Dichtungselement
100
Gehäuse
110
Laufrad
120
Leitrad

Claims (10)

  1. Kühlbarer Mantel einer Gasturbine mit
    mehreren bogenförmigen Mantelsegmenten (10), die in Umfangsrichtung aneinandergrenzend zu einem im Wesentlichen geschlossenen, ein Laufrad (110), insbesondere einer Hochdruckturbine, umgebenden Mantelring angeordnet sind,
    wenigstens einer ringförmigen Mantelkühlkammer (15), die in radialer Richtung zwischen den Mantelsegmenten (10) und bogenförmigen, mit einer Vielzahl von Durchgangsöffnungen (34) versehenen Leitsegmenten (30) gebildet ist,
    wenigstens einer Luftführungskammer (25), die in radialer Richtung zwischen den Leitsegmenten (30) und wenigstens einem Trägersegment (20) gebildet ist, sowie
    wenigstens einem, an dem Trägersegment (20) angebrachten Luftzuführungskanal (26), der in die Luftführungskammen (25) mündet,
    dadurch gekennzeichnet, dass die Leitsegmente (30) lose mit radialem Spiel gelagert sind.
  2. Mantel nach Anspruch 1,
    dadurch gekennzeichnet, dass die Leitsegmente (30) lose zwischen dem Trägersegment (20) und Abstandshaltem (12) geführt sind, welche in radialer Richtung abstehend an der Rückseite der Mantelsegmente (10) angebracht sind.
  3. Mantel nach Anspruch 2,
    gekennzeichnet durch Abstandshalter (12) in Form von Stegen, Rippen, Pins oder Auflageerhebungen.
  4. Mantel nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass die Leitsegmente (30) radiale Stege (32) aufweisen, die mit geringem axialem Spiel in Führungsnuten (22) des Trägersegments (20) geführt sind.
  5. Mantel nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass die Leitsegmente (30) ein U-förmiges Querschnittsprofil aufweisen.
  6. Mantel nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass die Leitsegmente (30) in Umfangsrichtung überlappend angeordnet sind.
  7. Mantel nach Anspruch 6,
    dadurch gekennzeichnet, dass die Leitsegmente (30) im Überlappungsbereich (38) eine erhöhte Anzahl von Durchgangsöffnungen (34) aufweisen.
  8. Mantel nach Anspruch 6,
    dadurch gekennzeichnet, dass die Leitsegmente (30) im Überlappungsbereich (38) Durchgangsöffnungen mit vergrößerter Fläche aufweisen.
  9. Mantel nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass die Mantelsegmente (10) und die Trägersegmente (20) in Axialrichtung weisende Flanschabschnitte (18; 28) aufweisen und mittels die Flanschabschnitte (18; 28) umgreifender Halteklammern (80) miteinander lösbar verbunden sind.
  10. Mantel nach Anspruch 9,
    gekennzeichnet durch Dichtungselemente (90) zwischen den Halteklammern (80) einerseits und den Flanschabschnitten (18; 28) andererseits.
EP99811095A 1998-11-30 1999-11-26 Kühlbarer Mantel für eine Turbomaschine Expired - Lifetime EP1006264B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19855130A DE19855130A1 (de) 1998-11-30 1998-11-30 Kühlbarer Mantel einer Gasturbine oder dergleichen
DE19855130 1998-11-30
US09/450,728 US6322320B1 (en) 1998-11-30 1999-11-30 Coolable casing of a gas turbine or the like

Publications (3)

Publication Number Publication Date
EP1006264A2 EP1006264A2 (de) 2000-06-07
EP1006264A3 EP1006264A3 (de) 2003-10-22
EP1006264B1 true EP1006264B1 (de) 2005-01-05

Family

ID=26050451

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99811095A Expired - Lifetime EP1006264B1 (de) 1998-11-30 1999-11-26 Kühlbarer Mantel für eine Turbomaschine

Country Status (4)

Country Link
US (1) US6322320B1 (de)
EP (1) EP1006264B1 (de)
JP (1) JP4489882B2 (de)
DE (1) DE19855130A1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1329594A1 (de) * 2002-01-17 2003-07-23 Siemens Aktiengesellschaft Regelung des Blattspitzenspalts einer Gasturbine
CN101952574B (zh) * 2008-03-31 2015-05-20 三菱重工业株式会社 用于结构构件的隔热结构和涡形管结构
US8079804B2 (en) * 2008-09-18 2011-12-20 Siemens Energy, Inc. Cooling structure for outer surface of a gas turbine case
US8092161B2 (en) 2008-09-24 2012-01-10 Siemens Energy, Inc. Thermal shield at casing joint
US8128344B2 (en) * 2008-11-05 2012-03-06 General Electric Company Methods and apparatus involving shroud cooling
US9255524B2 (en) * 2012-12-20 2016-02-09 United Technologies Corporation Variable outer air seal fluid control
US9494081B2 (en) 2013-05-09 2016-11-15 Siemens Aktiengesellschaft Turbine engine shutdown temperature control system with an elongated ejector
DE102013216392A1 (de) * 2013-08-19 2015-02-19 MTU Aero Engines AG Vorrichtung und Verfahren zur Regelung der Temperatur eines Bauteils einer Strömungsmaschine
US10975721B2 (en) 2016-01-12 2021-04-13 Pratt & Whitney Canada Corp. Cooled containment case using internal plenum
FR3082872B1 (fr) * 2018-06-25 2021-06-04 Safran Aircraft Engines Dispositif de refroidissement d'un carter de turbomachine

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4013376A (en) * 1975-06-02 1977-03-22 United Technologies Corporation Coolable blade tip shroud
GB2047354B (en) * 1979-04-26 1983-03-30 Rolls Royce Gas turbine engines
US4337016A (en) * 1979-12-13 1982-06-29 United Technologies Corporation Dual wall seal means
US4551064A (en) * 1982-03-05 1985-11-05 Rolls-Royce Limited Turbine shroud and turbine shroud assembly
FR2548733B1 (fr) * 1983-07-07 1987-07-10 Snecma Dispositif d'etancheite d'aubages mobiles de turbomachine
US4642024A (en) * 1984-12-05 1987-02-10 United Technologies Corporation Coolable stator assembly for a rotary machine
US4921401A (en) * 1989-02-23 1990-05-01 United Technologies Corporation Casting for a rotary machine
US5116199A (en) * 1990-12-20 1992-05-26 General Electric Company Blade tip clearance control apparatus using shroud segment annular support ring thermal expansion
US5169287A (en) 1991-05-20 1992-12-08 General Electric Company Shroud cooling assembly for gas turbine engine
US5167488A (en) * 1991-07-03 1992-12-01 General Electric Company Clearance control assembly having a thermally-controlled one-piece cylindrical housing for radially positioning shroud segments
DE19619438B4 (de) * 1996-05-14 2005-04-21 Alstom Wärmestausegment für eine Turbomaschine

Also Published As

Publication number Publication date
JP4489882B2 (ja) 2010-06-23
JP2000192802A (ja) 2000-07-11
EP1006264A3 (de) 2003-10-22
US6322320B1 (en) 2001-11-27
EP1006264A2 (de) 2000-06-07
DE19855130A1 (de) 2000-05-31

Similar Documents

Publication Publication Date Title
DE602004011859T2 (de) Vorrichtung für die Regelung von Spalten in einer Gasturbine
DE69911600T2 (de) Prall- und filmkühlung von gasturbinenbrennkammerwänden
EP1048822B1 (de) Hitzeschild für eine Gasturbine
EP1418319A1 (de) Gasturbine
EP1022437A1 (de) Bauteil zur Verwendung in einer thermischen Machine
EP1006264B1 (de) Kühlbarer Mantel für eine Turbomaschine
EP1389690A1 (de) Innenkühlbare Schraube
DE2439339A1 (de) Gasturbine
EP1904717B1 (de) HEIßGASFÜHRENDES GEHÄUSEELEMENT, WELLENSCHUTZMANTEL UND GASTURBINENANLAGE
DE102005013798A1 (de) Wärmestausegment zum Abdichten eines Strömungskanals einer Strömungsrotationsmaschine
EP0040267B1 (de) Gekühlter Leitschaufelträger
WO2006087267A1 (de) Dichtungselement zur verwendung in einer strömungsmaschine
EP1409926A1 (de) Prallkühlvorrichtung
EP1656497A1 (de) Diffusor zwischen verdichter und brennkammer einer gasturbine angeordnet
EP2242915B1 (de) Gasturbine mit verbesserter kühlarchitektur
DE4006498C2 (de) Vorrichtung zum Abdichten eines Raumes in einer Turbomaschine
EP2245374B1 (de) Thermische maschine
DE102005046731A1 (de) Hitzeschildanordnung
EP2206885A1 (de) Gasturbine
EP1215363B1 (de) Gekühlte Gasturbinenschaufel
EP1744014A1 (de) Befestigungseinrichtung der Turbinenleitschaufeln einer Gasturbinenanlage
DE112014006619T5 (de) Gasturbinenbrennkammer und mit selbiger versehene Gasturbine
EP2347100A1 (de) Gasturbine mit kühleinsatz
EP2728124A1 (de) Turbinenring und Strömungsmaschine
DE3424141A1 (de) Luftspeicher-gasturbine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM (SWITZERLAND) LTD

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIC1 Information provided on ipc code assigned before grant

Ipc: 7F 01D 25/24 B

Ipc: 7F 01D 25/12 B

Ipc: 7F 01D 11/08 B

Ipc: 7F 01D 11/24 A

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM TECHNOLOGY LTD

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

17P Request for examination filed

Effective date: 20040413

AKX Designation fees paid

Designated state(s): DE GB

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59911401

Country of ref document: DE

Date of ref document: 20050210

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050412

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20051006

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59911401

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 59911401

Country of ref document: DE

Owner name: ANSALDO ENERGIA IP UK LIMITED, GB

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 59911401

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59911401

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 59911401

Country of ref document: DE

Owner name: ANSALDO ENERGIA IP UK LIMITED, GB

Free format text: FORMER OWNER: GENERAL ELECTRIC TECHNOLOGY GMBH, BADEN, CH

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20170824 AND 20170830

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20171121

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20171123

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59911401

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20181126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181126