EP0929991B1 - Foyer de cuisson a detection de la presence d'un recipient - Google Patents

Foyer de cuisson a detection de la presence d'un recipient Download PDF

Info

Publication number
EP0929991B1
EP0929991B1 EP98924402A EP98924402A EP0929991B1 EP 0929991 B1 EP0929991 B1 EP 0929991B1 EP 98924402 A EP98924402 A EP 98924402A EP 98924402 A EP98924402 A EP 98924402A EP 0929991 B1 EP0929991 B1 EP 0929991B1
Authority
EP
European Patent Office
Prior art keywords
sensor
cooker
cooker according
rim
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98924402A
Other languages
German (de)
English (en)
Other versions
EP0929991A1 (fr
Inventor
René Thomson-CSF Propriété Intel. CORNEC
Jean-Yves Thomson-CSF Propriété Intel. GASPARD
Thierry Thomson-CSF Propriété Intel. HELARY
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brandt Industries SAS
Original Assignee
Brandt Industries SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brandt Industries SAS filed Critical Brandt Industries SAS
Publication of EP0929991A1 publication Critical patent/EP0929991A1/fr
Application granted granted Critical
Publication of EP0929991B1 publication Critical patent/EP0929991B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/68Heating arrangements specially adapted for cooking plates or analogous hot-plates
    • H05B3/74Non-metallic plates, e.g. vitroceramic, ceramic or glassceramic hobs, also including power or control circuits
    • H05B3/746Protection, e.g. overheat cutoff, hot plate indicator
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2213/00Aspects relating both to resistive heating and to induction heating, covered by H05B3/00 and H05B6/00
    • H05B2213/05Heating plates with pan detection means

Definitions

  • the present invention relates to a cooking stove for example placed under an insulating plate, hearth for which it is desired to detect the presence of an electrically conductive container for example placed on the insulating plate. This detection can be used to start the fireplace only when it is partially or completely covered by a container. This technique is commonly used for radiant or halogen fires.
  • a known hearth is described in European patent EP 0490289.
  • This hearth comprises, in its insulating edge, an inductive detection coil around the hearth.
  • This fireplace is intended to be placed under an insulating plate, for example glass-ceramic.
  • an electrical conductive container for example placed on the insulating plate, covers this coil, the value of its inductance is modified and the container can thus be detected.
  • the main disadvantage of this type of focus is that the coil can detect only containers having a diameter at least equal to that of the coil. Indeed, it is found that the value of the inductance of such a coil increases substantially only when the coil is almost covered by the container. A container of smaller diameter than that of the coil can not be detected.
  • US Pat. No. 4,319,109 Another means used to detect the presence of a container and to know its diameter is described in US Pat. No. 4,319,109.
  • the device describes a series of point sensors, for example inductive, placed radially on the hearth. Each sensor responds when covered by a container. When the sensor or sensors located near the center of the fireplace are covered, the presence of a small container is detected and when the sensors further from the center are covered, the presence of a larger container is detected.
  • This device has the disadvantage of requiring a large number of sensors to accurately know the diameter of the container covering the home, which multiplies the electrical connections of these sensors and which complicates the processing of the various information from the sensors.
  • the knowledge of the diameter of the container is interesting, because it allows for example, to start the home, depending on the diameter of the container, to a power less than the maximum power of the home.
  • the present invention aims to overcome the disadvantages described above by using an inductive sensor placed on a radial direction of the focus, sensor sufficiently elongated to detect the presence and to know the diameter of a container covering it.
  • the cooking chamber comprising a bottom, a heating element disposed on the bottom and at least one inductive sensor capable of detecting the presence of an electrically conductive container, the inductive sensor comprising a coil comprising at least one coil, is characterized in that the turn is elongated substantially in a radial direction of the hearth.
  • the principle of the invention is based on the use of an elongated inductive sensor.
  • a preferred example of winding shape of the electrical conductor forming a coil used to make the sensor is given in FIG. 1.
  • the winding is in a plane, that of FIG. 1.
  • an electrical conductor 2 for example wraps around a rectangle 3 whose large side is significantly larger than the short side. This first turn forms a first elongated turn.
  • An example of a rectangle with a large side of about 50 mm and a small side of 5 mm can be given.
  • the driver After a first turn of the rectangle 3 performed, the driver winds several times around himself while keeping sufficient electrical insulation, to a second end 4, thus forming several elongated turns, this as many times as necessary for obtain a desired inductance value.
  • a coil comprising 11 turns around the Rectangle 3 having the dimensions given above gives a value of no-load inductance of the order of 10 ⁇ H.
  • a first method is to cut such a metal chemically and immobilize between two thin layers of electrical insulation, such as mica, to form a sensor.
  • Mica has been proposed here for its good temperature resistance. Indeed, such a sensor can be subjected to maximum temperatures of the order of 500 ° C.
  • the connection can be made by means of electrical wiring wires electrically welded to the metal surfaces.
  • the metal which constitutes the coil is chosen for example for its good temperature qualities so that the value of the inductance varies as little as possible with the temperature. By way of example, mention may be made of an alloy of aluminum and chromium.
  • This method has the advantage of providing a very thin sensor, for example of the order of 100 microns which can be subsequently pressed against the insulating plate under which is for example the cooking chamber.
  • a second method for producing this sensor consists of producing, for example by molding in a support, a groove which extends in the shape that is to be given to the electrical conductor 2. It is then sufficient to deposit in this groove an electric wire bare. The isolation between turns is here obtained by the distance separating two grooves.
  • the support may for example be made of vermiculite.
  • a third method for producing this sensor consists in producing on a support a serigraphy of conductive ink.
  • the pattern of this screen printing is that which is described in FIG. 1.
  • the material of the support must be sufficiently smooth and not very porous, such as for example magnesium cement, to allow screen printing.
  • the shape of the coil, described in Figure 1 allows to press the sensor against the insulating plate.
  • This has the advantage of a sensor as close as possible to the container to be detected. Which improves his sensitivity.
  • Another advantage is that the sensor will monitor the temperature of the container through the insulating plate.
  • the resistance of an electrical conductor varies as a function of its temperature. It is possible to use this property to know the temperature of the container by measuring the resistance of the sensor.
  • the driver can choose a material whose resistance varies greatly depending on the temperature such as a low-alloy copper alloy. If on the contrary, we do not wish to take advantage of this advantage, we will choose for the driver a material whose resistance varies little depending on the temperature such as a particular alloy of copper and nickel called constantan.
  • FIG. 2 Another example of the winding form of the electrical conductor of a coil is given in FIG. 2.
  • an insulated electrical conductor is wound on one or more layers around an elongated section mandrel. .
  • the elongate section is for example a rectangle of length 60 mm and width 15 mm.
  • Figure 2 is shown in strong line an electrical conductor 2 wound on the mandrel cited above but not shown.
  • four turns are represented on a single layer.
  • the electrical conductor 2 extends beyond both ends 1 and 4 of the winding.
  • the two extensions 5, each beyond one of the ends 1 and 4 can be used for the electrical connection of the sensor.
  • FIG. 3 shows the mounting of a sensor in a radiant fire. It is understood that the radiant focus is given here by way of example: we can use such a sensor for any type of home, such as a halogen fireplace.
  • the hearth described in FIG. 3 comprises a plate 10 shaped disk forming the bottom of the hearth.
  • This plate 10 is usually made of thermal insulating material.
  • the periphery of this plate 10 is raised by a border 11, edge also made of thermal insulating material.
  • the upper part of this border 11 defines a plane which subsequently will preferably be in contact with the insulating plate which covers the hearth.
  • an electrical resistor 12 forming the heating element of the hearth. This resistor is connected to a power supply by means of two tongues 13.
  • the hearth may also comprise, as is usual, a temperature limiter device 14 in order to prevent the internal temperature of the hearth from exceeding an upper limit.
  • This limiter device comprises for example a rod 15 whose inner element expands with the increase in internal temperature of the hearth. When the expansion of this internal element reaches a given value, this entails the switching of a bimetallic switch located inside a cover 16 and, consequently, this makes it possible to cut off the power supply of the resistor 12.
  • This switch can be connected in series between the resistor 12 and one of the terminals of the electric supply of the hearth.
  • the hearth also comprises a mound 17 placed on the plate 10.
  • This mound 17 has substantially a parallelepipedal shape, one end 18 is preferably located in the vicinity of the edge 11.
  • the end 19 opposite 18 is substantially located in the center of the hearth, so that the mound 17 extends substantially in a radial direction of the hearth.
  • This mound 17 serves to support a sensor 20 on which it is positioned so that the direction, in which the turns of the sensor 20 are elongate, is substantially coincidental with the radial direction of the focus on which the mound 17 is positioned.
  • the thickness of the mound 17 measured perpendicularly to the plate 10 is substantially equal to that of the edge 11 so that the surface of the sensor 20 opposite the surface with which it is in contact with the mound 17 is substantially in the same elevated plane of the border 11, so that the sensor 20 and the edge 11 are in contact with the insulating plate which preferably covers the fireplace in a range or a hob. It is possible to provide an imprint in the border to position the sensor 20. An end 21 of the sensor perpendicular to the radial direction is substantially positioned on the edge 11. The opposite end 22 is on a concentric circle 23 of the border 11. To facilitate the realization of the focus, the material of the mound 17 is advantageously the same as that of the border 11. auxiliary function of the mound 17 is to serve as support for the rod 15, this rod being then positioned between the mound 17 and the edge 11 for example in another radial direction than that on which the mound 17 extends.
  • an electrically conductive container for example metal
  • it may, depending on its diameter, partially or completely cover the sensor 20.
  • a container of diameter greater than or equal to that of the focus will completely cover the sensor 20.
  • a container of diameter between the diameter of the circle 23 and the diameter of the edge will partially cover the sensor 20 and a container of diameter less than the diameter of the circle 23 will not cover the sensor.
  • the frequency of which is for example 500 kHz
  • the use of such a frequency makes it possible to obtain a reduction in the value of the inductance of the sensor 20 for magnetic or non-magnetic containers. It will thus be possible to determine in the same way the presence of a container comprising an electrically conductive material such as, for example, aluminum alloy, stainless steel or ferritic steel.
  • An example of expected value for the inductance of the sensor 20 is of the order of 8 ⁇ H when the sensor 20 is completely covered and of the order of 10 ⁇ H when it is not covered.
  • a partial overlap gives a value of the intermediate inductance between the two extreme values mentioned above.
  • the knowledge of the diameter of a container covering the hearth can for example be used to modulate the electrical power delivered to the resistor 12. For example, it is possible to reduce the power when the diameter of the container is smaller than the diameter of the edge.
  • FIG. 4 shows the mounting of a sensor in a radiant heater where all the elements of the hearth described in FIG. 3 are found.
  • the hearth described in FIG. 4 has a diameter smaller than that described in FIG. 3.
  • a value of 220 mm can be given for the diameter of the hearth of figure 3 and 160 mm for the diameter of the hearth figure 4.
  • the senor 20 is formed of one or more elongated turns, that is to say of sufficient length to detect a container dimension in a range compatible with the dimensions of the focus.
  • the length of the sensor 20 is at least three times greater than its width.
  • the hearth shown in Figure 3 whose diameter is 220 mm, can heat a container whose diameter would be less than 160 mm.
  • the sensor 20 will automatically detect any metallic container of diameter greater than 160 mm and the power control of the hearth can be done according to the information delivered by the sensor.
  • FIG. 5 shows the mounting of a sensor in a radiant heater having two separate heating circuits. These two circuits are concentric. One, 30, is in the center: it is bounded at its periphery by a border 31. The other, 32, is concentric with the heating circuit 30 and is bounded at its periphery by a border 33.
  • This fireplace also has tabs 13 power supply of the heating circuits and a temperature limiter device 14 itself comprising a cane 15 and a hood 16.
  • This hearth further comprises a mound 34 carrying a sensor 20. This mound is, as for the foci shown in FIGS. 3 and 4, oriented on a substantially radial direction of the focus. One of its ends 19 is also located substantially in the center of the hearth.
  • the sensor 20 By against the other end 18 is, in Figure 5, located substantially between the borders 31 and 33.
  • the sensor 20 is positioned on the mound 34, one of its ends 21 being disposed in the vicinity of the end 18 of the mound 34.
  • the sensor 20 is thus substantially positioned astride the border 31; it makes it possible to know if a receptacle partially or completely covers the heating circuits 30 and 32. This makes it possible to electrically supply one and / or the other of the heating circuits 30 and 32 as a function of the dimension of the receptacle placed on the hearth .
  • Figure 6 shows, as in Figure 5, the mounting of a sensor in a radiant focus with two separate heating circuits.
  • the heating circuits are not concentric: one 40 is circular, limited by a border 41, the other 42 is positioned on one side of the heating circuit 40 so that the periphery of the grouping of two circuits 40 and 42 have an oblong shape.
  • This type of fireplace is useful when you want to be able to heat on the same fireplace a circular container or an elongated container such as a fishmonger.
  • the sensor 20 is substantially positioned astride the edge 41 in its zone separating the heating circuits 40 and 42.
  • FIGS. 7 and 8 The foci shown in FIGS. 7 and 8 are similar to that shown in FIG. 3.
  • two diametrically opposed sensors 20 have been placed on these foci in FIG. 7, and three sensors arranged at 120 ° in FIG. 8.
  • a small circular mound 50 was added to the center of the hearth. The advantage of these variants is to allow the measurement of the diameter of an off-center container. It is understood that these variants with two or three sensors can be transposed regardless of the size of the fireplace and regardless of the number of heating circuits.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Electric Stoves And Ranges (AREA)
  • Cookers (AREA)
  • Food-Manufacturing Devices (AREA)
  • Adornments (AREA)
  • Seeds, Soups, And Other Foods (AREA)
  • Induction Heating Cooking Devices (AREA)
  • Geophysics And Detection Of Objects (AREA)

Description

  • La présente invention se rapporte à un foyer de cuisson par exemple placé sous une plaque isolante, foyer pour lequel on souhaite détecter la présence d'un récipient conducteur électrique par exemple posé sur la plaque isolante. On peut utiliser cette détection afin de mettre en marche le foyer seulement lorsqu'il est recouvert en partie ou en totalité par un récipient. Cette technique est couramment employée pour des foyers radiants ou halogènes.
  • Un foyer connu est décrit dans le brevet européen EP 0490289. Ce foyer comporte, dans sa bordure isolante, une bobine inductive de détection faisant le tour du foyer. Ce foyer est prévu pour être placé sous une plaque isolante, par exemple vitrocéramique. Lorsqu'un récipient conducteur électrique, par exemple posé sur la plaque isolante, recouvre cette bobine, la valeur de son inductance est modifiée et le récipient peut ainsi être détecté. Le principal inconvénient de ce type de foyer est que la bobine ne peut détecter que des récipients ayant un diamètre au moins égal à celui de la bobine. En effet, on constate que la valeur de l'inductance d'une telle bobine n'évolue de façon sensible que lorsque la bobine est quasiment recouverte par le récipient. Un récipient de diamètre inférieur à celui de la bobine ne peut donc pas être détecté. Un autre inconvénient de ce type de foyer est qu'il est nécessaire de prévoir une taille de bobine pour une taille de foyer. En général, dans une cuisinière ou dans une table de cuisson à usage domestique, on trouve plusieurs foyers de tailles différentes, ce qui impose de multiplier les outillages de réalisation des différentes bobines et augmente en conséquence le coût de réalisation de tels ensembles à plusieurs foyers. Lorsque la détection de présence de récipient est utilisée pour mettre en marche le foyer, on comprend qu'un tel foyer ne puisse pas être mis en marche lorsque le récipient est d'un diamètre légèrement inférieur à celui du foyer. Plus précisément, on peut citer à titre d'exemple un foyer de diamètre 220 mm, ce foyer possédant dans sa bordure une bobine de détection. On constate que la bobine ne détecte pas la présence d'un récipient de diamètre inférieur ou égal à 180 mm.
  • Un autre moyen utilisé pour détecter la présence d'un récipient et connaître son diamètre est décrit dans le brevet US 4 319 109. Le dispositif décrit une série de capteurs ponctuels, par exemple inductifs, placés de façon radiale sur le foyer. Chaque capteur réagit lorsqu'il est recouvert par un récipient. Lorsque le ou les capteurs situés près du centre du foyer sont recouverts, on détecte la présence d'un petit récipient et lorsque les capteurs plus éloignés du centre sont recouverts, on détecte la présence d'un récipient plus grand. Ce dispositif présente l'inconvénient de nécessiter un grand nombre de capteurs pour connaître avec précision le diamètre du récipient recouvrant le foyer, ce qui multiplie les raccordements électriques de ces capteurs et ce qui complique le traitement des différentes informations issues des capteurs.
  • Néanmoins, la connaissance du diamètre du récipient est intéressante, car elle permet par exemple, de mettre en marche le foyer, en fonction du diamètre du récipient, à une puissance inférieure à la puissance maximale du foyer.
  • La présente invention a pour but de pallier les inconvénients décrits précédemment en utilisant un capteur inductif placé sur une direction radiale du foyer, capteur suffisamment allongé pour détecter la présence et connaître le diamètre d'un récipient le recouvrant.
  • Plus précisément, le foyer de cuisson comportant un fond, un élément chauffant disposé sur le fond et au moins un capteur inductif capable de détecter la présence d'un récipient conducteur électrique, le capteur inductif comportant une bobine comprenant au moins une spire, est caractérisé en ce que la spire est de forme allongée sensiblement suivant une direction radiale du foyer.
  • L'invention sera mieux comprise et d'autres caractéristiques apparaîtront à l'aide de la description ci-après et des dessins joints où :
    • la figure 1 représente schématiquement un exemple de conducteur électrique formant la bobine de détection, conducteur sensiblement enroulé dans un plan ;
    • la figure 2 représente schématiquement un autre exemple de conducteur électrique formant la bobine de détection, conducteur enroulé autour d'un mandrin rectangulaire ;
    • la figure 3 représente un foyer de cuisson en vue de dessus comportant un capteur inductif ;
    • la figure 4 représente un foyer de cuisson en vue de dessus, plus petit que le foyer de cuisson représenté figure 3 et comportant un capteur inductif identique à celui représenté figure 3 ;
    • la figure 5 représente en vue de dessus, un foyer de cuisson à deux circuits chauffants concentriques et séparés, comportant un capteur inductif ;
    • la figure 6 représente en vue de dessus, un foyer de cuisson à deux circuits chauffants séparés, ce foyer étant prévu pour chauffer des récipients de forme oblongue ou ronde ;
    • la figure 7 représente un foyer de cuisson en vue de dessus comportant deux capteurs inductifs ;
    • la figure 8 représente un foyer de cuisson en vue de dessus comportant trois capteurs inductifs.
  • Pour plus de simplicité, on désignera dans les différentes figures les mêmes éléments par les mêmes repères topologiques.
  • Le principe de l'invention est basé sur l'utilisation d'un capteur inductif allongé. Un exemple préférentiel de forme d'enroulement du conducteur électrique formant une bobine utilisée pour réaliser le capteur est donné figure 1. Dans cet exemple, l'enroulement se fait dans un plan, celui de la figure 1. A partir d'une première extrémité 1, un conducteur électrique 2 s'enroule par exemple autour d'un rectangle 3 dont le grand côté est nettement plus grand que le petit côté. Ce premier tour forme une première spire allongée. On peut donner un exemple de rectangle dont le grand côté mesure environ 50 mm et le petit côté, 5 mm. Après un premier tour du rectangle 3 effectué, le conducteur s'enroule plusieurs fois autour de lui-même tout en gardant un isolement électrique suffisant, jusqu'à une deuxième extrémité 4, formant ainsi plusieurs spires allongées, ceci autant de fois que nécessaire pour obtenir une valeur d'inductance désirée. A titre d'exemple on peut citer qu'une bobine comportant 11 spires autour du rectangle 3 ayant les dimensions données précédemment donne une valeur d'inductance à vide de l'ordre de 10 µH.
  • On peut envisager plusieurs méthodes pour réaliser une telle forme de bobine. Une première méthode consiste à découper par exemple chimiquement un métal et à l'immobiliser entre deux couches fines d'isolant électrique, comme par exemple du mica, pour former un capteur. Le mica a ici été proposé pour sa bonne tenue en température. En effet, un tel capteur peut être soumis à des températures maximales de l'ordre de 500° C. Afin de raccorder électriquement le capteur, on peut par exemple prévoir à chacune des extrémités 1 et 4 une plage de métal plus large que le conducteur électrique 2. Afin de tenir aux températures citées précédemment, on pourra effectuer le raccordement au moyen de fils électriques de câblage soudés électriquement sur les plages de métal. Par ailleurs on choisit le métal qui constitue la bobine par exemple pour ses bonnes qualités en température afin que la valeur de l'inductance varie le moins possible avec la température. On peut citer à titre d'exemple un alliage d'aluminium et de chrome.
  • Cette méthode présente l'avantage de procurer un capteur très peu épais, par exemple de l'ordre de 100 µm qui peut être par la suite plaqué contre la plaque isolante sous laquelle se trouve par exemple le foyer de cuisson.
  • Une deuxième méthode pour réaliser ce capteur consiste à réaliser, par exemple par moulage dans un support, une rainure qui s'étend suivant la forme que l'on veut donner au conducteur électrique 2. Il suffit ensuite de déposer dans cette rainure un fil électrique nu. L'isolement entre spires est ici obtenu par la distance séparant deux rainures. Le support peut par exemple être réalisé en vermiculite.
  • Une troisième méthode pour réaliser ce capteur consiste à réaliser sur un support une sérigraphie d'encre conductrice. Le motif de cette sérigraphie est celui qui est décrit figure 1. Le matériau du support doit être suffisamment lisse et peu poreux, comme par exemple le ciment magnésien, pour permettre la sérigraphie.
  • Il est bien entendu que les trois méthodes décrites précédemment ne sont pas limitatives. La caractéristique de ce premier exemple de forme de bobine est de réaliser toutes les spires de la bobine de façon sensiblement coplanaire.
  • Dans le cas où le foyer est placé sous une plaque isolante, par exemple en vitrocéramique, la forme de la bobine, décrite figure 1, permet de plaquer le capteur contre la plaque isolante. Ceci présente l'avantage d'un capteur le plus proche possible du récipient à détecter. Ce qui améliore sa sensibilité. Un autre avantage est que le capteur va suivre la température du récipient à travers la plaque isolante. Or, on sait que la résistance d'un conducteur électrique varie en fonction de sa température. Il est possible d'utiliser cette propriété pour connaître la température du récipient en mesurant la résistance du capteur. On pourra choisir pour le conducteur un matériau dont la résistance varie fortement en fonction de la température comme par exemple un alliage faiblement allié de cuivre. Si au contraire, on ne souhaite pas profiter de cet avantage, on choisira pour le conducteur un matériau dont la résistance varie peu en fonction de la température comme par exemple un alliage particulier de cuivre et de nickel appelé constantan.
  • Un autre exemple de forme d'enroulement du conducteur électrique d'une bobine est donné figure 2. Dans cet exemple, plus classique pour une bobine, on enroule sur une ou plusieurs couches autour d'un mandrin à section allongée, un conducteur électrique isolé. La section allongée est par exemple un rectangle de longueur 60 mm et de largeur 15 mm. En figure 2 est représenté en trait fort un conducteur électrique 2 enroulé sur le mandrin cité précédemment mais non représenté. Ici, à titre d'exemple, quatre spires sont représentées sur une seule couche. Le conducteur électrique 2 se prolonge au-delà des deux extrémités 1 et 4 de l'enroulement. Les deux prolongements 5, chacun au-delà d'une des extrémités 1 et 4 peuvent servir au raccordement électrique du capteur.
  • Les isolements classiques des conducteurs électriques tiennent difficilement à des températures de l'ordre de 500° C. Pour pallier cet inconvénient on peut donc prévoir une protection de l'enroulement au moyen d'un matériau isolant thermique.
  • La figure 3 représente le montage d'un capteur dans un foyer radiant. Il est bien entendu que le foyer radiant n'est donné ici qu'à titre d'exemple : on peut utiliser un tel capteur pour tout type de foyer, comme par exemple un foyer halogène. Le foyer décrit figure 3 comporte une plaque 10 en forme de disque formant le fond du foyer. Cette plaque 10 est habituellement réalisée en matériau isolant thermique. La périphérie de cette plaque 10 est surélevée par une bordure 11, bordure également réalisée en matériau isolant thermique. La partie supérieure de cette bordure 11 définit un plan qui par la suite sera de préférence en contact avec la plaque isolante qui recouvre le foyer. Sur cette plaque 10 est disposée une résistance électrique 12 formant l'élément chauffant du foyer. Cette résistance est raccordée à une alimentation électrique au moyen de deux languettes 13. Le foyer peut comporter également, comme il est habituel, un dispositif 14 limiteur de température afin d'éviter que la température interne du foyer ne dépasse une limite supérieure. Ce dispositif limiteur comporte par exemple une canne 15 dont un élément interne se dilate avec l'augmentation de température interne du foyer. Lorsque la dilatation de cet élément interne atteint une valeur donnée, cela entraîne la commutation d'un interrupteur à bilame situé à l'intérieur d'un capot 16 et, par suite, cela permet de couper l'alimentation électrique de la résistance 12. Cet interrupteur peut être monté en série entre la résistance 12 et une des bornes de l'alimentation électrique du foyer.
  • Selon l'invention le foyer comporte aussi un monticule 17 posé sur la plaque 10. Ce monticule 17 a sensiblement une forme parallélépipédique dont une extrémité 18 est de préférence située au voisinage de la bordure 11. L'extrémité 19 opposée à 18 est sensiblement située au centre du foyer, de telle sorte que le monticule 17 s'étend sensiblement selon une direction radiale du foyer. Ce monticule 17 sert de support à un capteur 20 sur lequel il est positionné de telle sorte que la direction, selon laquelle les spires du capteur 20 sont allongées, soit sensiblement confondue avec la direction radiale du foyer sur lequel est positionné le monticule 17. L'épaisseur du monticule 17 mesurée perpendiculairement à la plaque 10 est sensiblement égale à celle de la bordure 11 de sorte que la surface du capteur 20 opposée à la surface avec laquelle il est en contact avec le monticule 17 soit sensiblement dans le même plan surélevé de la bordure 11, ceci afin que le capteur 20 et la bordure 11 soient en contact avec la plaque isolante qui recouvre de préférence le foyer dans une cuisinière ou une plaque de cuisson. Il est possible de prévoir une empreinte dans la bordure afin de positionner le capteur 20. Une extrémité 21 du capteur perpendiculaire à la direction radiale est sensiblement positionnée sur la bordure 11. L'extrémité opposée 22 est sur un cercle 23 concentrique de la bordure 11. Pour faciliter la réalisation du foyer, le matériau du monticule 17 est avantageusement le même que celui de la bordure 11. Une fonction annexe du monticule 17 est de servir de support à la canne 15, cette canne étant alors positionnée entre le monticule 17 et la bordure 11 par exemple sur une autre direction radiale que celle sur laquelle s'étend le monticule 17.
  • Lorsqu'on place un récipient conducteur électrique, par exemple métallique, au-dessus du foyer et de façon concentrique à celui-ci, il peut, suivant son diamètre, recouvrir partiellement ou totalement le capteur 20. Un récipient de diamètre supérieur ou égal à celui du foyer recouvrira complètement le capteur 20. Un récipient de diamètre compris entre le diamètre du cercle 23 et le diamètre de la bordure recouvrira partiellement le capteur 20 et un récipient de diamètre inférieur au diamètre du cercle 23 ne recouvrira pas le capteur.
  • Lorsqu'on applique au capteur un courant électrique dont la fréquence est par exemple de 500 kHz, c'est la présence d'un récipient conducteur électrique au-dessus du capteur 20 qui fait évoluer la valeur de l'inductance du capteur 20. L'utilisation d'une telle fréquence permet d'obtenir une réduction de valeur de l'inductance du capteur 20 pour des récipients magnétiques ou amagnétiques. On pourra donc déterminer de la même façon la présence d'un récipient comportant un matériau conducteur électrique comme par exemple en alliage d'aluminium, en acier inoxydable ou en acier ferritique. Un exemple de valeur attendue pour l'inductance du capteur 20 est de l'ordre de 8 µH lorsque le capteur 20 est complètement recouvert et de l'ordre de 10 µH lorsque celui-ci n'est pas recouvert. Un recouvrement partiel donne une valeur de l'inductance intermédiaire entre les deux valeurs extrêmes précédemment citées.
  • La connaissance du diamètre d'un récipient recouvrant le foyer peut par exemple permettre de moduler la puissance électrique délivrée à la résistance 12. On peut par exemple ainsi réduire la puissance lorsque le diamètre du récipient est inférieur au diamètre de la bordure.
  • La figure 4 représente le montage d'un capteur dans un foyer radiant où l'on retrouve tous les éléments du foyer décrit figure 3. En revanche, le foyer décrit figure 4 a un diamètre inférieur à celui décrit figure 3. On peut donner à titre d'exemple une valeur de 220 mm pour le diamètre du foyer de la figure 3 et 160 mm pour le diamètre du foyer figure 4.
  • On peut par exemple utiliser sur ces deux foyers deux capteurs 20 identiques dont l'une des extrémités 21, est dans les deux figures 3 et 4, positionnée sensiblement sur la bordure 11. On détectera donc dans un foyer tel que représenté figure 4 des récipients plus petits que dans un foyer représenté figure 3. Ceci est bien adapté à une utilisation normale d'une plaque de cuisson comportant plusieurs foyers de tailles différentes où l'on choisit la taille du foyer en fonction du récipient que l'on veut chauffer. L'utilisation d'un même capteur pour des foyers de tailles différentes permet de standardiser le capteur et un dispositif électronique de traitement qui lui est par exemple associé, ce qui permet des gains de coût de production.
  • Ainsi qu'on l'a précisé, le capteur 20 est formé d'une ou plusieurs spires allongées, c'est-à-dire de longueur suffisante pour détecter une dimension de récipient dans une plage compatible avec les dimensions du foyer. Avantageusement la longueur du capteur 20 est au minimum trois fois supérieure à sa largeur. Par exemple, il n'est pas souhaitable que le foyer représenté à la figure 3, dont le diamètre est de 220 mm, puisse chauffer un récipient dont le diamètre serait inférieur à 160 mm. Ainsi, en utilisant sur ce foyer un capteur 20 dont la longueur est de 50 mm, le capteur 20 détectera automatiquement tout récipient métallique de diamètre supérieur à 160 mm et la commande en puissance du foyer pourra se faire en fonction de l'information délivrée par le capteur.
  • La figure 5 représente le montage d'un capteur dans un foyer radiant comportant deux circuits chauffants séparés. Ces deux circuits sont concentriques. L'un, 30, est au centre : il est limité en sa périphérie par une bordure 31. L'autre, 32, est concentrique du circuit chauffant 30 et est limité en sa périphérie par une bordure 33. Ce foyer comporte aussi des languettes 13 d'alimentation électrique des circuits chauffants et un dispositif 14 limiteur de température comportant lui-même une canne 15 et un capot 16. Ce foyer comporte en outre un monticule 34 portant un capteur 20. Ce monticule est, comme pour les foyers représentés figures 3 et 4, orienté sur une direction sensiblement radiale du foyer. Une des ses extrémités 19 est également située sensiblement au centre du foyer. Par contre l'autre extrémité 18 est, en figure 5, située sensiblement entre les bordures 31 et 33. Le capteur 20 est positionné sur le monticule 34, une de ses extrémités 21 étant disposée au voisinage de l'extrémité 18 du monticule 34. Le capteur 20 est ainsi sensiblement positionné à cheval sur la bordure 31 ; il permet de savoir si un récipient recouvre partiellement ou totalement les circuits chauffants 30 et 32. Ceci permet d'alimenter électriquement l'un et/ou l'autre des circuits chauffants 30 et 32 en fonction de la dimension du récipient posé sur le foyer.
  • La figure 6 représente, comme en figure 5, le montage d'un capteur dans un foyer radiant comportant deux circuits chauffants séparés. Par contre, en figure 6 les circuits chauffants ne sont pas concentriques : l'un 40 est circulaire, limité par une bordure 41, l'autre 42 est positionné sur un côté du circuit chauffant 40 de manière à ce que la périphérie du regroupement des deux circuits 40 et 42 ait une forme oblongue. Ce type de foyer trouve son utilité lorsqu'on souhaite pouvoir chauffer sur un même foyer un récipient circulaire ou un récipient allongé comme par exemple une poissonnière. En figure 6, comme en figure 5, le capteur 20 est sensiblement positionné à cheval sur la bordure 41 dans sa zone séparant les circuits chauffants 40 et 42.
  • Les foyers représentés figures 7 et 8 sont semblables à celui représenté figure 3. Par contre on a placé sur ces foyers deux capteurs 20 diamétralement opposés en figure 7, et 3 capteurs disposés à 120° en figure 8. Afin de soutenir la canne 15 du dispositif 14 limiteur de température, on a ajouté un petit monticule 50 circulaire au centre du foyer. L'avantage de ces variantes est de permettre la mesure du diamètre d'un récipient décentré. Il est bien entendu que ces variantes à deux ou trois capteurs peuvent être transposées quelle que soit la taille du foyer et quel que soit le nombre de circuits chauffants.

Claims (13)

  1. Foyer de cuisson comportant un fond (10), un élément chauffant (12 ; 30, 32 ; 40, 42) disposé sur le fond (10) et au moins un capteur inductif (20) capable de détecter la présence d'un récipient conducteur électrique, le capteur inductif (20) comportant une bobine comprenant au moins une spire, le foyer étant caractérisé en ce que la spire est de forme allongée sensiblement suivant une direction radiale du foyer.
  2. Foyer de cuisson selon la revendication 1, caractérisé en ce que la spire est allongée de façon suffisante pour détecter une dimension dudit récipient dans une plage de dimensions compatibles avec les dimensions du foyer.
  3. Foyer de cuisson selon l'une des revendications précédentes, caractérisé en ce que la longueur du capteur inductif (20) est au minimum trois fois supérieure à sa largeur.
  4. Foyer de cuisson selon l'une des revendications précédentes, caractérisé en ce que la spire forme un plan sensiblement parallèle au fond (10) du foyer.
  5. Foyer de cuisson selon l'une des revendications précédentes, caractérisé en ce que toutes les spires de la bobine sont sensiblement coplanaires.
  6. Foyer de cuisson selon la revendication 5, caractérisé en ce qu'il est placé sous une plaque isolante et en ce que le plan est plaqué contre la plaque isolante.
  7. Foyer de cuisson selon l'une quelconque des revendications 4 à 6 caractérisé en ce qu'il comporte une bordure (11 ; 31 ; 41) entourant le foyer et en ce que le capteur (20) est placé sur un monticule (17 ; 34) dont la hauteur est sensiblement voisine de celle de la bordure (11 ; 31 ; 41).
  8. Foyer de cuisson selon la revendication 7, caractérisé en ce que le matériau du monticule (17 ; 34) est le même que celui de la bordure (11 ; 31 ; 41).
  9. Foyer de cuisson selon l'une des revendications précédentes, caractérisé en ce qu'une extrémité du capteur (20) perpendiculaire à la direction radiale du foyer est sensiblement positionnée sur une bordure (11) entourant le foyer.
  10. Foyer de cuisson selon l'une des revendications précédentes, caractérisé en ce que le foyer comporte plusieurs circuits chauffants séparés, (30, 32 ; 40, 42) par une bordure (31 ; 41) et en ce que le capteur (20) est situé à cheval sur la bordure (31 ; 41).
  11. Foyer de cuisson selon l'une des revendications précédentes, caractérisé en ce qu'il comporte plusieurs capteurs (20), ceci afin de permettre la mesure du diamètre d'un récipient décentré.
  12. Foyer de cuisson selon l'une des revendications précédentes, caractérisé en ce que l'enroulement du capteur (20) est déterminé pour obtenir une valeur de l'inductance à vide de l'ordre de 10 µH.
  13. Foyer de cuisson selon l'une des revendications précédentes, caractérisé en ce qu'il comporte des moyens de mesure de la résistance électrique du capteur (20).
EP98924402A 1997-05-07 1998-05-07 Foyer de cuisson a detection de la presence d'un recipient Expired - Lifetime EP0929991B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9705623A FR2763116B1 (fr) 1997-05-07 1997-05-07 Foyer de cuisson a detection de la presence d'un recipient
FR9705623 1997-05-07
PCT/FR1998/000924 WO1998051128A1 (fr) 1997-05-07 1998-05-07 Foyer de cuisson a detection de la presence d'un recipient

Publications (2)

Publication Number Publication Date
EP0929991A1 EP0929991A1 (fr) 1999-07-21
EP0929991B1 true EP0929991B1 (fr) 2006-07-12

Family

ID=9506663

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98924402A Expired - Lifetime EP0929991B1 (fr) 1997-05-07 1998-05-07 Foyer de cuisson a detection de la presence d'un recipient

Country Status (6)

Country Link
EP (1) EP0929991B1 (fr)
AT (1) ATE333203T1 (fr)
DE (1) DE69835197T2 (fr)
ES (1) ES2268778T3 (fr)
FR (1) FR2763116B1 (fr)
WO (1) WO1998051128A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3198200B1 (fr) * 2014-09-24 2023-03-29 BSH Hausgeräte GmbH Plaque de cuisson avec élément de détection et procédé de fabrication d'une plaque de cuisson

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19930830A1 (de) * 1999-07-03 2001-01-18 Dold Gmbh Mes Und Regeltechnik Verfahren und Sensoreinrichtung zur Erfassung der Größe einer Topfbodenfläche über einer Heizzone
DE10305788A1 (de) * 2003-02-06 2004-09-02 E.G.O. Elektro-Gerätebau GmbH Schaltungsanordnung für induktiv arbeitende Sensoren und Verfahren zum Betrieb derselben
GB0426467D0 (en) * 2004-12-02 2005-01-05 Ceramaspeed Ltd Apparatus for detecting abnormal temperature rise associated with a cooking arrangement
EP2194754A1 (fr) * 2008-12-05 2010-06-09 Electrolux Home Products Corporation N.V. Agencement de capteur pour la détection d'un appareil de cuisson
US8350194B2 (en) 2009-01-12 2013-01-08 Samsung Electronics Co., Ltd. Cooking apparatus and heating device including working coils thereof
ES2382431B1 (es) 2009-07-29 2013-05-08 BSH Electrodomésticos España S.A. Aparato de coccion con al menos dos zonas de calentamiento
US9868377B2 (en) * 2015-01-25 2018-01-16 Toyota Motor Engineering & Manufacturing North America, Inc. Vehicle heated cup holder system
DE102017221341A1 (de) * 2017-11-28 2019-05-29 E.G.O. Elektro-Gerätebau GmbH Topferkennungssensor für ein Induktionskochfeld und Induktionskochfeld

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2103910B (en) * 1981-08-08 1985-08-21 Micropore International Ltd Improvements in electric cookers incorporating radiant heaters
DE3733108C1 (en) * 1987-09-30 1989-02-23 Bosch Siemens Hausgeraete Circuit arrangement for a pot (saucepan) recognition system with a pot recognition sensor
DE3736005A1 (de) * 1987-10-23 1989-05-03 Bosch Siemens Hausgeraete Steuereinheit fuer elektronische kochstellen-temperaturregelung mit temperatursensor
DE3934157C2 (de) * 1989-10-12 1999-01-28 Bosch Siemens Hausgeraete Kochmulde
DE4022844C1 (fr) * 1990-07-18 1992-02-27 Schott Glaswerke, 6500 Mainz, De
DE4039501A1 (de) * 1990-12-11 1992-06-17 Ego Elektro Blanc & Fischer Elektrischer heizkoerper, insbesondere strahlheizkoerper

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3198200B1 (fr) * 2014-09-24 2023-03-29 BSH Hausgeräte GmbH Plaque de cuisson avec élément de détection et procédé de fabrication d'une plaque de cuisson

Also Published As

Publication number Publication date
DE69835197D1 (de) 2006-08-24
ES2268778T3 (es) 2007-03-16
DE69835197T2 (de) 2007-07-05
WO1998051128A1 (fr) 1998-11-12
EP0929991A1 (fr) 1999-07-21
ATE333203T1 (de) 2006-08-15
FR2763116A1 (fr) 1998-11-13
FR2763116B1 (fr) 1999-07-30

Similar Documents

Publication Publication Date Title
EP0929991B1 (fr) Foyer de cuisson a detection de la presence d'un recipient
EP1967045B1 (fr) Dispositif inducteur a bobinages individuels multiples pour foyer de cuisson par induction
FR2484646A1 (fr) Detecteur de gaz a couche mince et a semiconducteurs a element de chauffage integre
EP0713350B1 (fr) Foyer de cuisson à inducteur protégé en température
FR2792158A1 (fr) Foyer de cuisson par induction modulable a rayonnement reduit et procede de realisation
EP1137324B1 (fr) Dispositif de chauffage par induction de récipient culinaire
FR2726963A1 (fr) Foyer de cuisson a induction
FR2760931A1 (fr) Ensemble capteur-dispositif de chauffage
EP0412875A1 (fr) Dispositif de mesure de température pour appareil de cuisson à induction et appareil comportant un tel dispositif
EP0498735B2 (fr) Dispositif inducteur, destiné au chauffage par induction de récipients pour la cuisine et procédé de commande d'un tel dispositif
FR2475191A1 (fr) Ensemble chauffant a rayonnement pour cuisinieres a plaque de cuisson lisse
EP2731474B1 (fr) Article culinaire a paroi laterale chauffee et procede
EP0772955B1 (fr) Inducteur et procede de realisation d'un inducteur
EP2445309A1 (fr) Dispositif de mesure de température d'un groupe d'inducteurs d'une table de cuisson à induction et table de cuisson à induction associée
US5589094A (en) Microwave oven employing thermopile type sensor
EP1422972B1 (fr) Elément chauffant blindé à effet CTP
FR2948253A1 (fr) Dispositif de chauffe par induction
EP3711455B1 (fr) Dispositif de limitation ou de régulation en temperature pour un ustensile de cuisine
FR2522242A1 (fr) Plaque de cuisson electrique, de preference cavite de chauffage en vitroceramique
EP0771135B1 (fr) Bobinage inducteur multibrin à toronnage de type Litz pour foyer de cuisson par induction
FR2502750A3 (fr) Ensemble comprenant une sonde de temperature pour des elements de chauffage electriques a rayonnement
EP1017256B1 (fr) Table de cuisson avec capteur de température
EP0188980B1 (fr) Installation utilisable pour la réalisation de plaques de cuisson à chauffage par induction comportant plusieurs foyers réglables séparément et un seul générateur
EP0323937B1 (fr) Structure de support pour capteur de gaz
EP2083608A1 (fr) Appareil de cuisson par induction

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19981224

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT DE DK ES FR GB IT NL

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BRANDT INDUSTRIES

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HELARY, THIERRY, THOMSON-CSF PROPRIETE INTEL.

Inventor name: GASPARD, JEAN-YVES, THOMSON-CSF PROPRIETE INTEL.

Inventor name: CORNEC, RENE, THOMSON-CSF PROPRIETE INTEL.

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE DK ES FR GB IT NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060712

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060712

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060712

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 69835197

Country of ref document: DE

Date of ref document: 20060824

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061012

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060925

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2268778

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070413

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090529

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090529

Year of fee payment: 12

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100507

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: FAGORBRANDT SAS, FR

Effective date: 20110826

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: FAGORBRANDT SAS

Effective date: 20111021

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 69835197

Country of ref document: DE

Representative=s name: PRINZ & PARTNER MBB PATENTANWAELTE RECHTSANWAE, DE

Effective date: 20120322

Ref country code: DE

Ref legal event code: R082

Ref document number: 69835197

Country of ref document: DE

Representative=s name: PRINZ & PARTNER PATENTANWAELTE RECHTSANWAELTE, DE

Effective date: 20120322

Ref country code: DE

Ref legal event code: R081

Ref document number: 69835197

Country of ref document: DE

Owner name: GROUPE BRANDT, FR

Free format text: FORMER OWNER: BRANDT INDUSTRIES, RUEIL MALMAISON, FR

Effective date: 20120322

Ref country code: DE

Ref legal event code: R081

Ref document number: 69835197

Country of ref document: DE

Owner name: FAGORBRANDT SAS, FR

Free format text: FORMER OWNER: BRANDT INDUSTRIES, RUEIL MALMAISON, FR

Effective date: 20120322

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20150525

Year of fee payment: 18

Ref country code: DE

Payment date: 20150612

Year of fee payment: 18

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: GROUPE BRANDT

Effective date: 20160307

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 69835197

Country of ref document: DE

Representative=s name: PRINZ & PARTNER MBB PATENTANWAELTE RECHTSANWAE, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 69835197

Country of ref document: DE

Owner name: GROUPE BRANDT, FR

Free format text: FORMER OWNER: FAGORBRANDT SAS, RUEIL-MALMAISON, FR

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: GROUPE BRANDT, FR

Effective date: 20160420

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69835197

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161201

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20170519

Year of fee payment: 20

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20180507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160508