EP0940835A2 - Fusible en particulier pour véhicule automobile - Google Patents

Fusible en particulier pour véhicule automobile Download PDF

Info

Publication number
EP0940835A2
EP0940835A2 EP19990102310 EP99102310A EP0940835A2 EP 0940835 A2 EP0940835 A2 EP 0940835A2 EP 19990102310 EP19990102310 EP 19990102310 EP 99102310 A EP99102310 A EP 99102310A EP 0940835 A2 EP0940835 A2 EP 0940835A2
Authority
EP
European Patent Office
Prior art keywords
fuse
contact elements
current
fuse according
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP19990102310
Other languages
German (de)
English (en)
Other versions
EP0940835B1 (fr
EP0940835A3 (fr
Inventor
Uwe Schön
Dieter Bornhorst
Joachim Korherr
Joachim Jüngst
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BCS Automotive Interface Solutions GmbH
Original Assignee
BCS Automotive Interface Solutions GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BCS Automotive Interface Solutions GmbH filed Critical BCS Automotive Interface Solutions GmbH
Publication of EP0940835A2 publication Critical patent/EP0940835A2/fr
Publication of EP0940835A3 publication Critical patent/EP0940835A3/fr
Application granted granted Critical
Publication of EP0940835B1 publication Critical patent/EP0940835B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/05Component parts thereof
    • H01H85/143Electrical contacts; Fastening fusible members to such contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/46Circuit arrangements not adapted to a particular application of the protective device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/0241Structural association of a fuse and another component or apparatus
    • H01H2085/0266Structural association with a measurement device, e.g. a shunt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/46Circuit arrangements not adapted to a particular application of the protective device
    • H01H2085/466Circuit arrangements not adapted to a particular application of the protective device with remote controlled forced fusing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/36Means for applying mechanical tension to fusible member

Definitions

  • the invention relates to a fuse, in particular for motor vehicle technology.
  • fuses are currently mainly found Use the power supply when the rated current is exceeded to one or more downstream consumers by melting interrupt a melting range.
  • the present invention is based on this prior art Task based on a backup, especially for automotive technology, to create, in which practically no oversizing of the downstream Cable is required and in which a disturbing arc in the Interruption of the electricity is avoided.
  • connection between the fuse element and the contact elements made by soldering.
  • solder when the solder is melted, which is, for example at temperatures of approx. 180 °, an interruption of the Current by releasing the fuse element from the contact elements reached.
  • the risk of arcing, which is known in the case of Fuses are promoted by the occurrence of high melting temperatures is practically not given.
  • the actual securing element is so acted upon by the force of a resilient element that independent the position of the fuse when the connection melts or softens the securing element between the securing element and the contact elements is lifted off the contact elements.
  • the fuse can be used to achieve the current flow to the consumer an additional heater.
  • the heating takes place in particular so that the immediate vicinity of the connections between the Fuse element and the contact elements is heated.
  • the heating is preferably carried out by generating an additional one Current via the fuse element or one or more contact elements, This electricity used for heating is used by the downstream consumers supplied current superimposed.
  • the consumer can be dimensioned in such a way that a direct connection to the battery via the fuse would theoretically result in an impermissibly high current.
  • "current can then be dissipated via a resistor which is connected to a connection contact or the fuse element. The dissipation is preferably carried out against ground.
  • the value of the resistor, via which the additional heating current flows, determines the temperature of the connections between the fuse element and the contact elements in normal operation, so this resistance value can determine the nominal current of the fuse.
  • the heating can also be done in such a way that the temperature of the connections or the contact elements or the securing element is detected and is kept constant in a closed control loop.
  • the ambient temperature can also be recorded and in the sense of a control the heating can be carried out depending on the ambient temperature. This results in an independent of the ambient temperature Fuse rated current.
  • the fuse can also be designed so that the resistance value between the connection contacts of the fuse, which is essentially through the fuse element and / or the contact elements is intended as a shunt Recording of electricity to one or more downstream consumers is usable. To do this, these elements and the connections must have the desired Have resistance value.
  • the voltage drop can then occur in an overall system for protecting the consumers recorded, from this the current flowing to the consumer is determined and when a threshold current is exceeded, an active interrupt element for Interruption of the current to the consumer can be controlled.
  • the fuse can be designed such that a controllable switch, for example a relay or the like, with a contact element or the Security element is connected and in the event of detection of an exceeding of the threshold current are controlled so that the current becomes essential Partly or completely, preferably against mass, is removed.
  • a controllable switch for example a relay or the like
  • controllable electrical trigger heater a self-triggering one can also be used or controllable heating element of another type can be used.
  • This can e.g. a heating element based on an exothermic chemical reaction be either by means of e.g. electrical signal can be activated or triggers the exothermic reaction from a predetermined temperature.
  • the heating element can be in the immediate vicinity of the connections between the contact elements and the securing element are provided, so that when the fuse's rated current is exceeded, resulting in increased temperature leads, the threshold temperature of the release heating element exceeded and heating is triggered. This allows you to be ready for a relatively small overshoot of the rated current has triggered the fuse very quickly become.
  • the fuse 1 shown in Fig. 1 consists essentially of an electrical non-conductive carrier 3 on which two electrical contact elements 5 are arranged.
  • the electrical contact elements 5 are via a fuse element 7 connected.
  • the connection of the contact elements 5 with the securing element 7 can preferably be done by soldering in contact areas 9.
  • the Solder for establishing the electrical connection between the contact elements 5 and the securing elements 7 in the contact areas 9 can be dependent of the materials for the contact elements 5 and the securing element 7 in be chosen appropriately.
  • the solder can be selected so that the softening or melting point is reached at a predetermined temperature becomes.
  • the contact elements or the securing element have a temperature of approximately 80 °.
  • the softening or melting temperature is approx. 180 °. If the current I a supplied to the consumer via the fuse 1 is greater than a predetermined value, the temperature finally rises to the temperature of the softening or melting point, as a result of which the contact between the fuse element 7 and the contact elements 5 and thus the current flow the consumer is interrupted.
  • the securing element 7 on its side facing the contact elements 5 by a resilient element 11, for example, a coil spring, which deals with the supports the other end against the side of the carrier 3 facing it.
  • a resilient element 11 for example, a coil spring
  • the securing element 7 is lifted safely and permanently from the contact elements 5.
  • the fuse 1 comprise a housing, not shown, so that the fuse element 7 after triggering the fuse against one Inner wall of the housing can be pressed and fixed in this position.
  • connection can of course also be selected, which depend the temperature of the elements or the connection when exceeded guarantee a release of the connection of a threshold value.
  • Fig. 2 shows the fuse in Fig. 1, which is additionally heated.
  • Any heating source can of course be used for heating, for example an external resistance heater or one on an exothermic one chemical reaction based heater can be used.
  • a resistor 13 is connected to the output-side contact element 5, which dissipates a certain current I h against dimensions.
  • This additional heating current I h which is additionally conducted to the consumer current I a via fuse 1, causes additional heating of contact elements 5 or fuse element 7 and contact areas 9.
  • the value of resistor 13 is selected such that the The voltage of the battery, not shown in more detail, which is applied to the input-side contact element 5, is not influenced or is influenced only to an insignificant extent, so that the open-circuit voltage of the battery is practically available on the output side of the fuse without load from a consumer.
  • the value of the resistor 13 is selected such that a heating current I h results which, in normal operation, leads to a predetermined temperature of the contact elements 5 or of the fuse element 7 and thus of the contact areas 9. The closer this temperature is to the softening or melting point of the solder or the connecting means, the lower the nominal current of the fuse 1. In this way, it is possible to select different nominal currents with one and the same fuse simply by choosing the resistor 13 realize. In addition, there is the possibility of making the resistance changeable or controllable, so that the nominal current of the fuse 1 can be changed depending on certain circumstances.
  • the resistor 13 is the Series connection of a controllable switch 15 and a resistor 17 in parallel switched.
  • the resistor 17 may also be omitted if the electrical connections between the relevant contact element 5 and the dimensions or the structure of the controllable switch 15 a short-circuit current or the controllable switch already has a corresponding internal resistance having.
  • the controllable switch 15 can be controlled by an evaluation and control unit 19.
  • the evaluation and control unit 19 is connected to corresponding inputs with the contact elements 5, so that the voltage drop across the fuse 1 can be determined in this way. If the fuse is designed such that it has a suitable resistance value for a shunt due to a suitable choice of the materials and geometry of the contact elements 5 of the fuse element 7 and of the connections in the regions 9, then the voltage drop to the consumer detected from the fuse 1 can be flowing current I a can be determined. In this context, it should be noted that the current I a at the output of the fuse 1 is practically not falsified by the voltage measurement.
  • the evaluation and control unit 19 is designed such that it continuously or at predetermined time intervals determines the current I a flowing to the consumer and controls the controllable switch 15 in the closed state when a predetermined threshold is exceeded. Immediately after the switch 15 is closed, the current I a , which is dedicated as being inadmissibly high , is drastically reduced, at least to a value below the threshold value.
  • the choice of the resistor 17 such that the fuse heating current I ha flowing through the switch 15 heats the fuse to such an extent that a triggering results in the advantage that the consumption is safely and permanently disconnected from the power source .
  • FIG. 2 the possibility of use shown in FIG. 2 can be used of a controllable switch can also be implemented when no additional Heating of the fuse is provided in normal operation via a resistor 13 is.
  • a controllable switch can also be located in the current path to the consumer be provided, the current after detecting an impermissibly high Value interrupts. This may turn out to be necessary, for example, if the consumer has a very low impedance, so that at closing the switch to generate the tripping heating current to the consumer is not reduced to a permissible (minimum) value.
  • controllable switch on the current path to the consumer offers also in cases where an external heater for disconnecting the fuse element of the contact elements after a detection of an inadmissible high current to the consumer is activated.
  • Tripping heating elements 21 are provided in recesses in the contact elements 5 in the immediate vicinity of the contact or connection areas 9. These can be controlled by the evaluation and control unit 19, in particular if the evaluation and control unit 19 detects an impermissibly high current I a via the fuse. A rapid triggering of the fuse can thus be ensured, even if the contact resistance of the contact areas 9 and thus the thermal power loss supplied thereby is relatively low.
  • the trigger heating elements 21 can also be designed to be self-triggering be. For example, fabrics can be used that are exceeded a predetermined trigger temperature an exothermic reaction in progress set, which quickly provides the amount of heat required to trip the fuse 1 is supplied.

Landscapes

  • Fuses (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Control Of Resistance Heating (AREA)
EP19990102310 1998-03-04 1999-02-05 Fusible en particulier pour véhicule automobile Expired - Lifetime EP0940835B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE1998109149 DE19809149C2 (de) 1998-03-04 1998-03-04 Sicherung, insbesondere für die Kraftfahrzeugtechnik
DE19809149 1998-03-04

Publications (3)

Publication Number Publication Date
EP0940835A2 true EP0940835A2 (fr) 1999-09-08
EP0940835A3 EP0940835A3 (fr) 1999-11-03
EP0940835B1 EP0940835B1 (fr) 2002-05-22

Family

ID=7859629

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19990102310 Expired - Lifetime EP0940835B1 (fr) 1998-03-04 1999-02-05 Fusible en particulier pour véhicule automobile

Country Status (8)

Country Link
US (1) US6445276B2 (fr)
EP (1) EP0940835B1 (fr)
JP (1) JPH11317144A (fr)
KR (1) KR19990077580A (fr)
CN (1) CN1151525C (fr)
BR (1) BR9900841A (fr)
CZ (1) CZ292433B6 (fr)
DE (2) DE19809149C2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2994891A1 (fr) * 2012-09-06 2014-03-07 Valeo Systemes Thermiques Dispositif de chauffage electrique de fluide pour vehicule automobile, circuit de chauffage et appareil de chauffage et/ou de climatisation associes

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6759760B2 (en) * 2002-06-21 2004-07-06 Daimlerchrysler Corporation Method to eliminate shipping fuse handling
DE10248066A1 (de) * 2002-10-09 2004-04-22 E.G.O. Elektro-Gerätebau GmbH Sicherungseinrichtung für eine Heizeinrichtung und Heizeinrichtung
CA2609452A1 (fr) * 2005-05-25 2006-11-30 Callsmart Uk Limited Protection thermique pour installations et raccords electriques
DE102007014339A1 (de) * 2007-03-26 2008-10-02 Robert Bosch Gmbh Thermosicherung für den Einsatz in elektrischen Modulen
DE102007033180B4 (de) 2007-07-13 2010-11-18 Auto-Kabel Management Gmbh Stromunterbrecher für Versorgungsleitungen in Kraftfahrzeugen
JP5034800B2 (ja) * 2007-09-10 2012-09-26 三菱電機株式会社 半導体装置およびそれを備えたインバータシステム
US7969275B2 (en) * 2007-11-14 2011-06-28 Enerdel, Inc. Fuse assembly with integrated current sensing
US20090159354A1 (en) * 2007-12-25 2009-06-25 Wenfeng Jiang Battery system having interconnected battery packs each having multiple electrochemical storage cells
JP4757895B2 (ja) * 2008-03-05 2011-08-24 内橋エステック株式会社 保護素子
JP4943359B2 (ja) * 2008-03-05 2012-05-30 内橋エステック株式会社 保護素子
JP4943360B2 (ja) * 2008-03-05 2012-05-30 内橋エステック株式会社 保護素子
JP4757898B2 (ja) * 2008-05-23 2011-08-24 内橋エステック株式会社 保護素子
EP2409312B1 (fr) * 2009-05-21 2014-10-01 BYD Company Limited Dispositif de fusible pour courant et ensemble batterie le comprenant
JP4757931B2 (ja) * 2009-05-22 2011-08-24 内橋エステック株式会社 保護素子
DE102009042916A1 (de) 2009-09-24 2011-04-07 Dbk David + Baader Gmbh Schmelzsicherung
US8531263B2 (en) * 2009-11-24 2013-09-10 Littelfuse, Inc. Circuit protection device
CN201780951U (zh) * 2010-04-29 2011-03-30 比亚迪股份有限公司 一种新型熔断器
DE102010038070B4 (de) * 2010-08-06 2012-10-11 Phoenix Contact Gmbh & Co. Kg Thermische Überlastschutzvorrichtung
US20130057380A1 (en) * 2011-09-07 2013-03-07 Tsung-Mou Yu Protection device for circuit
DE102011084593A1 (de) * 2011-10-17 2013-04-18 Robert Bosch Gmbh Stromtrennvorrichtung
CN107719294A (zh) * 2011-12-06 2018-02-23 麦格纳覆盖件有限公司 致动机构
KR101388354B1 (ko) * 2012-11-26 2014-04-24 스마트전자 주식회사 비정상상태의 전류 및 전압을 차단하는 복합보호소자
KR101401141B1 (ko) * 2012-11-26 2014-05-30 스마트전자 주식회사 비정상상태의 전류 및 전압을 차단하는 복합보호소자
US9490093B2 (en) * 2013-07-12 2016-11-08 Eaton Corporation Fuse and trip mechanism therefor
DE102015108758A1 (de) * 2014-06-13 2015-12-17 Smart Electronics Inc. Komplexe Schutzvorrichtung
DE102014109982B4 (de) 2014-07-16 2018-02-08 Borgwarner Ludwigsburg Gmbh Thermische Sicherung und Leiterplatte mit thermischer Sicherung
TW201930837A (zh) 2017-09-05 2019-08-01 美商力特福斯股份有限公司 溫度感應膠帶
US11300458B2 (en) * 2017-09-05 2022-04-12 Littelfuse, Inc. Temperature sensing tape, assembly, and method of temperature control
DE102017125208B4 (de) * 2017-10-27 2021-08-12 Auto-Kabel Management Gmbh Elektrisches Sicherungselement sowie Verfahren zum Betreiben eines elektrischen Sicherungselementes
US10446345B2 (en) * 2018-01-09 2019-10-15 Littelfuse, Inc. Reflowable thermal fuse
US11749484B2 (en) * 2018-05-10 2023-09-05 Eaton Intelligent Power Limited Circuit protector arc flash reduction system with parallel connected semiconductor switch
US11049685B2 (en) 2018-05-10 2021-06-29 Eaton Intelligent Power Limited Circuit protector arc flash reduction system with parallel connected semiconducor switch
DE102018213522B4 (de) * 2018-08-10 2022-06-02 Siemens Aktiengesellschaft Schmelzsicherung, Sicherungskörper, System und Verfahren
DE102018129679B4 (de) 2018-11-26 2020-07-30 Phoenix Contact Gmbh & Co. Kg Überspannungsschutzvorrichtung mit thermischer Überlastschutzvorrichtung
JP7173902B2 (ja) * 2019-03-05 2022-11-16 デクセリアルズ株式会社 保護素子
US11811272B2 (en) 2019-09-27 2023-11-07 Black & Decker, Inc. Electronic module having a fuse in a power tool
US11631565B2 (en) * 2020-11-10 2023-04-18 Science Applications International Corporation Thermal fuse

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE708704C (de) * 1935-03-07 1941-07-26 Siemens Schuckertwerke Akt Ges Unterbrechungseinrichtung fuer elektrische Stromkreise
US3958206A (en) * 1975-06-12 1976-05-18 General Electric Company Chemically augmented electrical fuse
DE3234826A1 (de) * 1982-09-21 1984-03-22 Loewe Opta Gmbh, 8640 Kronach Thermo-sicherungselement
US4677412A (en) * 1982-07-28 1987-06-30 Dan Sibalis Energy supplemented electrical fuse
US5084691A (en) * 1990-10-01 1992-01-28 Motorola, Inc. Controllable fuse
DE19527997A1 (de) * 1995-07-31 1997-02-06 Bayerische Motoren Werke Ag Sicherungsvorrichtung für einen Stromkreis in Fahrzeugen

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE543091C (de) * 1932-02-01 Siemens Schuckertwerke Akt Ges Schmelzsicherungspatrone mit einer Weichloetstelle zwischen zwei Schmelzleitern
DE668300C (de) * 1936-09-23 1938-11-30 Hermann Muth Dipl Ing Elektrische Sicherungseinrichtung fuer grosse Stromstaerken
DE693608C (de) * 1939-03-28 1940-07-16 Wickmann Werke Akt Ges Glaspatronensicherung mit verzoegerter Abschaltung
US2300142A (en) * 1940-06-11 1942-10-27 Chase Shawmut Co Fusible electric protective device
DE720373C (de) * 1940-09-14 1942-05-04 Efen Elektrotech Fab Feinsicherung fuer groessere Stromstaerken
US3931602A (en) * 1970-08-10 1976-01-06 Micro Devices Corporation Thermal limiter for one or more electrical circuits and method of making the same
US3763454A (en) * 1972-02-22 1973-10-02 Tektronix Inc Thermal switch
US4451814A (en) * 1982-06-14 1984-05-29 Fasco Controls Corporation Non-resettable thermal fuse
US4494104A (en) * 1983-07-18 1985-01-15 Northern Telecom Limited Thermal Fuse
US4808960A (en) * 1987-11-06 1989-02-28 Therm-O-Disc, Incorporated Thermal cutoff heater
JP2820703B2 (ja) * 1989-01-25 1998-11-05 株式会社オリエント 温度電流感知器
US5097247A (en) * 1991-06-03 1992-03-17 North American Philips Corporation Heat actuated fuse apparatus with solder link
DE4219554A1 (de) * 1992-06-15 1993-12-16 Siemens Ag Thermosicherung und Verfahren zu ihrer Aktivierung
US5793274A (en) * 1996-11-01 1998-08-11 Bourns, Inc. Surface mount fusing device
GB2320984A (en) * 1997-01-04 1998-07-08 Rover Group Electrical fuses

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE708704C (de) * 1935-03-07 1941-07-26 Siemens Schuckertwerke Akt Ges Unterbrechungseinrichtung fuer elektrische Stromkreise
US3958206A (en) * 1975-06-12 1976-05-18 General Electric Company Chemically augmented electrical fuse
US4677412A (en) * 1982-07-28 1987-06-30 Dan Sibalis Energy supplemented electrical fuse
DE3234826A1 (de) * 1982-09-21 1984-03-22 Loewe Opta Gmbh, 8640 Kronach Thermo-sicherungselement
US5084691A (en) * 1990-10-01 1992-01-28 Motorola, Inc. Controllable fuse
DE19527997A1 (de) * 1995-07-31 1997-02-06 Bayerische Motoren Werke Ag Sicherungsvorrichtung für einen Stromkreis in Fahrzeugen

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2994891A1 (fr) * 2012-09-06 2014-03-07 Valeo Systemes Thermiques Dispositif de chauffage electrique de fluide pour vehicule automobile, circuit de chauffage et appareil de chauffage et/ou de climatisation associes
WO2014037243A1 (fr) * 2012-09-06 2014-03-13 Valeo Systemes Thermiques Dispositif de chauffage électrique de fluide pour véhicule automobile, circuit de chauffage et appareil de chauffage et/ou de climatisation associés

Also Published As

Publication number Publication date
CN1228604A (zh) 1999-09-15
DE19809149C2 (de) 2001-09-27
CZ292433B6 (cs) 2003-09-17
EP0940835B1 (fr) 2002-05-22
BR9900841A (pt) 1999-12-21
US6445276B2 (en) 2002-09-03
CN1151525C (zh) 2004-05-26
EP0940835A3 (fr) 1999-11-03
DE19809149A1 (de) 1999-09-09
KR19990077580A (ko) 1999-10-25
CZ74999A3 (cs) 1999-09-15
JPH11317144A (ja) 1999-11-16
DE59901479D1 (de) 2002-06-27
US20010020888A1 (en) 2001-09-13

Similar Documents

Publication Publication Date Title
EP0940835A2 (fr) Fusible en particulier pour véhicule automobile
DE112008003792B4 (de) Temperaturschalter
EP1019934B1 (fr) Circuit et procede de fonctionnement d'un fusible
DE102008057166B4 (de) Elektrische Schaltung mit Übertemperaturschutz
EP2126950A1 (fr) Élément en alliage fusible, fusible thermique comportant un tel élément en alliage fusible et procédé de fabrication d'un fusible thermique
EP1004130B1 (fr) Element fusible pour installations electriques, ainsi que procede et circuit pour actionner un element fusible
DE102008013447A1 (de) Überspannungsableiter mit einem Gehäuse und mindestens einem Ableitelement
EP1040495B1 (fr) Coupe-circuit electrique
DE102016211621A1 (de) Schmelzleiter und Überstrom-Schutzeinrichtung
EP2697881B1 (fr) Dispositif de coupure à deux étages
DE19735552A1 (de) Sicherungselement für elektrische Anlagen
DE3932602C1 (fr)
DE19827374C2 (de) Sicherungselement für elektrische Anlagen
WO1999060595A1 (fr) Fusible de securite electrique muni d'un dispositif de rupture pilotable
EP0829939A2 (fr) Circuit avec protection contre une surintensité d'un relais
DE10311090A1 (de) Thermische Sicherung
DE3441870A1 (de) Einrichtung zur erfassung und beseitigung von stoerlichtboegen
DE102017105029A1 (de) Abschaltelement und Überspannungsschutzanordnung
DE19946826A1 (de) Sicherungsvorrichtung
DE102017113558A1 (de) Überspannungsschutzanordnung
DE1950768C (de) Elektrischer Zigarrenanzünder
DE102019119434A1 (de) Steckervorrichtung zum elektrischen Verbinden einer ersten elektrischen Leitung mit einer zweiten elektrischen Leitung, sowie Verfahren
DE2929489C2 (de) Einstellbarer Widerstand
DE102017006520A1 (de) Sicherung, insbesondere für einen Verbraucher
DE102014203897A1 (de) Kraftstoffheizer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE ES FR GB IT PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19991215

AKX Designation fees paid

Free format text: DE ES FR GB IT PT SE

17Q First examination report despatched

Effective date: 20010227

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20020522

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59901479

Country of ref document: DE

Date of ref document: 20020627

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020822

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020822

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021128

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030225

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090106

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090206

Year of fee payment: 11

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100205

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20101029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100205

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140227

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59901479

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150901