EP0956449B1 - Mikroejektionspumpe - Google Patents

Mikroejektionspumpe Download PDF

Info

Publication number
EP0956449B1
EP0956449B1 EP97951842A EP97951842A EP0956449B1 EP 0956449 B1 EP0956449 B1 EP 0956449B1 EP 97951842 A EP97951842 A EP 97951842A EP 97951842 A EP97951842 A EP 97951842A EP 0956449 B1 EP0956449 B1 EP 0956449B1
Authority
EP
European Patent Office
Prior art keywords
pump according
microejection
silicon chip
microejection pump
pumping chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP97951842A
Other languages
English (en)
French (fr)
Other versions
EP0956449A1 (de
Inventor
Steffen Howitz
Mario Bürger
Thomas Wegener
Thomas Gehring
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GeSiM Gesellschaft fur Silizium-Mikrosysteme mbH
Original Assignee
GeSiM Gesellschaft fur Silizium-Mikrosysteme mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7814406&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0956449(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by GeSiM Gesellschaft fur Silizium-Mikrosysteme mbH filed Critical GeSiM Gesellschaft fur Silizium-Mikrosysteme mbH
Publication of EP0956449A1 publication Critical patent/EP0956449A1/de
Application granted granted Critical
Publication of EP0956449B1 publication Critical patent/EP0956449B1/de
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/04Pumps having electric drive
    • F04B43/043Micropumps
    • F04B43/046Micropumps with piezoelectric drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/08Cooling; Heating; Preventing freezing

Definitions

  • the invention relates to a micro ejection pump for generation of microdroplets consisting of at least one in one Silicon chip-formed pump chamber, one above the pump chamber arranged and piezoelectrically actuable silicon membrane, wherein the pump chamber with at least one inlet channel and an exhaust port provided with an exhaust port is connected and in which a glass chip opposite the silicon membrane at least closes the pump chamber.
  • micro ejection pumps allow in connection with a suitable handling device, e.g. Manipulators that targeted delivery of these substances to the site of sample processing or a sample waste. With the help of a suitable positioning technology can take sampling and Sample storage location may be different.
  • This sample storage location can be a liquid surface, a Solid surface or a gas-filled reaction chamber his.
  • a micropump intended for the above applications is from the US 50 94 594 A become known.
  • This micropump consists of a pump unit with an associated pump chamber and a deformable chamber segment on which an electrically controllable Piezo element is arranged.
  • the liquid to be pumped the pump chamber via an inlet capillary (inlet channel) fed.
  • By actuating the piezo element alternately exerted on the deformable chamber segment Force causes a constant change in pressure in the pump chamber, see above that alternately loading them via the inlet capillary and expelling the liquid via one with the pumping chamber related outlet capillary.
  • the Inlet and the outlet capillary each piezoelectrically actuable Valves provided.
  • Micropump With such a micropump it is possible to use small amounts of liquid to apply, but a relatively limited Frequency range and thus also a limited one Funding rate is available. With the one described above Micropump can, for example, a delivery rate of reach about 500 picoliters. To ensure the necessary Functional reliability of this micropump, it is necessary that the liquids or suspensions are as low as possible Have viscosity.
  • a micropump can be seen from WO, A, 9419609, which a pump chamber with variable chamber volume and contains a liquid inlet and a liquid outlet.
  • a pump chamber with variable chamber volume and contains a liquid inlet and a liquid outlet.
  • a diffuser provided with a nozzle.
  • the diffuser here is the liquid inlet and the nozzle associated with the liquid outlet.
  • the invention has for its object a micro ejection pump to create the handling of liquids or Suspensions, or of liquefiable substances, in the volume range from a few picoliters to a few hundred Microliters, which has a high frequency stability and with which the generation of individually countable, directed, accelerated and impulsive defined their drop volume and reproducible microdrops is possible.
  • the pumping chamber becomes the frequency stability of the microejection pump significantly improved.
  • the anisotropy of the diffuser flow resistance supports drop formation in pump mode, i.e. there is a jet effect along the positive Pressure drop and in loading mode is the liquid afterflow into the pumping chamber, i.e. there is a diffuser effect along the positive pressure gradient.
  • Micro ejection pump for printing can by the Diffuser a higher printing speed can be achieved.
  • the outlet channel is also designed as a microcapillary, so that the sample delivery in the form of individually countable, directed, accelerated with impulses and in terms of their Drop volume of defined microdroplets is reproducible.
  • the volume of the drops and the delivery rate are through the electrical parameters (frequency, amplitude, pulse shape) the pump control adjustable.
  • the diffuser element Pump chamber is arranged immediately, or immediately extends to the pumping chamber, the diffuser element in a first variant of the invention a constant opening angle having.
  • the opening angle of the diffuser element should preferably be 3 - 5 °.
  • the diffuser element has a constantly changing opening angle.
  • the opening angle can increase continuously.
  • the pump chamber a floor plan with straight or curved boundary lines on, with the diffuser element in an entrance zone the pump chamber opens.
  • the microcapillary is between the pumping chamber and the discharge opening can be connected to further inlet channels. This makes it possible for the pumped through the pumping chamber Add liquid to other substances in a targeted manner.
  • the micro ejection pump preferably consists of a composite from a micromechanically structured silicon chip and a glass chip.
  • the micro ejection pump i.e. the combination of the silicon chip and the Glass chip, in the direction of the discharge opening of the outlet duct in tapered x and / or y direction. This ensures that when immersing the micro ejection pump in a liquid has very little surface contamination takes place, which then takes place in one cleaning step can be easily removed accordingly. So that can can be prevented in a simple manner that substances unintentionally and can be carried away unnoticed.
  • the invention Micro ejection pump is therefore also for manipulation smallest amounts of liquid particularly suitable.
  • the taper in the x direction can be advantageous during the sawing of the silicon chip are formed, whereas the taper in the y direction during the anisotropic Structure etching can be formed.
  • the silicon chip heated directly and temperature-controlled i.e. it will the ohmic resistance of the silicon is exploited by the Heating effect due to Joule heat generated in the silicon material becomes.
  • the heater is preferably integrated in the silicon membrane, or acts directly on them, the electrical contacts arranged laterally opposite on the silicon chip are.
  • liquids can e.g. containing glucose or be oily substances that are then exploited the advantages of the diffuser element are promoted can.
  • Metals e.g. Tin or tin-lead alloys, or other substances that are otherwise due to their viscosity in the Micro ejection pump are not eligible, easily promoted become. These substances can then be thermally activated promoted and also printed.
  • the electrical contacts and the temperature sensor should be off a chemically neutral material, with photolithography structured platinum or tantalum layers for this are particularly suitable.
  • a particularly advantageous continuation of the invention is through a parallel arrangement of several pumping chambers an associated inlet diffuser and outlet channels.
  • the micro ejection pump 1 shown in FIGS. 1 to 3 consists of a composite of a silicon chip 2 and a Glass chip 3 connected by anodic bonding are.
  • the silicon chip 2 is structured on two sides, wherein a flat one on the side opposite the glass chip 3
  • Pump chamber 4 is formed by a silicon membrane 5 is closed to the outside (Fig. 2).
  • a piezoelectric plate actuator 6 On this silicon membrane 5 is a piezoelectric plate actuator 6, for example attached by means of the known chip bonding technology. This plate actuator is used to deflect the Silicon membrane 5, so that the volume of the pump chamber 4 alternately is enlarged or reduced, which increases the pumping effect is achieved.
  • the control of the piezoelectric plate actuator 6 can by an electronic control, not shown predetermined frequency and amplitude. It did proved to be useful for the switch-on pulse high slope, i.e. a sudden switch-on pulse pretend.
  • the subsequent switch-off pulse can be a damped one have a flat course, e.g. corresponding to an e-function.
  • the pump behavior of the invention is thus Micro ejection pump further improved.
  • the piezoelectric plate actuator 6 with a bias voltage before the switch-on pulse apply.
  • the bias should be the polarity of the Switching impulse be opposite.
  • the pump chamber 4 with an inlet channel 7 and provided an outlet channel 8, the outlet channel 8 with an ejection opening 9 for ejecting individual microdroplets 10 is provided.
  • the pump chamber 4 essentially has one square or rectangular plan, with the an inlet channel 7 in connected to a fluid inlet 16 (FIGS. 8, 9) an entrance zone of the pump chamber 4 opens.
  • the outlet duct 8 is arranged on the opposite side of the pump chamber.
  • the pump chamber 4 can also have a floor plan have curved boundary lines and, for example, round (Fig. 4), or also oval (Fig. 9).
  • the inlet channel 7 is designed as a diffuser element 11, i.e. the inlet channel 7, or part of the same widens in Direction to the pump chamber 4.
  • the diffuser element 11 can be designed such that the opening angle over the entire length of the diffuser element 11 is constant. Of course it is also possible to use the diffuser element 11 in this way to design that the opening angle changes constantly. So the opening angle can be within predetermined limits also increase continuously (Fig. 9)
  • microcapillary Outlet channel 8 between the pump chamber 4 and the discharge opening 9 it is possible to use the microcapillary Outlet channel 8 between the pump chamber 4 and the discharge opening 9 to be connected to other inlet channels.
  • other substances are added, which is the possible uses the micro ejection pump has been expanded considerably.
  • the diffuser element 11 enables stable operation via a large frequency range, or the delivery rate over the excitation frequency for the plate actuator 6 is regulated be, with a particularly steep switch-on pulse and a flat switch-off pulse are particularly advantageous because the formation of gas bubbles in the pump chamber 4 also is prevented.
  • Micro ejection pump Another extension of the application possibilities for the Micro ejection pump enables heating to be integrated at least into the silicon membrane 5 of the silicon chip 2.
  • the micro ejection pump 1 can therefore not only be used for handling of liquids or suspensions with low viscosity are used, but also for such materials that with an increase in temperature low or low viscosity become. Another aspect of integrated heating is in it to see that this also results in a simple drying of the wetted Areas of the micro ejection pump 1 is made possible. For example can result in outer wetted areas of the micro ejection pump 1 can be dried quickly, causing a carryover of liquids can be safely prevented.
  • the integration of the heater can be done easily take place that the electrical resistance of the silicon chip 2nd is used directly for heating. These are for electrical Contacting electrical contacts 17, 18 provided which are laterally opposite on the silicon chip 2 extend (Fig. 8).
  • temperature sensor 19 with associated Control circuit 20 can thus also be highly viscous per se Liquids or suspensions, such as oils, fats or Liquids containing glucose by the micro ejection pump 1 be promoted. If the heating is designed accordingly this way, even fusible metals can be extracted, so that the micro ejection pump 1 also for printing Metals such as tin or lead-tin alloys or others Is suitable.
  • the area of application of the micro ejection pump 1 is basically is not restricted, all parts must be filled with liquids can come into contact, be chemically neutral. Out for this reason it is advisable to have the electrical contacts 17, 18 and the temperature sensor 19 from a photolithographic structured platinum or tantalum layer.
  • the composite from the silicon chip 2 and the glass chip 3 towards the discharge opening 9 of the Outlet channel 8 is tapered in the x and / or y direction, such as this is shown in principle in FIGS. 6 to 9. That can in that the taper 14 in the x direction during of sawing the silicon chip 2 is formed.
  • the Taper 15 in the y direction can be easily during the anisotropic structure etching of the semiconductor chip 2 form.
  • the taper 14; 15 also through a final grinding process are formed, wherein in this case also a taper of the glass chip 3 in the y direction can be manufactured.
  • the immersion area of the Micro ejection pump 1 with a hydrophobic surface treatment is another way to keep this contamination to a minimum to be able to hold.
  • This can be done by silanization or by coating e.g. with a layer that is a Teflon coating is similar.
  • This layer of carbon and fluorine can be made using the plasma polymerization process getting produced.
  • the internal channel and Chamber area of the micro ejection pump 1 not coated with becomes.
  • the advantages of the invention can be seen in the fact that Diffuser element 11 a significant improvement in frequency stability the micro ejection pump 1 is reached.
  • the anisotropy the flow resistance of the diffuser element 11 supports the formation of the microdrops 10 in the pump mode, i.e. there is a nozzle effect along the positive pressure gradient.
  • the liquid afterflow supported i.e. there is a diffuser effect along the positive pressure gradient.
  • the generation by the diffuser effect in loading mode of air bubbles in the pump chamber 4 especially at high ones Excitation frequencies of the plate actuator 6 effectively suppressed. So that the micro ejection pump 1 is large Frequency spectrum can be used and it can also be extremely high Delivery rates up to approx. 750 ⁇ l / min, with an excitation frequency up to approx. 6500 Hz.
  • the micro ejection pump 1 for any liquids, Suspensions also of higher viscosity and also meltable Metals and the like be used when these materials in a reasonable temperature range sufficiently low viscosity can be made. As already explained, a quick drying of wetted areas of the micro ejection pump 1 bring about.
  • the supply of the materials to be handled from a storage container to the pumping chamber 4 can be via conventional hose lines respectively.
  • the application of the design of the micro ejection pump according to the invention 1 with the diffuser element 11 is not on it limited that only one pump chamber 4 is present. It is easily possible to create micro ejection pumps, the one Parallel arrangement of pumping chambers 4 in connection with the Have diffuser elements 11 according to the invention (FIG. 5).
  • micro ejection pump according to the invention 1 can by the application of the known microtechnical Microforming take place and the connection of the Silicon chips 2 with the glass chip 3 using the anodic Bonding.
  • Silicon chip 2 In a first preparation process, consisting of the sub-steps thermal oxidation, photolithography and anisotropic Structural etching is first the two-sided structure Silicon chip 2 manufactured.
  • This silicon chip 2 receives the structures of a micro ejection pump 1 with the outlet channel 8, the pump chamber 4 with associated silicon membrane 5 and the inlet channel 7 with the diffuser element 11.
  • the structured in this way Silicon chip 2 is used after a multi-stage cleaning a glass chip 3, consisting of a Pyrex 7740 glass plate, through anodic bonding to a solid silicon-glass composite together.
  • the production of the parallel arrangement can done in the same manner as described above.
  • the thickness of the glass plate is, for example, 1 mm and the silicon membrane between 50 - 190 ⁇ m.
  • the thickness of the piezoelectric Plate actuators 6 should be in the range of 100 - 260 ⁇ m.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

Die Erfindung betrifft eine Mikroejektionspumpe zur Generation von Mikrotropfen, bestehend aus mindestens einer in einem Siliziumchip ausgebildeten Pumpkammer, einer über der Pumpkammer angeordneten und piezoelektrisch betätigbaren Siliziummembran, wobei die Pumpkammer mit wenigstens einem Zulaufkanal und einem mit einer Ausstoßöffnung versehenen Auslaßkanal verbunden ist und bei der ein Glaschip gegenüber der Siliziummembran zumindest die Pumpkammer verschließt.
Mit Hilfe derartiger Mikroejektionspumpen wird die Handhabung kleinster Flüssigkeitsmengen ermöglicht, die sowohl reine Stoffe oder Stoffgemische sein können, oder auch in Flüssigkeiten suspensierte Mikropartikel enthalten, die in der chemischen Analytik, der Medizintechnik, der Biotechnologie usw., einer gezielten Weiterverarbeitung zugeführt werden sollen.
Diese Mikroejektionspumpen erlauben im Zusammenhang mit einer geeigneten Handhabungsvorrichtung, z.B. Manipulatoren, die zielgerichtete Abgabe dieser Stoffe an den Ort einer Probenweiterverarbeitung bzw. eines Probenabfalls. Mit Hilfe einer entsprechenden Positioniertechnik können Probennahme- und Probenablageort unterschiedlich sein.
Dieser Probenablageort kann eine Flüssigkeitsoberfläche, eine Festkörperoberfläche oder auch eine gasgefüllte Reaktionskammer sein.
Eine für obige Einsatzfälle vorgesehene Mikropumpe ist aus der US 50 94 594 A bekannt geworden. Diese Mikropumpe besteht aus einer Pumpeinheit mit einer zugehörigen Pumpkammer und einem deformierbaren Kammersegment, auf dem ein elektrisch ansteuerbares Piezoelement angeordnet ist. Die zu fördernde Flüssigkeit wird der Pumpkammer über eine Einlaßkapillare (Zulaufkanal) zugeführt. Die durch die Betätigung des Piezoelementes auf das deformierbare Kammersegment wechselweise ausgeübte Kraft bewirkt eine stetige Druckänderung in der Pumpkammer, so daß abwechselnd ein Beladen derselben über die Einlaßkapillare und ein Ausstoßen der Flüssigkeit über eine mit der Pumpkammer in Verbindung stehende Auslaßkapillare erfolgt.
Um eine ausreichende Pumpwirkung zu erreichen, sind in der Einlaß- und der Auslaßkapillare jeweils piezoelektrisch betätigbare Ventile vorgesehen.
Die Herstellung einer derartigen Mikropumpe im Siliziumsubstrat kann mit Hilfe der bekannten fotolithografischen Verfahren und des anisotropischen Strukturätzens erfolgen. Auf das so strukturierte Siliziumsubstrat wird anschließend durch anodisches Bonden eine Glasplatte aufgebracht und so ein fester Glas-Silizium-Verbund geschaffen.
Mit einer derartigen Mikropumpe ist es möglich, kleine Flüssigkeitsmengen zu applizieren, wobei jedoch ein relativ eingeschränkter Frequenzbereich und damit auch eine begrenzte Förderrate zur Verfügung steht. Mit der vorstehend beschriebenen Mikropumpe läßt sich beispielsweise eine Fördermenge von etwa 500 Pikoliter erreichen. Zur Gewährleistung der nötigen Funktionssicherheit dieser Mikropumpe ist es erforderlich, daß die Flüssigkeiten oder Suspensionen eine möglichst geringe Viskosität aufweisen.
Weiterhin ist aus der WO,A,9419609 eine Mikropumpe ersichtlich, die eine Pumpkammer mit veränderbarem Kammervolumen und einem Flüssigkeitseinlaß sowie einem Flüssigkeitsauslaß enthält. Um hier einen Flüssigkeitstransport durch die Pumpkammer in Richtung zum Flüssigkeitsauslaß zu erreichen und gleichzeitig auf die sonst erforderlichen verschleißbehafteten Ventile zu verzichten, ist hier eine Kombination eines Diffusors mit einer Düse vorgesehen. Der Diffusor ist hier dem Flüssigkeitseinlaß und die Düse dem Flüssigkeitsauslaß zugeordnet.
Die Erzeugung von einzelnen Mikrotropfen mit definiertem Tropfenvolumen ist mit dieser Mikropumpe jedoch nicht möglich.
Der Erfindung liegt die Aufgabe zugrunde, eine Mikroejektionspumpe zu schaffen, die das Handling von Flüssigkeiten oder Suspensionen, oder auch von verflüssigbaren Stoffen, im Volumenbereich von einigen Pikolitern bis zu einigen hundert Mikrolitern, ermöglicht, die eine hohe Frequenzstabilität aufweist und mit der die Erzeugung von einzeln zählbaren, gerichteten, impulsbehaftet beschleunigten und hinsichtlich ihres Tropfenvolumens definiert und reproduzierbaren Mikrotropfen möglich ist.
Erfindungsgemäß wird die Aufgabe bei einer Mikroejektionspumpe der eingangs genannten Art dadurch gelöst, daß der im Siliziumchip befindliche Zulaufkanal in Richtung zur Pumpkammer zumindest teilweise als Diffusorelement mit einem Öffnungswinkel bis 10° ausgebildet ist und daß der Auslaßkanal als Mikrokapillare ausgebildet ist, die mit einer Auslaßöffnung in einer Austrittsebene mündet.
Durch die erfindungsgemäße Einfügung des Diffusorelementes vor die Pumpkammer wird die Frequenzstabilität der Mikroejektionspumpe erheblich verbessert. Die Anisotropie des Diffusorströmungswiderstandes unterstützt im Pumpmodus die Tropfenbildung, d.h. es entsteht eine Düsenwirkung entlang des positiven Druckgefälles und im Belademodus wird der Flüssigkeitsnachfluß in die Pumpkammer unterstützt, d.h. es entsteht eine Diffusorwirkung entlang des positiven Druckgefälles. Darüberhinaus wird durch die Diffusorwirkung im Belademodus die Generation von Luftblasen in der Pumpkammer bei hohen Frequenzen wirkungsvoll unterdrückt. Auf diese Weise können extrem hohe Förderraten bis zu ca. 750 µl/min bei einer Anregungsfrequenz bis ca. 6500 Hz erreicht werden. Bei der Verwendung der erfindungsgemäßen Mikroejektionspumpe zum Drucken kann durch den Diffusor eine höhere Druckgeschwindigkeit erreicht werden.
Der Auslaßkanal ist weiterhin als Mikrokapillare ausgebildet, so daß die Probenabgabe in Form einzeln zählbarer, gerichteter, impulsbehaftet beschleunigter und hinsichtlich ihres Tropfenvolumens definierter Mikrotropfen reproduzierbar erfolgt. Das Volumen der Tropfen und die Förderrate sind durch die elektrischen Parameter (Frequenz, Amplitude, Impulsform) der Pumpensteuerung einstellbar.
Die beste Wirkung wird erreicht, wenn das Diffusorelement der Pumpkammer unmittelbar vorgeordnet wird, bzw. sich unmittelbar bis an die Pumpkammer erstreckt, wobei das Diffusorelement in einer ersten Variante der Erfindung einen konstanten Öffnungswinkel aufweist.
Der Öffnungswinkel des Diffusorelementes sollte bevorzugt bei 3 - 5° liegen.
In einer zweiten Variante der Erfindung weist das Diffusorelement eine sich stetig verändernden Öffnungswinkel auf. Der Öffnungswinkel kann sich beispielsweise stetig vergrößern.
In einer weiteren Ausgestaltung der Erfindung weist die Pumpkammer einen Grundriß mit geraden oder gekrümmten Begrenzungslinien auf, wobei das Diffusorelement in einer Eingangszone der Pumpkammer mündet. Zusätzlich ist die Mikrokapillare zwischen der Pumpkammer und der Ausstoßöffnung mit weiteren Zulaufkanälen verbindbar. Damit ist es möglich, der durch die Pumpkammer geförderten Flüssigkeit weitere Substanzen gezielt zuzumischen.
Die Mikroejektionspumpe besteht bevorzugt aus einen Verbund aus einem mikromechanisch strukturierten Siliziumchip und einem Glaschip.
Zur Vermeidung einer unnötigen Kontamination ist die Mikroejektionspumpe, d.h. der Verbund aus dem Siliziumchip und dem Glaschip, in Richtung zur Ausstoßöffnung des Auslaßkanales in x- und/oder y-Richtung verjüngt. Damit wird gewährleistet, daß beim oberflächlichen Eintauchen der Mikroejektionspumpe in eine Flüssigkeit nur eine äußerst geringe Oberflächenkontamination stattfindet, die anschließend in einem Reinigungsschritt entsprechend leicht entfernt werden kann. Damit kann auf einfache Weise verhindert werden, daß Substanzen unbeabsichtigt und unbemerkt verschleppt werden können. Die erfindungsgemäße Mikroejektionspumpe ist deshalb auch zur Manipulation kleinster Flüssigkeitsmengen besonders geeignet.
Die Verjüngung in x-Richtung kann dabei vorteilhaft während des Trennsägens des Siliziumchips ausgebildet werden, wohingegen die Verjüngung in y-Richtung während des anisotropen Strukturätzens ausgebildet werden kann.
Selbstverständlich ist es auch möglich, die Verjüngungen nachträglich durch einen abschließenden Schleifprozeß auszubilden.
In einer weiteren Ausgestaltung der Erfindung ist das Siliziumchip direkt und temperaturgeregelt beheizbar, d.h. es wird der ohmsche Widerstand des Siliziums ausgenutzt, indem der Heizeffekt infolge Joulscher Wärme im Siliziummaterial erzeugt wird.
Die Heizung ist bevorzugt in die Siliziummembran integriert, bzw. wirkt unmittelbar auf diese, wobei die elektrischen Kontakte sich seitlich gegenüberliegend am Siliziumchip angeordnet sind.
Durch die erfindungsgemäße Fortbildung der Erfindung mit der zumindest auf die Pumpkammer wirkenden Heizung werden die Anwendungsmöglichkeiten in Verbindung mit der erfindungsgemäßen Anordnung des Diffusorelementes ganz erheblich erweitert, ohne daß zusätzliche konstruktive Änderungen an der Mikroejektionspumpe selbst, z.B. bezüglich der Dimensionierung, erforderlich wären. Darüberhinaus ist es durch die Heizung möglich, auf schnelle und einfache Weise eine äußerliche Trocknung der Mikroejektionspumpe vorzunehmen.
Außerdem ist es ist nunmehr möglich, auch hochviskose Flüssigkeiten, die unter Wärmeeinwirkung niedrigviskos, d.h. flüssig werden, zu handhaben. Solche Flüssigkeiten können z.B. glucosehaltige oder ölige Substanzen sein, die dann unter Ausnutzung der Vorteile des Diffusorelementes gefördert werden können.
Bei entsprechender Auslegung der Heizung können sogar aufgeschmolzene Metalle, z.B. Zinn oder Zinn-Blei-Legierungen, oder andere Substanzen, die ansonsten wegen deren Viskosität in der Mikroejektionspumpe nicht förderbar sind, problemlos gefördert werden. Damit können diese Substanzen thermisch aktiviert gefördert und auch gedruckt werden.
In einer weiteren Fortführung der Erfindung ist auf dem Siliziumchip ein Temperatursensor mit einer zugehörigen Steuerschaltung angeordnet. Damit ist es möglich, in Verbindung mit einem geeigneten Durchflußmesser sämtliche Parameter der Mikroejektionspumpe elektrisch zu regeln, so daß verlustlos genau definierte Flüssigkeitsmengen abgegeben werden können.
Die elektrischen Kontakte und der Temperatursensor sollten aus einem chemisch neutralen Material bestehen, wobei fotolithografisch strukturierte Platin- oder Tantalschichten hierfür besonders geeignet sind.
Eine besonders vorteilhafte Fortführung der Erfindung ist durch eine Parallelanordnung von mehreren Pumpkammern mit jeweils einem zugehörigen Einlaßdiffusor und Auslaßkanälen.
Damit wird eine äußerst leistungsfähige Mikroejektionspumpe geschaffen, mit der wahlweise ein hochparalleles Arbeiten möglich ist, oder bei der die Pumpkammern separat angesteuert werden. Letztere Variante erlaubt gleichzeitig oder zeitlich gestaffelt unterschiedliche Materialien oder Flüssigkeiten zu handhaben.
Bei der Parallelanordnung ist es zweckmäßig, zwischen den einzelnen Auslaßkanälen zusätzlich jeweils einen Absaugkanal vorzusehen, der ebenfalls in der Austrittsebene mündet. Damit wird zuverlässig verhindert, daß sich die aus einer Austrittsöffnung austretende Flüssigkeit über benachbarte Austrittsöffnungen ausbreiten kann.
Die Erfindung soll nachfolgend an einem Ausführungsbeispiel näher erläutert werden. Die einzelnen Zeichnungsfiguren zeigen:
Fig. 1
eine schematisch im Schnitt dargestellte Draufsicht auf die Mikroejektionspumpe;
Fig. 2
eine im Schnitt dargestellte Seitenansicht der Mikroejektionspumpe nach Fig. 1;
Fig. 3
die Draufsicht auf die Mikroejektionspumpe nach Fig. 1 und 2;
Fig. 4
eine schematische Darstellung einer Variante der Mikroejektionspumpe mit runder Pumpkammer;
Fig. 5
eine Mikroejektionspumpe mit einem Mehrkanalsystem;
Fig. 6
eine Mikroejektionspumpe mit Verjüngungen in x-Richtung;
Fig. 7
eine Mikroejektionspumpe mit Verjüngungen in y-Richtung;
Fig. 8
die Rückansicht des Siliziumchips für eine Mikroejektionspumpe mit Temperatursensor und Steuerschaltung; und
Fig. 9
die Vorderansicht des Siliziumchips nach Fig. 8 mit ovaler Pumpkammer.
Die in den Fig. 1 bis 3 dargestellte Mikroejektionspumpe 1 besteht aus einem Verbund aus einem Siliziumchip 2 und einem Glaschip 3, die durch anodisches Bonden miteinander verbunden sind. Das Siliziumchip 2 ist zweiseitig strukturiert, wobei auf der dem Glaschip 3 gegenüberliegenden Seite eine flache Pumpkammer 4 ausgebildet ist, die durch eine Siliziummembran 5 nach außen hin verschlossen ist (Fig. 2). Auf dieser Siliziummembran 5 ist ein piezoelektrischer Plattenaktuator 6 beispielsweise mittels der bekannten Chipbondtechnik befestigt. Mit Hilfe dieses Plattenaktuators erfolgt eine Auslenkung der Siliziummembran 5, so daß das Volumen der Pumpkammer 4 abwechselnd vergrößert bzw. verkleinert wird, wodurch die Pumpwirkung erreicht wird.
Die Ansteuerung des piezoelektrischen Plattenaktuators 6 kann durch eine nicht dargestellte elektronische Steuerung mit vorgegebener Frequenz und Amplitude erfolgen. Dabei hat es sich als zweckmäßig erwiesen, für den Einschaltimpuls eine hohe Flankensteilheit, d.h. einen stoßartigen Einschaltimpuls vorzugeben. Der nachfolgende Ausschaltimpuls kann einen gedämpften flachen Verlauf aufweisen, z.B. entsprechend einer e-Funktion. Damit wird das Pumpverhalten der erfindungsgemäßen Mikroejektionspumpe weiter verbessert.
Es ist weiterhin zweckmäßig, den piezoelektrischen Plattenaktuator 6 vor dem Einschaltimpuls mit einer Vorspannung zu beaufschlagen. Die Vorspannung sollte dabei der Polarität des Einschaltimpulses entgegengerichtet sein. Durch das dadurch im Belademodus zur Verfügung stehende größere Volumen der Pumpkammer 4 wird eine deutliche Verbesserung der Pumpleistung der Mikroejektionspumpe 1 erreicht.
Weiterhin ist die Pumpkammer 4 mit einem Zulaufkanal 7 und einem Auslaßkanal 8 versehen, wobei der Auslaßkanal 8 mit einer Ausstoßöffnung 9 zum Ausstoßen einzelner Mikrotropfen 10 versehen ist. Die Pumpkammer 4 weist einen im wesentlichen quadratischen oder rechteckigen Grundriß auf, wobei der mit einem Fluideinlaß 16 (Fig. 8, 9) verbundene Zulaufkanal 7 in eine Eingangszone der Pumpkammer 4 mündet. Der Auslaßkanal 8 ist auf der gegenüberliegenden Seite der Pumpkammer angeordnet. Prinzipiell kann die Pumpkammer 4 auch einen Grundriß mit gekrümmten Begrenzungslinien aufweisen und beispielsweise rund (Fig. 4), oder auch oval (Fig. 9) sein.
Der Zulaufkanal 7 ist als Diffusorelement 11 ausgebildet, d.h. der Zulaufkanal 7, oder ein Teil desselben erweitert sich in Richtung zur Pumpkammer 4. Das Diffusorelement 11 kann dabei derart ausgestaltet sein, daß der Öffnungswinkel über die gesamte Länge des Diffusorelementes 11 konstant ist. Selbstverständlich ist es auch möglich, das Diffusorelement 11 so auszugestalten, daß sich der Öffnungswinkel stetig verändert. So kann sich der öffnungswinkel innerhalb vorgegebener Grenzen auch stetig vergrößern (Fig. 9)
Prinzipiell ist es möglich, den als Mikrokapillare ausgebildeten Auslaßkanal 8 zwischen der Pumpkammer 4 und der Ausstoßöffnung 9 mit weiteren Zulaufkanälen zu verbinden. Damit können der aus der Pumpkammer 4 geförderten Flüssigkeit weitere Substanzen zugemischt werden, was die Einsatzmöglichkeiten der Mikroejektionspumpe erheblich erweitert.
Die erfindungsgemäße Ausstattung der Mikroejektionspumpe 1 mit dem Diffusorelement 11 ermöglicht einen stabilen Betrieb über einen großen Frequenzbereich, bzw. kann die Förderrate über die Anregungsfrequenz für den Plattenaktuator 6 geregelt werden, wobei ein besonders steiler Einschaltimpuls und ein flacher Abschaltimpuls besonders von Vorteil sind, da dadurch das Entstehen von Gasblasen in der Pumpkammer 4 ebenfalls verhindert wird.
Eine weitere Erweiterung der Anwendungsmöglichkeiten für die Mikroejektionspumpe ermöglicht die Integration einer Heizung zumindest in die Siliziummembran 5 des Siliziumchips 2.
Damit kann die Mikroejektionspumpe 1 nicht nur zum Handling von Flüssigkeiten oder Suspensionen mit niedriger Viskosität eingesetzt werden, sondern auch für solche Materialien, die bei einer Temperaturerhöhung niedrig- oder niedrigerviskos werden. Ein anderer Aspekt der integrierten Heizung ist darin zu sehen, daß dadurch auch eine einfache Trocknung der benetzten Bereiche der Mikroejektionspumpe 1 ermöglicht wird. Beispielsweise können dadurch äußere benetzte Bereiche der Mikroejektionspumpe 1 schnell getrocknet werden, wodurch ein Verschleppen von Flüssigkeiten sicher verhindert werden kann.
Die Integration der Heizung kann auf einfache Weise dadurch erfolgen, daß der elektrische Widerstand des Siliziumchips 2 unmittelbar zur Heizung ausgenutzt wird. Dazu sind zur elektrischen Kontaktierung elektrische Kontakte 17, 18 vorgesehen, die sich in Längsrichtung seitlich gegenüberliegend am Siliziumchip 2 erstrecken (Fig. 8). In Verbindung mit einem auf dem Siliziumchip 2 angeordneten Temperatursensor 19 mit zugehöriger Steuerschaltung 20 können somit auch an sich hochviskose Flüssigkeiten oder Suspensionen, wie Öle, Fette oder glucosehaltige Flüssigkeiten durch die Mikroejektionspumpe 1 gefördert werden. Bei entsprechender -Auslegung der Heizung lassen sich auf diese Weise sogar aufschmelzbare Metalle fördern, so daß die Mikroejektionspumpe 1 auch zum Drucken von Metallen wie Zinn oder Blei-Zinn-Legierungen oder anderen Stoffen geeignet ist.
Da das Einsatzgebiet der Mikroejektionspumpe 1 grundsätzlich nicht eingeschränkt ist, müssen alle Teile die mit Flüssigkeiten in Berührung kommen können, chemisch neutral sein. Aus diesem Grund ist es zweckmäßig, die elektrischen Kontakte 17, 18 und den Temperatursensor 19 aus einer fotolithografisch strukturierten Platin- oder Tantalschicht herzustellen.
Um weiterhin die benetzte bzw. kontaminierte Fläche der Mikroejektionspumpe 1 beim Absetzen von Flüssigkeiten auf oder in Flüssigkeitsoberflächen so gering wie möglich halten zu können, ist es von Vorteil, wenn der Verbund aus dem Siliziumchip 2 und dem Glaschip 3 in Richtung zur Ausstoßöffnung 9 des Auslaßkanales 8 in x- und/oder y-Richtung verjüngt ist, wie dies in den Fig. 6 bis 9 prinzipiell dargestellt ist. Das kann dadurch erfolgen, daß die Verjüngung 14 in x-Richtung während des Trennsägens des Siliziumchips 2 ausgebildet wird. Die Verjüngung 15 in y-Richtung läßt sich auf einfache Weise während des anisotropen Strukturätzens des Halbleiterchips 2 ausbilden.
Selbstverständlich können die Verjüngungen 14; 15 auch durch einen abschließenden Schleifprozeß ausgebildet werden, wobei in diesem Fall auch eine Verjüngung des Glaschips 3 in y-Richtung hergestellt werden kann.
Eine weitere Möglichkeit, diese Kontamination auf einem Minimum halten zu können, besteht darin, den Eintauchbereich der Mikroejektionspumpe 1 mit einer hydrophoben Oberflächenbehandlung zu versehen. Das kann durch Silanisierung oder durch Beschichtung z.B. mit einer Schicht, die einer Teflonbeschichtung ähnlich ist, erfolgen. Diese Schicht aus Kohlenstoff und Fluor kann mit Hilfe des Verfahrens der Plasmapolymerisation hergestellt werden. Generell muß hierbei jedoch beachtet werden, daß der innere das Fluid führende Kanal- und Kammerbereich der Mikroejektionspumpe 1 nicht mit beschichtet wird.
Die Vorteile der Erfindung sind darin zu sehen, daß durch das Diffusorelement 11 eine erhebliche Verbesserung der Frequenzstabilität der Mikroejektionspumpe 1 erreicht wird. Die Anisotropie des Strömungswiderstandes des Diffusorelementes 11 unterstützt im Pumpmodus die Bildung der Mikrotropfen 10, d.h. es entsteht eine Düsenwirkung entlang des positiven Druckgefälles. Im Belademodus der Pumpkammer 4 wird der Flüssigkeitsnachfluß unterstützt, d.h. es entsteht eine Diffusorwirkung entlang des positiven Druckgefälles. Darüberhinaus wird durch die Diffusorwirkung im Belademodus die Erzeugung von Luftblasen in der Pumpkammer 4 insbesondere bei hohen Anregungsfrequenzen des Plattenaktuators 6 wirkungsvoll unterdrückt. Damit ist die Mikroejektionspumpe 1 über ein großes Frequenzspektrum einsetzbar und es können auch extrem hohe Förderraten bis zu ca. 750 µl/min, bei einer Anregungsfrequenz bis ca. 6500 Hz, erreicht werden.
Mit Hilfe der in das Siliziumchip 2 integrierten Heizung sowie den Temperatursensor 19 mit der zugehörigen Steuerschaltung 20 kann die Mikroejektionspumpe 1 für beliebige Flüssigkeiten, Suspensionen auch höherer Viskosität und auch aufschmelzbare Metalle u.dgl. eingesetzt werden, wenn diese Materialien in einem vertretbaren Temperaturbereich genügend niedrigviskos gemacht werden können. Auch läßt sich, wie bereits dargelegt, eine schnelle Trocknung benetzter Bereiche der Mikroejektionspumpe 1 herbeiführen.
Die Zuführung der zu handhabenden Materialien von einem Vorratsbehälter zur Pumpkammer 4 kann über übliche Schlauchleitungen erfolgen.
Die Anwendung der erfindungsgemäßen Ausgestaltung der Mikroejektionspumpe 1 mit dem Diffusorelement 11 ist nicht darauf beschränkt, daß nur eine Pumpkammer 4 vorhanden ist. Es ist problemlos möglich, Mikroejektionspumpen zu schaffen, die eine Parallelanordnung von Pumpkammern 4 in Verbindung mit den erfindungsgemäßen Diffusorelementen 11 aufweisen (Fig. 5).
Wird diese Parallelanordnung parallgeschaltet, so wird eine äußerst leistungsfähige Mikroejektionspumpe geschaffen. Auch ist ein hochparalleles Arbeiten möglich, indem die einzelnen Pumpkammern 4 entsprechend separat angesteuert werden,
In letzterem Fall ist es jedoch zweckmäßig, zwischen den einzelnen Auslaßkanälen 9 zusätzlich jeweils einen Absaugkanal 21 vorzusehen, der ebenfalls in der Austrittsebene 22 mündet. Damit kann die Ausbreitung von Flüssigkeit in der Austritsebene 22 und damit eine Kontamination benachbarter Austrittsöffnungen 9 sicher verhindert werden.
Die technologische Realisierung der erfindungsgemäßen Mikroejektionspumpe 1 kann durch die Anwendung der bekannten mikrotechnischen Mikroformgebung erfolgen und die Verbindung des Siliziumchips 2 mit dem Glaschip 3 mit Hilfe des anodischen Bondens.
In einem ersten Präparationsprozeß, bestehend aus den Teilschritten thermische Oxidation, Fotolithografie und anisotropes Strukturätzen, wird zunächst das zweiseitig strukturierte Siliziumchip 2 hergestellt. Dieses Siliziumchip 2 erhält dabei die Strukturen einer Mikroejektionspumpe 1 mit dem Auslaßkanal 8, der Pumpkammer 4 mit zugehöriger Siliziummembran 5 sowie den Zulaufkanal 7 mit Diffusorelement 11. Das so strukturierte Siliziumchip 2 wird nach einer mehrstufigen Reinigung mit einem Glaschip 3, bestehend aus einer Pyrex 7740-Glasplatte, durch anodisches Bonden zu einem festen Silizium-Glas-Verbund zusammengefügt. Die Herstellung der parallelen Anordnung kann auf die gleiche Art und Weise erfolgen, wie vorstehend beschrieben.
Die Dicke der Glasplatte beträgt beispielsweise 1 mm und die der Siliziummembran zwischen 50 - 190 µm. Die Dicke der piezoelektrischen Plattenaktuatoren 6 sollte im Bereich von 100 - 260 µm liegen.
Bezugszeichenliste
1
Mikroejektionspumpe
2
Siliziumchip
3
Glaschip
4
Pumpkammer
5
Siliziummembran
6
Plattenaktuator
7
Zulaufkanal
8
Auslaßkanal
9
Ausstoßöffnung
10
Mikrotropfen
11
Diffusorelement
12
Zulaufkanal
13
Zulaufkanal
14
Verjüngung in x-Richtung
15
Verjüngung in y-Richtung
16
Fluideinlaß
17
Rontakt
18
Kontakt
19
Temperatursensor
20
Steuerschaltung
21
Absaugkanal
22
Austrittsebene

Claims (18)

  1. Mikroejektionspumpe zur Generation von Mikrotropfen, bestehend aus mindestens einer in einem Siliziumchip ausgebildeten Pumpkammer, einer über der Pumpkammer angeordneten und piezoelektrisch betätigbaren Siliziummembran, wobei die Pumpkammer mit wenigstens einem Zulaufkanal und einem mit einer Ausstoßöffnung versehenen Auslaßkanal verbunden ist und bei der ein Glaschip gegenüber der Siliziummembran die Pumpkammer verschließt, wobei sich der Zulauf- und der Auslaßkanal (7, 8) auf gegenüberliegenden Seiten der Pumpkammer (4) befinden, dadurch gekennzeichnet, daß der im Siliziumchip (2) befindliche Zulaufkanal (7) in Richtung zur Pumpkammer (4) zumindest teilweise als Diffusorelement (11) mit einem Öffnungswinkel bis 10° ausgebildet ist und daß der Auslaßkanal (8) als Mikrokapillare ausgebildet ist, die mit einer Ausstoßöffnung (9) in einer Austrittsebene (22) mündet.
  2. Mikroejektionspumpe nach Anspruch 1, dadurch gekennzeichnet, daß das Diffusorelement (11) der Pumpkammer (4) unmittelbar vorgeordnet ist.
  3. Mikroejektionspumpe nach Anspruch 1 bis 3, dadurch gekennzeichnet, daß das Diffusorelement (11) einen konstanten Öffnungswinkel aufweist.
  4. Mikroejektionspumpe nach Anspruch 1 bis 3, dadurch gekennzeichnet, daß der Öffnungswinkel bevorzugt 3 - 5 ° beträgt.
  5. Mikroejektionspumpe nach Anspruch 1 bis 3, dadurch gekennzeichnet, daß das Diffusorelement (11) einen sich stetig verändernden Öffnungswinkel aufweist.
  6. Mikroejektionspumpe nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, daß die Pumpkammer (4) einen Grundriß mit geraden oder gekrümmten Begrenzungslinien aufweist.
  7. Mikroejektionspumpe nach den Ansprüchen 1 bis 6, dadurch gekennzeichnet, daß der Auslaßkanal (8) zwischen der Pumpkammer (4) und der Ausstoßöffnung (9) mit weiteren Zulaufkanälen verbindbar ist.
  8. Mikroejektionspumpe nach den Ansprüchen 1 bis 7, gekennzeichnet durch einen Verbund aus einem mikromechanisch strukturierten Siliziumchip (2) und einem Glaschip (3).
  9. Mikroejektionspumpe nach Anspruch 8, dadurch gekennzeichnet, daß der Verbund aus dem Siliziumchip (2) und dem Glaschip (3) in Richtung zur Ausstoßöffnung (9) des Auslaßkanales (8) in x- und/oder y-Richtung verjüngt ist.
  10. Mikroejektionspumpe nach Anspruch 9, dadurch gekennzeichnet, daß die Verjüngung (14) in x-Richtung während des Trennsägens des Siliziumchips (2) ausgebildet worden ist.
  11. Mikroejektionspumpe nach Anspruch 9, dadurch gekennzeichnet, daß die Verjüngung (15) in y-Richtung während des anisotropen Strukturätzens ausgebildet worden ist.
  12. Mikroejektionspumpe nach Anspruch 9, dadurch gekennzeichnet, daß die Verjüngung (14; 15) durch einen abschließenden Schleifprozeß ausgebildet worden ist.
  13. Mikroejektionspumpe nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß das Siliziumchip (2) direkt und temperaturgeregelt beheizbar ist.
  14. Mikroejektionspumpe nach Anspruch 13, dadurch gekennzeichnet, daß die Heizung in die Siliziummembran (5) des Siliziumchips (2) integriert ist und daß die elektrischen Kontakte (17, 18) einander seitlich gegenüberliegend am Siliziumchip (2) angeordnet sind.
  15. Mikroejektionspumpe nach Anspruch 13 und 14, dadurch gekennzeichnet, daß auf dem Siliziumchip (2) ein Temperatursensor (19) mit zugehöriger Steuerschaltung (20) angeordnet ist.
  16. Mikroejektionspumpe nach den Ansprüchen 13 bis 15, dadurch gekennzeichnet, daß die elektrischen Kontakte (17, 18) und der Temperatursensor (19) aus einer fotolithografisch strukturierten Platin- oder Tantalschicht bestehen.
  17. Mikroejektionspumpe nach den Ansprüchen 1 bis 16, gekennzeichnet durch eine Parallelanordnung von mehreren Pumpkammern (4) mit jeweils einem Einlaßdiffusor (11) und Auslaßkanälen (8).
  18. Mikroejektionspumpe nach Anspruch 17, dadurch gekennzeichnet, daß zwischen den Auslaßkanälen (8) in der Austrittsebene (22) Absaugkanäle (21) münden.
EP97951842A 1996-12-11 1997-12-11 Mikroejektionspumpe Revoked EP0956449B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19651568 1996-12-11
DE19651568 1996-12-11
PCT/DE1997/002874 WO1998026179A1 (de) 1996-12-11 1997-12-11 Mikroejektionspumpe

Publications (2)

Publication Number Publication Date
EP0956449A1 EP0956449A1 (de) 1999-11-17
EP0956449B1 true EP0956449B1 (de) 2002-05-29

Family

ID=7814406

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97951842A Revoked EP0956449B1 (de) 1996-12-11 1997-12-11 Mikroejektionspumpe

Country Status (6)

Country Link
US (1) US6179584B1 (de)
EP (1) EP0956449B1 (de)
JP (1) JP2001505640A (de)
AT (1) ATE218194T1 (de)
DE (2) DE59707378D1 (de)
WO (1) WO1998026179A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010149595A1 (de) 2009-06-25 2010-12-29 Tecan Trading Ag Funktionskontrolle bzw. varianzenkompensation in der massenspektrometrie

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2143596C1 (ru) * 1998-09-08 1999-12-27 Попов Сергей Анатольевич Жидкостно-газовый эжектор
DE19913076A1 (de) 1999-03-23 2000-10-19 Hahn Schickard Ges Vorrichtung und Verfahren zum Aufbringen von Mikrotröpfchen auf ein Substrat
EP1128075A3 (de) * 2000-02-24 2003-10-29 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. Mikropumpe und/oder Mikromischer mit integriertem Sensor und Verfahren zu dessen Herstellung
AUPQ669000A0 (en) * 2000-04-04 2000-05-04 Cooke, Richard Screen display device
US6530755B2 (en) 2000-04-07 2003-03-11 Tecan Trading Ag Micropump
KR20030034192A (ko) * 2000-09-18 2003-05-01 클리포드 엔. 로젠 압전 액추에이터 및 이를 사용하는 펌프
US7198250B2 (en) * 2000-09-18 2007-04-03 Par Technologies, Llc Piezoelectric actuator and pump using same
EP1332000B1 (de) 2000-10-30 2012-06-20 Sequenom, Inc. Verfahren zur aufbringung von submikroliter fluid-volumina auf ein substrat
US20040073175A1 (en) * 2002-01-07 2004-04-15 Jacobson James D. Infusion system
US6869275B2 (en) * 2002-02-14 2005-03-22 Philip Morris Usa Inc. Piezoelectrically driven fluids pump and piezoelectric fluid valve
US20030163111A1 (en) * 2002-02-26 2003-08-28 Daellenbach Keith K. End effector for needle-free injection system
FR2839662B1 (fr) * 2002-05-16 2005-12-02 Centre Nat Rech Scient Dispositif de depot localise d'au moins une solution biologique
US8080221B2 (en) 2002-08-05 2011-12-20 Palo Alto Research Center Incorporated Capillary-channel probes for liquid pickup, transportation and dispense using stressy metal
US7241420B2 (en) 2002-08-05 2007-07-10 Palo Alto Research Center Incorporated Capillary-channel probes for liquid pickup, transportation and dispense using stressy metal
MXPA05011246A (es) * 2003-04-21 2006-07-06 Stratagen Life Sciences Inc Metodos y aparatos para la administracion repetitiva de farmacos por microchorro.
FR2861814B1 (fr) * 2003-11-04 2006-02-03 Cit Alcatel Dispositif de pompage par micropompes a transpiration thermique
WO2005060593A2 (en) * 2003-12-10 2005-07-07 Purdue Research Foundation Micropump for electronics cooling
US7290993B2 (en) * 2004-04-02 2007-11-06 Adaptivenergy Llc Piezoelectric devices and methods and circuits for driving same
US7312554B2 (en) * 2004-04-02 2007-12-25 Adaptivenergy, Llc Piezoelectric devices and methods and circuits for driving same
US7287965B2 (en) * 2004-04-02 2007-10-30 Adaptiv Energy Llc Piezoelectric devices and methods and circuits for driving same
US20050225201A1 (en) * 2004-04-02 2005-10-13 Par Technologies, Llc Piezoelectric devices and methods and circuits for driving same
CN1583541B (zh) * 2004-05-27 2010-09-29 哈尔滨工程大学 采用多层驱动膜结构的微驱动器及其制作方法
US7104767B2 (en) * 2004-07-19 2006-09-12 Wilson Greatbatch Technologies, Inc. Diaphragm pump for medical applications
JP4626224B2 (ja) * 2004-08-27 2011-02-02 富士ゼロックス株式会社 マイクロポンプ
JP4645159B2 (ja) * 2004-11-02 2011-03-09 コニカミノルタホールディングス株式会社 マイクロポンプ
US7258533B2 (en) * 2004-12-30 2007-08-21 Adaptivenergy, Llc Method and apparatus for scavenging energy during pump operation
US20060147329A1 (en) * 2004-12-30 2006-07-06 Tanner Edward T Active valve and active valving for pump
EP1875525A2 (de) * 2005-04-13 2008-01-09 Par Technologies, LLC. Piezoelektrische membranbaugruppe mit leitern auf flexiblem film
US20060232166A1 (en) * 2005-04-13 2006-10-19 Par Technologies Llc Stacked piezoelectric diaphragm members
JP3896141B2 (ja) * 2005-06-28 2007-03-22 シャープ株式会社 マイクロポンプおよびマイクロポンプシステム
DE202006010293U1 (de) * 2005-07-22 2006-08-31 Tecan Trading Ag Pipettiergerät mit Computerprogrammprodukt zum Akzeptieren oder Verwerfen von pipettierten Flüssigkeitsproben
JP4779126B2 (ja) * 2005-07-27 2011-09-28 国立大学法人九州工業大学 バルブレスマイクロポンプ
US8998881B2 (en) * 2005-08-10 2015-04-07 Alza Corporation Method for delivering drugs to tissue under microjet propulsion
EP1921648A1 (de) * 2005-08-31 2008-05-14 Matsushita Electric Works, Ltd. Relaisvorrichtung mit leiterflüssigkeit
US20070075286A1 (en) * 2005-10-04 2007-04-05 Par Technologies, Llc Piezoelectric valves drive
US20070129681A1 (en) * 2005-11-01 2007-06-07 Par Technologies, Llc Piezoelectric actuation of piston within dispensing chamber
US7345407B2 (en) * 2005-11-18 2008-03-18 Adaptivenergy, Llc. Human powered piezoelectric power generating device
KR100804686B1 (ko) 2006-11-23 2008-02-18 한국에너지기술연구원 기포 동력 마이크로 펌프
US20080246367A1 (en) * 2006-12-29 2008-10-09 Adaptivenergy, Llc Tuned laminated piezoelectric elements and methods of tuning same
US20090180931A1 (en) 2007-09-17 2009-07-16 Sequenom, Inc. Integrated robotic sample transfer device
US8040022B2 (en) * 2007-12-12 2011-10-18 Aprolase Development Co., Llc Forced vibration piezo generator and piezo actuator
US8197235B2 (en) * 2009-02-18 2012-06-12 Davis David L Infusion pump with integrated permanent magnet
US20100211002A1 (en) * 2009-02-18 2010-08-19 Davis David L Electromagnetic infusion pump with integral flow monitor
US8353864B2 (en) * 2009-02-18 2013-01-15 Davis David L Low cost disposable infusion pump
US8579414B2 (en) 2009-12-23 2013-11-12 Xerox Corporation Self-assembling structures for electrostatic extraction of pigments from liquid inks for marking
KR101153613B1 (ko) * 2010-05-25 2012-06-18 삼성전기주식회사 마이크로 이젝터 및 그 제조방법
CN103429348B (zh) 2011-01-21 2016-03-09 拜奥-多特公司 具有纵向变换器和可替换毛细管的压电分配器
US10126264B2 (en) 2014-07-14 2018-11-13 Li-Cor, Inc. Analyte separator with electrohydrodynamic Taylor cone jet blotter
AU2017213725B2 (en) 2016-02-01 2021-12-23 Li-Cor, Inc. Capillary electrophoresis inkjet dispensing
CN109564188A (zh) 2016-08-08 2019-04-02 利康公司 微芯片电泳喷墨式分配
AU2017311105A1 (en) 2016-08-08 2019-02-21 Li-Cor, Inc. Multi-sheath flow and on-chip terminating electrode for microfluidic direct-blotting

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4152098A (en) * 1977-01-03 1979-05-01 Clark Ivan P Micropump
EP0408306B1 (de) * 1989-07-11 1996-05-01 Ngk Insulators, Ltd. Einen piezoelektrischen/elektrostriktiven Film enthaltende piezoelektrischer/elektrostriktiver Antrieb
KR910012538A (ko) * 1989-12-27 1991-08-08 야마무라 가쯔미 마이크로 펌프 및 그 제조 방법
US5094594A (en) 1990-04-23 1992-03-10 Genomyx, Incorporated Piezoelectric pumping device
DE69106240T2 (de) * 1990-07-02 1995-05-11 Seiko Epson Corp Mikropumpe und Verfahren zur Herstellung einer Mikropumpe.
US5277556A (en) * 1990-07-10 1994-01-11 Westonbridge International Limited Valve and micropump incorporating said valve
SE508435C2 (sv) * 1993-02-23 1998-10-05 Erik Stemme Förträngningspump av membranpumptyp
SE501139C2 (sv) * 1993-04-08 1994-11-21 Sem Ab Anordning vid fluidpump av membrantyp
US5659171A (en) * 1993-09-22 1997-08-19 Northrop Grumman Corporation Micro-miniature diaphragm pump for the low pressure pumping of gases
CH689836A5 (fr) * 1994-01-14 1999-12-15 Westonbridge Int Ltd Micropompe.
DE4402119C2 (de) * 1994-01-25 1998-07-23 Karlsruhe Forschzent Verfahren zur Herstellung von Mikromembranpumpen
DE4422743A1 (de) * 1994-06-29 1996-01-04 Torsten Gerlach Mikropumpe
US5856174A (en) * 1995-06-29 1999-01-05 Affymetrix, Inc. Integrated nucleic acid diagnostic device
WO1997011275A1 (en) * 1995-09-20 1997-03-27 Philips Electronics N.V. Pump and method for manufacturing the pump
US5840062A (en) * 1995-11-08 1998-11-24 Gumaste; Anand V. Solid state fluid delivery system
US6054277A (en) * 1996-05-08 2000-04-25 Regents Of The University Of Minnesota Integrated microchip genetic testing system
US5779868A (en) * 1996-06-28 1998-07-14 Caliper Technologies Corporation Electropipettor and compensation means for electrophoretic bias
US5871336A (en) * 1996-07-25 1999-02-16 Northrop Grumman Corporation Thermal transpiration driven vacuum pump
DE19720482C5 (de) * 1997-05-16 2006-01-26 INSTITUT FüR MIKROTECHNIK MAINZ GMBH Mikromembranpumpe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010149595A1 (de) 2009-06-25 2010-12-29 Tecan Trading Ag Funktionskontrolle bzw. varianzenkompensation in der massenspektrometrie

Also Published As

Publication number Publication date
US6179584B1 (en) 2001-01-30
WO1998026179A1 (de) 1998-06-18
JP2001505640A (ja) 2001-04-24
EP0956449A1 (de) 1999-11-17
DE59707378D1 (de) 2002-07-04
ATE218194T1 (de) 2002-06-15
DE29724735U1 (de) 2003-11-13

Similar Documents

Publication Publication Date Title
EP0956449B1 (de) Mikroejektionspumpe
DE102005037401B4 (de) Bildung einer Emulsion in einem fluidischen Mikrosystem
DE60216748T2 (de) Flüssigkeitspumpsystem
DE10227593B4 (de) Strömungsschaltungs-Mikrobauelemente
DE102005048259B4 (de) Vorrichtung und Verfahren zur Erzeugung eines Gemenges von zwei ineinander unlösbaren Phasen
EP1270073B1 (de) Mikrofluid-System mit Regler
DE60310997T2 (de) Mikrofluides system mit stabilisierter flüssig-flüssig-grenzfläche
DE19720482A1 (de) Mikromembranpumpe
DE19648458C1 (de) Mikromechanische Ejektionspumpe zum Heraustrennen kleinster Fluidvolumina aus einem strömenden Probenfluid
DE69909753T2 (de) Apparat zur abgabe einer vorherbestimmten flüssigkeitsmenge
WO2012048685A1 (de) Flusszelle mit hohlraum und diaphragma
DE112005000445T5 (de) Mikrochemisches System
DE10010208C2 (de) Mikrodosiervorrichtung zur definierten Abgabe kleiner in sich geschlossener Flüssigkeitsvolumina
DE112017000632T5 (de) Vertikaler Mikrofluidik-Sondenkopf mit Öffnungen für eine großmaßstäbliche Oberflächenbearbeitung
WO2004071660A1 (de) Verfahren und vorrichtung zum kontaktieren einer mikrofluidikstruktur
EP2830764B1 (de) Fluidisches system umfassend eine poröse membran mit veränderbarer porenoberfläche und verfahren zum betreiben desselben
EP2449296B1 (de) Ventil
WO2002040165A1 (de) Vorrichtung und system zur abgabe bzw. aufnahme/abgabe von flüssigkeitsproben
EP0672834B1 (de) Mikro-Fluidmanipulator
DE10250406B4 (de) Reaktionsvorrichtung und Mischsystem
WO2010054830A1 (de) Vorrichtung und verfahren zum erzeugen eines tropfens einer flüssigkeit
DE19611270A1 (de) Mikromischer zur Handhabung kleinster Flüssigkeitsmengen
EP2593231A1 (de) Mikrofluidisches system und herstellungsverfahren für ein mikrofluidisches system
WO2010142471A1 (de) Vorrichtung und verfahren zur erzeugung und/oder anordnung von sequenzen einer oder mehrerer fluidproben in einem trägerfluid
DE29708678U1 (de) Mikromembranpumpe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990528

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK FI FR GB IT LI NL SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20010718

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK FI FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020529

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020529

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20020529

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020529

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020529

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020529

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020529

REF Corresponds to:

Ref document number: 218194

Country of ref document: AT

Date of ref document: 20020615

Kind code of ref document: T

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59707378

Country of ref document: DE

Date of ref document: 20020704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020829

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020829

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20020529

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030108

Year of fee payment: 6

EN Fr: translation not filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: TECAN TRADING AG

Effective date: 20030217

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

RDAH Patent revoked

Free format text: ORIGINAL CODE: EPIDOS REVO

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

27W Patent revoked

Effective date: 20030424