EP1422972B1 - Elément chauffant blindé à effet CTP - Google Patents

Elément chauffant blindé à effet CTP Download PDF

Info

Publication number
EP1422972B1
EP1422972B1 EP03356160A EP03356160A EP1422972B1 EP 1422972 B1 EP1422972 B1 EP 1422972B1 EP 03356160 A EP03356160 A EP 03356160A EP 03356160 A EP03356160 A EP 03356160A EP 1422972 B1 EP1422972 B1 EP 1422972B1
Authority
EP
European Patent Office
Prior art keywords
heating
food
heating element
wire
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03356160A
Other languages
German (de)
English (en)
Other versions
EP1422972A1 (fr
Inventor
Henri Galliou
Olivier Moine
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEB SA
Original Assignee
SEB SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEB SA filed Critical SEB SA
Publication of EP1422972A1 publication Critical patent/EP1422972A1/fr
Application granted granted Critical
Publication of EP1422972B1 publication Critical patent/EP1422972B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • H05B3/48Heating elements having the shape of rods or tubes non-flexible heating conductor embedded in insulating material

Definitions

  • the present invention relates to the field of shielded type heating elements where a resistive wire is housed, spirally, in a metal tube surrounded by an insulator such as magnesia.
  • the present invention relates in particular to such elements having particular electrical characteristics.
  • ⁇ o ⁇ 1 - ⁇ ⁇ T - 25
  • ⁇ o the resistivity of the wire at 25 ° C
  • the resistivity of the wire at the temperature T expressed in ° C
  • the temperature coefficient
  • heating elements are however used in "all or nothing", ie as thermal safety avoiding any malfunction.
  • the variation of resistance is of the order of 25% between 20 ° C and 800 ° C, which makes it possible to generate power drops of 25%, sufficient for the normative tests.
  • the heating son commonly used in heating elements for household cooking appliances whose maximum temperature of the heating plates is of the order of 300 ° C, have a variation of the order of 10%, for Ni-Cr or Ni-Cr-Al type wires.
  • the CTP effect therefore has little effect on the operation of the device. It seems nevertheless interesting to try to make better use of this effect, for purposes of protection and / or regulation of such devices.
  • such a heating element allows an automatic limitation of the power when the temperature rises, its use is limited to a large temperature range and for a remote heating of the products, or in contact with certain points with the object to heat.
  • Such an embodiment of the heating element remains expensive, however, by the materials used for the two tubes.
  • such a device has the disadvantage of a low contact between the heating element and the element to be heated.
  • the present invention aims to overcome the aforementioned drawbacks. It is in particular achieved by means of a heating element for an electrical appliance for heating food or for cooking food, comprising a tubular metal envelope inside which is housed a resistive wire surrounded by insulation, the two main elements constituting said wire being nickel and iron, said wire having a relative increase in resistivity greater than 1500 ppm / ° C and preferably greater than 3000 ppm / ° C, characterized in that the wire is wound into a spiral whose outer diameter is greater than 0.7 times the inner diameter of the tubular casing.
  • An object of the present invention is therefore to provide heating elements having a very large CTP effect, with a hot resistivity value (for example 300 ° C) up to several times the initial value at room temperature.
  • a hot resistivity value for example 300 ° C
  • a stabilization temperature of the heating element that is substantially identical to that obtained by means of a specific regulating device comprising by example a temperature sensor associated with means for stopping the power supply of the heating element.
  • One of the ways to solve this problem is to wind the wire into a spiral whose outer diameter is greater than 0.7 times the inner diameter of the tubular casing. It is indeed usually common to wind the spiral wire inside the tubular casing, but the outside diameter of the coil does not exceed 60% of the inside diameter of the tubular casing. However, keep a minimum distance of 0.8 mm to 1 mm between the wire and the tubular casing.
  • a relative increase in this diameter with respect to the inside diameter of the tubular casing thus makes it possible to increase the total length of the wire for the same size of the tubular casing.
  • the thickness of the coating of the insulator is actually reduced, which makes it possible to increase the heat transfer between the resistive wire and the tubular casing.
  • the proportion of nickel in the constitution of the yarn is greater than 40%. This value makes it possible to obtain wires having high temperature coefficients ⁇ .
  • Another object of the present invention is to provide an electrical apparatus for heating food or cooking food, comprising at least one heating plate of said food, said plate being in connection with a heating element comprising a metal tubular envelope inside which is housed a resistive wire surrounded by insulation, characterized in that the two main elements constituting said wire are nickel and iron, and in that the wire presents a relative increase in resistivity greater than 1500 ppm / ° C. and preferably greater than 3000 ppm / ° C.
  • the temperature range being relatively low, of the order of 300 ° C, since the devices concerned are food cooking appliances, it will be sought that the resistive wire has a high temperature coefficient, while ensuring that that the implementation of a heating element comprising such a wire does not cause a considerable increase in the cost of such an element, and is compatible with the practical realization of said appliance.
  • the production of a heating plate is however conditioned by the heat exchange between the heating element and said plate. This is all the more important that the equilibrium temperature is dependent on the load of the heating plate, that is to say the product cooked.
  • the heating plate must therefore be in intimate contact with the heating element so that the CTP effect plays its full role.
  • the heating element conforms to one of the previously mentioned characteristics.
  • the resistance of the wire is adjusted so that the heating generated by the power supply of the heating element causes an increase in the resistance of the wire to an equilibrium value corresponding to a temperature of the heating plate which is the operating temperature of said heating plate for heating food or cooking food in croque-monsieur cooking appliances, waffle irons, meat grill, ...
  • This temperature is usually set, in current devices, by a thermostat comprising a temperature sensor associated with means for stopping the supply of the heating element.
  • the present invention therefore aims more particularly at the suppression of thermostat for the regulation of heating elements fitted to certain electric cooking appliances, by regulating the heating elements without a specific device.
  • the CTP effect must be important because, when it comes to regulating food cooking appliances, the difference in temperature is much lower than in the case of malfunctions of water heaters.
  • the power of the heating element at the required temperature of the plate for heating or cooking food is between 0, 4 and 0.7 times the power of the heating element at room temperature, under the same supply voltage of said heating element.
  • the power variation is solely due to the thermal variation of the resistance of the wire resulting from the value of the temperature coefficient ⁇ .
  • the electric appliance for heating food or cooking of food comprises means for promoting the heat exchange between the heating element and the heating plate, by the presence, in the cooking plate, of housing grooves of the heating element, and / or by the quality of the insulation surrounding the wire in the tubular casing, and / or by the adaptation of the surface properties of the tubular casing.
  • the wire even if it is at the heart of the problem, is not the only parameter on which it is necessary to be attentive so that, overall, we obtain this effect thermal self-regulation of the device.
  • One of the means to promote heat exchange is to provide, in the heating plate, a housing groove of the heating element, which allows a more intimate connection between the heating element and the heating plate.
  • the groove surrounds the heating element on at least half a perimeter of the tubular casing of said heating element.
  • the heating element undergoes a compression step in the groove in order to increase the contact area between said element and said groove.
  • a complementary method for increasing the thermal transfer of the heating element to the heating plate is to cover the parts that are not in contact with the heating plate of a diffusion plate made of a good thermal conductive material, such as aluminum or copper.
  • this diffusion plate is also in contact with the heating plate by extending over a significant area, for example of the order of 30% of the surface of the heating plate.
  • Another means of promoting the transfer of energy from the heating element to the heating plate is to off-center the resistive wire, inside the tubular casing, in the direction of the heating plate.
  • said heating element detects any temperature variation of the plates, automatically causing a change in its power.
  • the example illustrating the present invention is a croque-monsieur type of cooking appliance, or waffle maker, comprising son-based heating elements having a strong CTP effect.
  • obtaining a significant CTP effect is essentially related to the choice of the material constituting the resistive wire, and in particular its temperature coefficient.
  • the selection according to the invention has been made on yarns having a temperature coefficient ⁇ of between 0.0015 and 0.0050, which corresponds to a relative increase in resistivity of 1500 to 5000. ppm / ° C.
  • a temperature increase of 300 ° C results in an increase in resistivity, and therefore resistance of the heating wire, by a factor of between 1.4 and 2.4, which induces, at this temperature, a drop in power of the same ratio.
  • a value lower than 0.0015 would not have given a sufficiently large CTP effect, and a value greater than 0.005 would lead to problems with the feasibility of the heating element and / or the cooking appliance.
  • wire diameters of 0.18 mm or 0.14 mm have been used (usually 0.25 to 0.30 mm).
  • FIG. 1 Two typical heating curves are illustrated figure 1 .
  • a first curve in dotted line, shows the power variation of the heating elements since the start of the device.
  • the second in solid lines, shows the variation of the temperature of the heating plates.
  • Tests have therefore been conducted by varying the cold ohmic value of the various heating elements, to determine what cold value is necessary to obtain a given power stabilization rate to 300 ° C.
  • the heating element having to include a temperature coefficient resistive wire ⁇ as previously defined and present a resistance R to obtain a determined power at a given temperature, with the constraints as previously mentioned.
  • Such tests are illustrated by the following table presenting, from different cold powers, the evolution of said powers as a function of temperature, the heating elements being constituted by a steel tube inside which is housed a wire of which the temperature coefficient is 3600 ppm / ° C.
  • the different nominal powers are obtained by changing the length of the wire, essentially by acting on the winding pitch of said wire in the tube.
  • the table also indicates the variation of power between 160 ° C and 210 ° C, these two temperatures being estimated as, on the one hand the temperature of the plate when it receives food to cook or to heat (160 ° C), and on the other hand the temperature of said plate during cooking or heating (210 ° C).
  • the wire used is for 60 to 70% of the effect of self-regulation and roasting quality, thermal transfers playing for 30 to 40%.
  • the apparatus illustrating the present invention is an apparatus for making croqueclude or waffles, according to the shape of the heating plates used. Its starting power is between 500 and 600 W, while its power, when the plates are hot enough, is only 250 to 300 W.
  • the wire being housed in a tube filled with insulation, itself in connection with a diffusion plate, connected to the heating plate receiving the product to be cooked, various parameters influencing the heat transfer between the resistive wire and the put food. to cook can be modified, together with the use of different resistive wires having different values of temperature coefficient.
  • the indication "N” corresponds to a contact as is usually done, while the indication “A” corresponds to an improvement in the contact between the heating element and the heating plate, by making a housing groove of said heating element which has an important role in the heat transfer.
  • Coefficient of temperature of the wire (ppm / ° C) Tube type Contact with plate ⁇ P (%) ⁇ Pc (%) 1350 steel NOT 30 % 8% 1350 steel AT 30 % 11% 3600 steel NOT 55% 19% 3600 steel AT 55% 29% 3600 aluminum AT 52% 40% 4500 steel NOT 66% 25% 4500 steel AT 59% 41% 4500 aluminum AT 59% 47%
  • the improvement of the thermal exchanges and the reduction of the thermal inertia between the heating element and the plate can be obtained by the quality of the tube of the heating element, made for example of a material having a very good thermal conduction, such as aluminum, together with an intimate connection between the heating element and the heating plate.
  • the heating element 2 comprises a resistive wire 4 centered in a tubular envelope 6 surrounded by insulator 5.
  • This insulator is preferably an inorganic insulator, for example an oxide such as magnesia, alumina or zirconia. Boron nitride can also be used.
  • the heating element 2 is connected to a heating plate 8 by a solder bead 10.
  • the exchange surface between the heating element and the heating plate heating is relatively low.
  • the Figures 3 to 6 have different configurations improving heat transfer between the heating element and the heating plate.
  • a groove 12 for receiving the heating element is formed in the heating plate 80, said groove being delimited by flanks 14.
  • the groove may be flush with the surface, as shown in FIG. figure 3 or be located further inside the heating plate as shown figure 4 , thus decreasing the distance d between the heating element and the active surface 81 of the heating plate 82.
  • a winding according to a larger diameter of the wire 4 is also presented figure 3 this operation to accommodate a longer length of wire in the same tubular envelope.
  • the heating element 20 is shaped to the shape of the groove, for example by pressing, which further increases the contact surface between the heating element and the heating plate.
  • the resistive wire 40 is presented eccentrically in the shell of the heating element in the direction of the heating plate 82. This configuration, independent of the conformation of the wire to the shape of the groove, allows to locate the heating mainly at the level of the heating plate, thus limiting the radiation opposite the heating plate.
  • a particular surface treatment of the heating element may be provided so that it has a high emissivity on the surface in contact with the heating plate and a low emissivity elsewhere.
  • the heating sub-assembly 30 comprises a heating plate 36, a heating element 37 and a diffusion plate 38.
  • the heating element 37 comprises a resistive wire with a strong CTP effect according to one of the characteristics mentioned above.
  • the heating plate 36 comprises at least one cavity comprising at least one impression taking the form of the food to be cooked. All the impressions of a heating plate 36 form the cooking zone of said heating plate 36.
  • the heating element 37 is disposed against the face of the heating plate 36 which is opposite the face having the cavities.
  • the shape of the heating element 37 is adapted to the surface of the cooking zone and the width and length of the heating plate 36, forming a loop.
  • the diffusion plate 38 has a housing 32 which conforms to the shape of the heating element 37 and is adapted to receive it. Thus, the heating element 37 is sandwiched between the heating plate 36 and the diffusion plate 38.
  • the latter is shaped so that it marries a predetermined height e , at least a portion of all cavities cavities of the heating plate 36.
  • the diffusion plate 38 comprises, in addition to the housing 32 receiving the heating element 37, a cavity 35 receiving the heating plate 36 on the predetermined height e . In this way, thermal exchanges are favored between the heating plate 36 and the diffusion plate 38.
  • the heating plate 36 is made of a material that is a poor thermal conductor, for example stainless steel, and its thickness, substantially constant, is between 0.6 and 0.8 mm.
  • a heating plate 36 can be easily made by stamping and then by cutting a sheet.
  • the stainless steel plate may be coated with a release material on the side to be in contact with the food to be cooked.
  • the diffusion plate 38 is made of a material which is a good thermal conductor, for example aluminum, and its thickness, which is substantially constant, is between 0.8 and 2 mm, and preferably between 0.8. and 1 mm.
  • a diffusion plate 38 can be made by stamping.
  • the diffusion plate 38 thus acts as a thermal diffuser by distributing by conduction the thermal energy coming from the heating element 37 on the part of the heating plate 36 which is in contact with the diffusion plate 38.
  • the diffusion plate 38 promotes feedback to the heating element 37 of the thermal state of the heating plate 36, which improves the responsiveness of the control. This aspect is even more important when the heating plate is steel which has a low thermal conductivity generating significant thermal inertia.
  • the assembly of the heating plate 36 with the diffusion plate 38 can be done by welding, gluing, or, preferably for cost reasons, by riveting or screwing.
  • the heating plate 36 and the diffusion plate 38 are fixed to each other by clinching, that is to say by mutual deformation following a common stamping: the embedding of the heating plate 36 in the diffusion plate 38 makes it possible to have a better resistance to rise and fall in temperature despite the difference in expansion between the two metals used.
  • the present invention is not limited to the only example presented where the heating element team croquethe.
  • a heating element and its associated self-regulating capabilities can also find applications in other electric food contact heating appliances, such as barbecues, crepe makers, meat broilers, as well as in home appliances.
  • water heating such as coffee makers, kettles, even irons, also to avoid dry heating.

Landscapes

  • Resistance Heating (AREA)
  • Baking, Grill, Roasting (AREA)
  • Thermistors And Varistors (AREA)
  • Cookers (AREA)
  • Control Of Resistance Heating (AREA)

Description

  • La présente invention concerne le domaine des éléments chauffants de type blindés où un fil résistif est logé, en spirale, dans un tube métallique en étant entouré d'un isolant tel la magnésie. La présente invention est notamment relative à de tels éléments présentant des caractéristiques électriques particulières.
  • Il est connu, dans les appareils de type chauffe-eau, l'utilisation d'éléments chauffants résistifs dont la valeur de résistance présente un coefficient thermique significatif, c'est à dire présentant une augmentation importante de la valeur de la résistance lorsque la température s'élève. Cette caractéristique est plus connue sous la dénomination d'effet CTP (pour coefficient de température positif).
  • Cette caractéristique est exprimée par la formule : ρ = ρo 1 - α T - 25
    Figure imgb0001
    où ρo est la résistivité du fil à 25 °C, ρ la résistivité du fil à la température T exprimée en °C, et α le coefficient de température.
  • Cette propriété entraîne une diminution de la puissance de ces éléments, puisque la puissance P est donnée par la formule : P = V2/R, où V est la tension d'alimentation et R la résistance de l'élément chauffant liée directement à sa valeur de résistivité.
  • Ces éléments chauffants sont toutefois utilisés en "tout ou rien", c'est à dire en tant que sécurité thermique évitant tout dysfonctionnement. La variation de résistance est de l'ordre de 25% entre 20°C et 800°C environ, ce qui permet de générer des chutes de puissances de 25%, suffisantes pour les tests normatifs.
  • Par ailleurs, les fils de chauffe couramment utilisés dans des éléments chauffants pour appareils électroménagers de cuisson domestique, dont la température maximale des plaques de chauffe est de l'ordre de 300°C, présentent une variation de l'ordre de 10%, pour des fils de type Ni-Cr, ou Ni-Cr-Al.
  • L'effet CTP n'a donc que peu d'incidence sur le fonctionnement de l'appareil. Il semble pourtant intéressant d'essayer de tirer un meilleur parti de cet effet, à des fins de protection et/ou de régulation de tels appareils.
  • On connaît par ailleurs, par le document US 2,767,288 , un élément chauffant dont le fil de chauffe présente un coefficient de température au moins égal à 0,003, l'élément chauffant présentant une amélioration des transferts thermiques au niveau de l'élément chauffant, par un double tube, le tube intérieur présentant une forte conductivité thermique, tel le cuivre, le tube extérieur étant résistant à la corrosion.
  • Si certes, un tel élément chauffant permet une limitation automatique de la puissance lorsque la température s'élève, son utilisation est limitée à une plage de température importante et pour un chauffage à distance des produits, ou en contact selon certains points avec l'objet à chauffer.
  • Une telle réalisation de l'élément chauffant reste toutefois onéreuse, par les matériaux utilisés pour les deux tubes. De plus, un tel dispositif présente le désavantage d'un faible contact entre l'élément chauffant et l'élément à chauffer.
  • La présente invention vise à remédier aux inconvénients sus-mentionnés. Elle est notamment atteinte à l'aide d'un élément chauffant pour appareil électrique de chauffage d'aliments ou de cuisson d'aliments, comportant une enveloppe tubulaire métallique à l'intérieur de laquelle est logé un fil résistif entouré d'isolant, les deux éléments principaux constituant ledit fil étant le nickel et le fer, ledit fil présentant une augmentation relative de résistivité supérieure à 1500 ppm/°C et de préférence supérieure à 3000 ppm/°C, caractérisé en ce que le fil est bobiné en une spirale dont le diamètre extérieur est supérieur à 0,7 fois le diamètre intérieur de l'enveloppe tubulaire.
  • L'un des objets de la présente invention vise donc à la réalisation d'éléments chauffants présentant un effet CTP très important, avec une valeur de résistivité à chaud (par exemple 300°C) pouvant atteindre plusieurs fois la valeur initiale à température ambiante. Par un tel effet, en alimentant électriquement de tels éléments chauffants, au fur et à mesure de leur échauffement, leur résistance va croître et par conséquent leur puissance décroître, jusqu'à une stabilisation à une certaine température qui dépend, en première approximation, de l'importance de l'effet CTP ainsi que des conditions de transfert thermique.
  • Par l'utilisation de fils présentant de telles valeurs du coefficient de température α, il peut être envisagé d'obtenir une température de stabilisation de l'élément chauffant sensiblement identique à celle obtenue à l'aide d'un dispositif spécifique de régulation comportant par exemple une sonde de température associée à des moyens d'arrêt de l'alimentation électrique de l'élément chauffant.
  • Cependant, une des conséquences de l'utilisation de fils présentant un fort coefficient de température α est leur faible résistivité initiale (à température ambiante). Or une plus faible valeur de résistivité oblige, soit à augmenter la longueur du fil chauffant, soit à diminuer la section du fil afin de retrouver la valeur adéquate de la résistance R0 du fil à température ambiante qui conditionne la valeur R à une température donnée, via le coefficient de température α. En effet, la formule liant la résistance à la résistivité est donnée par : R = ρ l s
    Figure imgb0002

    R est la résistance, ρ la résistivité du fil, / la longueur du fil et s sa section. On peut donc, pour augmenter la valeur de résistance, soit augmenter la longueur du fil, soit diminuer sa section.
  • Une des contraintes liée à l'augmentation de la longueur du fil concerne l'augmentation de l'enveloppe tubulaire, qui augmente le prix de revient et peut générer une augmentation de la taille des plaques de chauffe et donc de l'appareil, engendrant des surcoûts excessifs.
  • Il faut donc essayer, dans la mesure du possible, de loger une plus grande longueur de fil dans un volume donné d'enveloppe tubulaire.
  • Un des moyens de résoudre ce problème consiste à bobiner le fil en une spirale dont le diamètre extérieur est supérieur à 0,7 fois le diamètre intérieur de l'enveloppe tubulaire. Il est en effet habituellement courant de bobiner le fil en spirale à l'intérieur de l'enveloppe tubulaire, mais le diamètre extérieur du bobinage n'excède pas 60% du diamètre intérieur de l'enveloppe tubulaire. Il conviendra toutefois de garder une distance minimale de 0,8 mm à 1 mm entre le fil et l'enveloppe tubulaire.
  • Une augmentation relative de ce diamètre par rapport au diamètre intérieur de l'enveloppe tubulaire permet donc d'augmenter la longueur totale du fil pour un même encombrement de l'enveloppe tubulaire.
  • Par ailleurs, on diminue de fait l'épaisseur de l'enrobage de l'isolant, ce qui permet d'augmenter le transfert thermique entre le fil résistif et l'enveloppe tubulaire.
  • D'autres techniques peuvent être utilisées pour loger une plus grande longueur de fil dans un tube et limiter ainsi l'augmentation de l'encombrement de l'élément chauffant : bobinage plus serré, spires concentriques, coaxiales, double spirale,....
  • Selon une caractéristique particulière de l'invention, la proportion de nickel dans la constitution du fil est supérieure à 40 %. Cette valeur permet d'obtenir des fils présentant des coefficients de température α élevés.
  • Un autre but de la présente invention vise à la réalisation d'un appareil électrique de chauffage d'aliments ou de cuisson d'aliments, comportant au moins une plaque de chauffe desdits aliments, ladite plaque étant en liaison avec un élément chauffant comportant une enveloppe tubulaire métallique à l'intérieur de laquelle est logé un fil résistif entouré d'isolant, caractérisé en ce que les deux éléments principaux constituant ledit fil sont le nickel et le fer, et en ce que le fil présente une augmentation relative de résistivité supérieure à 1500 ppm/°C et de préférence supérieure à 3000 ppm/°C.
  • La plage de température étant relativement faible, de l'ordre de 300°C, puisque les appareils concernés sont des appareils de cuisson d'aliments, on cherchera à ce que le fil résistif présente un fort coefficient de température, tout en veillant à ce que la mise en oeuvre d'un élément chauffant comportant un tel fil n'entraîne pas une augmentation considérable du coût d'un tel élément, et soit compatible avec la réalisation pratique dudit appareil électroménager.
  • La réalisation d'une plaque de chauffe est toutefois conditionnée par les échanges thermiques entre l'élément chauffant et ladite plaque. Ceci est d'autant plus important que la température d'équilibre est dépendante de la charge de la plaque de chauffe, c'est à dire du produit mis à cuire. La plaque de chauffe doit donc être en contact intime avec l'élément chauffant pour que l'effet CTP joue son plein rôle.
  • Avantageusement, l'élément chauffant est conforme à l'une des caractéristiques précédemment énoncées.
  • Avantageusement, la résistance du fil est ajustée pour que l'échauffement généré par l'alimentation électrique de l'élément chauffant provoque une augmentation de la résistance du fil jusqu'à une valeur d'équilibre correspondant à une température de la plaque de chauffe qui est la température de fonctionnement de ladite plaque de chauffe pour le chauffage d'aliments ou la cuisson d'aliments au sein d'appareils de cuisson de type croque-monsieur, gaufriers, grille-viande,... Cette température est habituellement réglée, dans les appareils courants, par un thermostat comportant une sonde de température associée à des moyens d'arrêt de l'alimentation de l'élément chauffant.
  • La présente invention vise donc plus particulièrement la suppression du thermostat pour la régulation des éléments chauffants équipant certains appareils de cuisson électrique, en assurant la régulation des éléments chauffants sans dispositif spécifique.
  • L'effet CTP doit être important car, s'agissant de régulation d'appareils de cuisson d'aliments, la différence de température est bien moins élevée que dans le cas des dysfonctionnements de chauffe-eau.
  • Par cette caractéristique, lorsque l'élément chauffant est alimenté, il échauffe les plaques de chauffe, ce qui entraîne une augmentation de sa résistance. Il s'échauffe donc de moins en moins au fur et à mesure que sa température s'élève. On obtient donc assez rapidement un équilibre thermique. En déterminant soigneusement la résistance du fil, on peut ajuster la température d'équilibre thermique du fil, et donc de la plaque de chauffe. Autrement dit, un tel appareil ne nécessite plus de régulation thermique de la plaque de chauffe, cette dernière s'auto-régulant par l'effet CTP du fil constituant l'âme de l'élément chauffant.
  • Cependant, il faut trouver un compromis entre la valeur de l'effet CTP et la valeur de la résistivité initiale du fil car, tel que déjà mentionné précédemment, plus l'effet CTP est important, plus la résistivité diminue.
  • Selon une autre présentation des caractéristiques d'un appareil électrique selon la présente invention, la puissance de l'élément chauffant à la température requise de la plaque pour le chauffage ou la cuisson des aliments, soit environ 210 °C, est comprise entre 0,4 et 0,7 fois la puissance de l'élément chauffant à température ambiante, sous une même tension d'alimentation dudit élément chauffant.
  • Selon la présente invention, la variation de puissance est uniquement due à la variation thermique de la résistance du fil résultant de la valeur du coefficient de température α.
  • Avantageusement, l'appareil électrique de chauffage d'aliments ou de cuisson d'aliments selon la présente invention comporte des moyens favorisant l'échange thermique entre l'élément chauffant et la plaque de chauffe, par la présence, dans la plaque de cuisson, de gorges de logement de l'élément chauffant, et/ou par la qualité de l'isolant entourant le fil dans l'enveloppe tubulaire, et/ou par l'adaptation des propriétés de surface de l'enveloppe tubulaire.
  • En effet, le but étant la réalisation d'un appareil électroménager, le fil, même s'il est au coeur du problème, ne constitue pas le seul paramètre sur lequel il convient d'être attentif pour que, globalement, on obtienne cet effet d'autorégulation thermique de l'appareil.
  • En effet, lorsqu'un appareil comportant des plaques de chauffe, de type croque-monsieur ou gaufrier, est alimenté, la puissance est importante au début d'utilisation de l'appareil jusqu'à la stabilisation à vide des plaques. Ensuite, lorsque les aliments sont disposés, la plaque descend en température. Tout le fonctionnement du dispositif réside alors dans cette baisse de température et la reprise de puissance qui doit s'en suivre, sur une plage étroite de température (environ 50°C).
  • Cette remontée ou reprise de puissance est nécessaire pour que la cuisson se réalise correctement. Cette augmentation ou reprise de puissance est un paramètre important qui est fonction de la nuance du fil mais également, pour résumer, des échanges thermiques entre le fil et la plaque de chauffe puisque cette reprise de puissance ne peut avoir lieu que si l'information de la baisse de température des plaques parvient jusqu'au fil chauffant.
  • Un des moyens pour favoriser l'échange thermique consiste à ménager, dans la plaque de chauffe, une gorge de logement de l'élément chauffant, ce qui permet une liaison plus intime entre l'élément chauffant et la plaque de chauffe.
  • Avantageusement, la gorge entoure l'élément chauffant sur au moins un demi-périmètre de l'enveloppe tubulaire dudit élément chauffant.
  • Selon une variante de réalisation du logement de l'élément dans la gorge de la plaque de chauffe, l'élément chauffant subit une étape de compression dans la gorge afin d'augmenter la surface de contact entre ledit élément et ladite gorge.
  • Il est possible d'améliorer les échanges thermiques entre l'élément chauffant et la plaque de chauffe en modifiant les caractéristiques d'émissivité de l'élément chauffant, les parties de l'élément chauffant en contact avec la plaque de chauffe présentant une émissivité de surface supérieure aux parties de l'élément chauffant qui ne sont pas en contact avec la plaque de chauffe. Le rayonnement sur la partie arrière de l'élément chauffant est ainsi réduit.
  • Une méthode complémentaire pour augmenter le transfert thermique de l'élément chauffant vers la plaque de chauffe est de recouvrir les parties qui ne sont pas en contact avec la plaque de chauffe d'une plaque de diffusion en un matériau bon conducteur thermique, tel l'aluminium ou le cuivre. De préférence, cette plaque de diffusion est également en contact avec la plaque de chauffe en s'étendant sur une surface significative, par exemple de l'ordre de 30 % de la surface de la plaque de chauffe.
  • Un autre moyen de favoriser le transfert d'énergie de l'élément chauffant vers la plaque de chauffe est d'excentrer le fil résistif, à l'intérieur de l'enveloppe tubulaire, en direction de la plaque de chauffe.
  • Ainsi, par l'amélioration des échanges thermiques entre l'élément chauffant et la plaque de chauffe, ledit élément chauffant détecte toute variation de température des plaques, entraînant automatiquement une modification de sa puissance.
  • Ce principe d'auto régulation génère d'autres avantages :
    • une meilleure réactivité, par la diminution de la charge du fil à haute température,
    • un meilleur vieillissement des éléments en diminuant le nombre de coupures par rapport à une régulation "classique" qui sollicite par ailleurs les zones de soudures,
    • la suppression éventuelle du fusible.
  • D'autres avantages issus des essais apparaîtront à la lecture de la description qui va suivre, en relation avec un exemple non limitatif de réalisation de la présente invention, en référence aux figures annexées, parmi lesquelles :
    • la figure 1 présente une loi de comportement de la puissance et de la température d'une plaque de chauffe selon la présente invention, équipant un appareil électrique de type croque-monsieur ou gaufrier,
    • les figures 2 à 6 présentent des agencements particuliers entre un élément chauffant et une plaque de chauffe.
  • L'exemple illustrant la présente invention est un appareil de cuisson de type croque-monsieur, ou gaufrier, comportant des éléments chauffants à base de fils présentant un fort effet CTP.
  • Comme indiqué dans l'introduction de la présente demande, l'obtention d'un effet CTP important est liée essentiellement au choix du matériau constituant le fil résistif, et notamment son coefficient de température. Parmi les nombreuses références disponibles de fils, la sélection selon l'invention s'est portée sur des fils présentant un coefficient de température α compris entre 0,0015 et 0,0050, ce qui correspond à une augmentation relative de résistivité de 1500 à 5000 ppm/°C. Autrement dit, une augmentation de température de 300 °C entraîne une augmentation de résistivité, et donc de résistance du fil chauffant, d'un facteur compris entre 1,4 et 2,4, ce qui induit, à cette température, une chute de puissance du même rapport.
  • Une valeur plus faible que 0,0015 n'aurait pas donné un effet CTP suffisamment important, et une valeur plus forte que 0,005 entraîne des problèmes de faisabilité de l'élément chauffant et/ou de l'appareil de cuisson.
  • En effet, une telle variation du coefficient de température entraîne des valeurs de résistivité faibles, de l'ordre de 0,2 Ω.mm au lieu de 1 Ω.mm pour des fils traditionnels. Les deux paramètres sur lesquels il est possible de jouer pour retrouver la valeur nominale sont la longueur du fil (à augmenter) et/ou la section (à diminuer).
  • Toutefois, il faut garder à l'esprit qu'une augmentation de la longueur du fil entraîne une augmentation de la surface d'échange, ce qui peut conduire à "sortir" de la courbe typique de charge du fil.
  • Par ailleurs, des diamètres de fil de 0,18 mm, voire 0,14 mm ont ainsi été utilisés (habituellement 0,25 à 0,30 mm).
  • Deux courbes typiques de chauffe sont illustrées figure 1. Une première courbe, en pointillés, montre la variation de puissance des éléments chauffants depuis la mise en route de l'appareil. La seconde, en trait plein, montre la variation de la température des plaques de chauffe.
  • Ainsi, dès que les éléments chauffants sont alimentés, une puissance importante, notée Pf (pour puissance à froid) est générée, puissance nécessaire à la montée en température des plaques. Ces dernières s'échauffant, l'effet CTP entraîne une diminution de puissance jusqu'à l'équilibre thermique des plaques. La puissance ainsi générée est appelée Pc (pour puissance à chaud). Une première donnée à prendre en considération est donc cette différence de puissance (Pf-Pc)/Pf, notée ΔP (en %), puisque la température attendue des plaques en fonctionnement est déterminée par la puissance d'équilibre Pc, cette dernière dépendant de Pf par le coefficient de température α.
  • On obtient donc ici un précieux renseignement sur la valeur du coefficient de température. Il faut toutefois noter que, bien que la "réaction" effective du fil composant l'élément chauffant puisse être anticipée par calcul et simulation, l'expérience est ici nécessaire pour obtenir ce renseignement, puisque l'équilibre atteint dépend également des échanges thermiques sur lesquels il est possible d'intervenir. La tension d'alimentation des éléments chauffants peut également être modifiée pour ajuster la température d'équilibre des plaques lorsque la puissance à l'équilibre est un peu trop forte.
  • Des essais ont donc été menés en faisant varier la valeur ohmique à froid des différents éléments chauffants, pour déterminer quelle valeur à froid est nécessaire pour obtenir une puissance donnée en régime de stabilisation vers 300 °C.
  • Il est important de noter que de tels essais sont rendus difficiles par la réalisation même de l'élément chauffant dont l'encombrement ne doit pas augmenter considérablement, l'élément chauffant devant comporter un fil résistif de coefficient de température α tel que précédemment défini et présenter une résistance R permettant d'obtenir une puissance déterminée à une température donnée, avec les contraintes telles que précédemment mentionnées.
  • De tels essais sont illustrés par le tableau suivant présentant, à partir de différentes puissances à froid, l'évolution desdites puissances en fonction de la température, les éléments chauffants étant constitués d'un tube acier à l'intérieur duquel est logé un fil dont le coefficient de température est de 3600 ppm/°C. Les différentes puissances nominales sont obtenues en modifiant la longueur du fil, essentiellement en jouant sur le pas de bobinage dudit fil dans le tube.
  • Le tableau indique également la variation de puissance entre 160 °C et 210 °C, ces deux températures étant estimées comme, d'une part la température de la plaque lorsqu'elle reçoit des aliments à cuire ou à chauffer (160 °C), et d'autre part la température de ladite plaque au cours de la cuisson ou du chauffage (210 °C).
    Puissance à 25°C Puissance à 160°C Puissance à 210°C Puissance à 300°C ΔP 25°C/300°C ΔP 160°C/210°C
    1318 W 708 W 670 W 625 W 52,6 % 5,4 %
    1128 W 605 W 570 W 524 W 53,5 % 5,8 %
    977 W 540 W 506 W 461 W 52,8 % 6,3 %
    893 W 470 W 440 W 400 W 55,2 % 6,4 %
    796 W 430 W 402 W 367 W 53,9 % 6,5 %
    754 W 401 W 373 W 335 W 55,6 % 7,0 %
  • Dans les mêmes conditions, en utilisant des tubes en aluminium, les résultats suivants sont obtenus :
    Puissance à 25°C Puissance à 160°C Puissance à 210°C Puissance à 300°C ΔP 25°C/300°C ΔP 160°C/210°C
    1060 W 700 W 630 W 542 W 48,9 % 10,0 %
    890 W 580 W 520 W 445 W 50,0 % 10,3 %
    802 W 500 W 448 W 383 W 52,2 % 10,4 %
    700 W 450 W 400 W 335 W 52,1 % 11,1 %
    646 W 400 W 356 W 298 W 53,9% 11,0 %
    552 W 355 W 315 W 265 W 52,0 % 11,3%
  • Les résultats montrent, pour les tubes acier comme pour les tubes aluminium, une valeur relativement stable de ΔP quelle que soit la puissance de départ, avec des valeurs légèrement plus fortes pour l'acier que pour l'aluminium. Par contre, l'aluminium présente une plus forte variation de puissance entre 160 °C et 210 °C, liée à un meilleur transfert thermique dans l'aluminium que dans l'acier.
  • En se référant à nouveau à la figure 1, à l'instant tA, des aliments sont disposés sur la plaque, ce qui entraîne une baisse sensible de la température de la plaque. Cette information est relayée par transfert thermique jusqu'au fil de chauffe qui réagit ainsi par diminution de sa résistance, ce qui provoque une remontée ou reprise de puissance, notée ΔPc.
  • Cette reprise de puissance conditionne la qualité de la cuisson, une reprise de puissance trop faible entraînant peu ou pas de grillage du produit et/ou un temps de cuisson plus important.
  • Ainsi, la valeur de la reprise de puissance ΔPc est fonction :
    • de la nuance du fil,
    • de la qualité de l'isolant pulvérulent, tel la magnésie et des deux interfaces fil/isolant et isolant/tube métallique,
    • des échanges thermiques entre le tube métallique et la plaque de chauffe.
  • On peut ainsi estimer que le fil utilisé est pour 60 à 70 % de l'effet d'auto-régulation et de qualité de grillage, les transferts thermiques jouant pour 30 à 40 %.
  • Selon un exemple pratique de mise en oeuvre de l'invention, l'appareil illustrant la présente invention est un appareil permettant la réalisation de croque-monsieur ou de gaufres, selon la forme des plaques de chauffe utilisées. Sa puissance au démarrage est comprise entre 500 et 600 W, alors que sa puissance, lorsque les plaques sont suffisamment chaudes, n'est que de 250 à 300 W.
  • Comme il a déjà été mentionné précédemment, il est nécessaire d'utiliser un fil à effet CTP important. Cependant, il est également important d'avoir une bonne conduction thermique entre les plaques de chauffe et l'élément chauffant. En d'autres termes, il est nécessaire d'augmenter et d'améliorer les échanges thermiques par rapport aux produits comportant un régulateur. Pour ces derniers en effet, une sonde de température est souvent liée directement à la plaque de cuisson. Des essais sur de tels produits avec les fils envisagés montrent que l'échange thermique peut être amélioré afin d'augmenter la sensibilité du fil à la variation de température des plaques de chauffe.
  • Le fil étant logé dans un tube rempli d'isolant, lui-même en liaison avec une plaque de diffusion, reliée à la plaque de chauffe recevant le produit à cuire, divers paramètres influençant le transfert thermique entre le fil résistif et l'aliment mis à cuire peuvent être modifiés, conjointement à l'utilisation de différents fils résistifs présentant différentes valeurs de coefficient de température.
  • Bien entendu, des essais préliminaires ont eu lieu, pour chaque nuance de fil, et tel que précisé précédemment, afin de déterminer la résistance initiale de l'élément chauffant pour obtenir la stabilisation à la température de cuisson adéquate.
  • D'autres essais ont ainsi été effectués en essayant d'améliorer le transfert thermique afin que l'élément chauffant soit sensible à la variation de charge de la plaque de chauffe, et puisse réagir rapidement. Certains essais ont été réalisés en utilisant des éléments chauffants constitués de tubes en aluminium ou en cuivre plutôt qu'en acier ou en inox. D'autres essais ont concerné l'amélioration des échanges thermiques entre l'élément chauffant et la plaque de chauffe, soit par la présence, dans la plaque de cuisson, de gorges de logement de l'élément chauffant, soit par la qualité de l'isolant entourant le fil dans le tube, soit par l'adaptation des propriétés de surface du tube, ces différentes améliorations pouvant être combinées pour un effet plus significatif.
  • Le tableau présente différents essais menés. Dans la colonne contact avec plaque, l'indication "N" correspond à un contact tel qu'il est habituellement réalisé, alors que l'indication "A" correspond à une amélioration du contact entre l'élément chauffant et la plaque de chauffe, par la réalisation d'une gorge de logement dudit élément chauffant qui a un rôle important dans le transfert thermique.
    Coefficient de température du fil (ppm/°C) Type de tube Contact avec plaque ΔP (%) ΔPc (%)
    1350 acier N 30 % 8 %
    1350 acier A 30 % 11 %
    3600 acier N 55 % 19 %
    3600 acier A 55 % 29 %
    3600 aluminium A 52 % 40 %
    4500 acier N 66 % 25 %
    4500 acier A 59 % 41 %
    4500 aluminium A 59 % 47 %
  • Les essais menés montrent qu'à partir d'un fil dont le coefficient de température est de 1350 ppm/°C, la variation de puissance, comme la reprise de puissance présentent des valeurs significatives, respectivement de 30 % et de 11 % dans le meilleur des cas. L'effet qui s'en suit sur le principe d'auto-régulation et de cuisson d'aliments peut ainsi être envisagé.
  • En choisissant des valeurs plus élevées du coefficient de température, on permet de choisir une puissance à froid plus élevée, ce qui réduit la mise en chauffe des plaques de chauffe. Par ailleurs, la reprise de puissance est plus élevée, ce qui améliore la qualité de cuisson des aliments.
  • Par ailleurs, il est apparu, lors des essais menés, et d'une manière inattendue, les avantages complémentaires suivants par rapport à une régulation "classique" :
    • un dépassement limité de la température dite de "régulation", notamment une diminution, voire suppression du phénomène "d'overshoot" lié au premier pic de température lors de la régulation,
    • une valeur de régulation qui peut donc être montée de 10 à 30°C,
    • une diminution du différentiel de température lors de la régulation (écart entre la température minimale et maximale autour de la valeur de régulation)
    • pas d'augmentation de puissance en cas de survoltage,
  • L'amélioration des échanges thermiques et la diminution de l'inertie thermique entre l'élément chauffant et la plaque peut être obtenue par la qualité du tube de l'élément chauffant, réalisé par exemple en un matériau présentant une très bonne conduction thermique, tel l'aluminium, conjointement avec une liaison intime entre l'élément chauffant et la plaque de chauffe.
  • Tel qu'il est couramment utilisé, en référence à la figure 2, l'élément chauffant 2 comporte un fil résistif 4 centré dans une enveloppe tubulaire 6 entourée d'isolant 5. Cet isolant est préférentiellement un isolant minéral, par exemple un oxyde tel la magnésie, l'alumine ou la zircone. Le nitrure de bore peut également être utilisé.
  • L'élément chauffant 2 est lié à une plaque de chauffe 8 par un cordon de brasure 10. La surface d'échange entre l'élément chauffant et la plaque de chauffe est relativement faible.
  • Les figures 3 à 6 présentent différentes configurations améliorant le transfert thermique entre l'élément chauffant et la plaque de chauffe.
  • Ainsi figure 3, une gorge 12 de réception de l'élément chauffant est ménagée dans la plaque de chauffe 80, ladite gorge étant délimitée par des flancs 14. La gorge peut affleurer la surface, tel que représenté sur la figure 3, ou bien être située plus à l'intérieur de la plaque de chauffe, tel que présenté figure 4, diminuant ainsi la distance d entre l'élément chauffant et la surface active 81 de la plaque de chauffe 82. Un bobinage selon un diamètre plus important du fil 4 est également présenté figure 3, cette opération permettant de loger une longueur plus importante de fil dans une même enveloppe tubulaire.
  • Sur la figure 4, l'élément chauffant 20 est conformé à la forme de la gorge, par exemple par pressage, ce qui permet d'augmenter davantage la surface de contact entre l'élément chauffant et la plaque de chauffe.
  • Conjointement à la conformation du fil à la forme de la gorge, le fil résistif 40 est présenté excentré dans l'enveloppe de l'élément chauffant en direction de la plaque de chauffe 82. Cette configuration, indépendante de la conformation du fil à la forme de la gorge, permet de localiser le chauffage principalement au niveau de la plaque de chauffe, limitant ainsi le rayonnement à l'opposé de la plaque de chauffe.
  • Dans ce même but, il peut être prévu un traitement de surface particulier de l'élément chauffant afin qu'il présente une émissivité élevée sur la surface en contact avec la plaque de chauffe et une émissivité faible ailleurs.
  • Il peut également être prévu, tel que présenté figure 5, un surmoulage de l'élément chauffant 2 par une plaque de diffusion 84, l'élément chauffant 2 étant disposé sur la plaque de chauffe 86, cette dernière disposant, ou non, d'une gorge de positionnement.
  • Sur la figure 6 est présentée une version avantageuse de réalisation pratique de l'amélioration du transfert thermique entre l'élément chauffant et la plaque de chauffe.
  • Le sous-ensemble chauffant 30 comporte une plaque de chauffe 36, un élément chauffant 37 et une plaque de diffusion 38. L'élément chauffant 37 comporte un fil résistif à fort effet CTP selon l'une des caractéristiques précédemment évoquées.
  • La plaque de chauffe 36 comporte au moins une cavité comportant au moins une empreinte reprenant la forme de l'aliment à cuire. L'ensemble des empreintes d'une plaque de chauffe 36 forme la zone de cuisson de ladite plaque de chauffe 36.
  • L'élément chauffant 37 est disposé contre la face de la plaque de chauffe 36 qui est opposée à la face comportant les empreintes. La forme de l'élément chauffant 37 est adaptée à la surface de la zone de cuisson et à la largeur et à la longueur de la plaque de chauffe 36, en formant une boucle.
  • La plaque de diffusion 38 comporte un logement 32 qui épouse la forme de l'élément chauffant 37 et est adapté à la recevoir. Ainsi, l'élément chauffant 37 est pris en sandwich entre la plaque de chauffe 36 et la plaque de diffusion 38.
  • Cette dernière est conformée de sorte qu'elle épouse sur une hauteur prédéterminée e, au moins une partie de l'ensemble des empreintes des cavités de la plaque de chauffe 36.
  • Ainsi, la plaque de diffusion 38, comprend, outre le logement 32 recevant l'élément chauffant 37, une cavité 35 recevant la plaque de chauffe 36 sur la hauteur prédéterminée e. De cette manière, on favorise les échanges thermiques entre la plaque de chauffe 36 et la plaque de diffusion 38.
  • De préférence, la plaque de chauffe 36 est réalisée en un matériau qui est un mauvais conducteur thermique, par exemple en acier inoxydable, et son épaisseur, sensiblement constante, est comprise entre 0,6 et 0,8 mm. Une telle plaque de chauffe 36 peut être facilement réalisée par emboutissage puis par découpage d'une tôle. Préalablement à son emboutissage, la plaque d'acier inoxydable peut être revêtue d'un matériau anti-adhésif du côté devant être en contact avec l'aliment à cuire.
  • De préférence, la plaque de diffusion 38 est réalisée en un matériau qui est un bon conducteur thermique, par exemple l'aluminium, et son épaisseur, sensiblement constante, est comprise entre 0,8 et 2 mm, et de préférence entre 0,8 et 1 mm. Une telle plaque de diffusion 38 peut être réalisée par emboutissage.
  • La plaque de diffusion 38 joue ainsi le rôle de diffuseur thermique en répartissant par conduction l'énergie thermique provenant par l'élément chauffant 37 sur la partie de la plaque de chauffe 36 qui est en contact avec la plaque de diffusion 38.
  • En sens inverse, la plaque de diffusion 38 favorise le retour d'information à l'élément chauffant 37 de l'état thermique de la plaque de chauffe 36, ce qui améliore la réactivité de la régulation. Cet aspect est d'autant plus important lorsque la plaque de chauffe est en acier qui présente une faible conductivité thermique générant une inertie thermique importante.
  • L'assemblage de la plaque de chauffe 36 avec la plaque de diffusion 38 peut être fait par soudage, collage, ou, de préférence pour des raisons de coût, par rivetage ou par vissage. De préférence, la plaque de chauffe 36 et la plaque de diffusion 38 sont fixées l'une à l'autre par clinchage, c'est à dire par déformation mutuelle suite à un emboutissage commun : l'enchâssement de la plaque de chauffe 36 dans la plaque de diffusion 38 permet d'avoir une meilleure tenue de la montée et de la descente en température malgré la différence de dilatation entre les deux métaux utilisés.
  • La présente invention n'est pas limitée au seul exemple présenté où l'élément chauffant équipe un croque-monsieur. Un tel élément chauffant et ses capacités d'auto-régulation associées peut également trouver des applications dans d'autres appareils électriques de chauffage/grillage par contact d'aliments, tels des barbecues, crêpiers, grille-viande, ainsi que dans des appareils de chauffage d'eau tel des cafetières, bouilloires, voire fers à repasser, afin également d'éviter une chauffe à sec.

Claims (15)

  1. Elément chauffant (2, 20, 37) pour appareil électrique de chauffage d'aliments ou de cuisson d'aliments, comportant une enveloppe tubulaire métallique (6) à l'intérieur de laquelle est logé un fil résistif (4, 40) entouré d'isolant (5), les deux éléments principaux constituant ledit fil (4, 40) étant le nickel et le fer, ledit fil présentant une augmentation relative de résistivité supérieure à 1500 ppm/°C et de préférence supérieure à 3000 ppm/°C, caractérisé en ce que le fil est bobiné en une spirale dont le diamètre extérieur est supérieur à 0,7 fois le diamètre intérieur de l'enveloppe tubulaire, et en ce que la longueur du fil est modifiée, notamment en jouant sur le pas du bobinage, pour obtenir la puissance nominale.
  2. Elément chauffant (2, 20, 37) selon la revendication précédente, caractérisé en ce que la proportion de nickel est supérieure à 40 %.
  3. Appareil électrique de chauffage d'aliments ou de cuisson d'aliments, comportant au moins une plaque de chauffe (8, 36, 80, 82, 86) desdits aliments, ladite plaque étant en liaison avec un élément chauffant (2, 20, 37) conforme à l'une des revendications 1 ou 2.
  4. Appareil électrique de chauffage d'aliments ou de cuisson d'aliments selon la revendication précédente, caractérisé en ce que l'élément chauffant comporte une proportion de nickel supérieure à 40 %.
  5. Appareil électrique de chauffage d'aliments ou de cuisson d'aliments selon la revendication précédente, caractérisé en ce que la résistance du fil (4, 40) est ajustée pour que l'échauffement généré par l'alimentation électrique de l'élément chauffant (2, 20, 37) provoque une augmentation de la résistance du fil (4, 40) jusqu'à une valeur d'équilibre correspondant à une température de la plaque de chauffe (8, 36, 80, 82, 86) qui est la température de fonctionnement de ladite plaque de chauffe (8, 36, 80, 82, 86) pour le chauffage d'aliments ou la cuisson d'aliments.
  6. Appareil électrique de chauffage d'aliments ou de cuisson d'aliments selon l'une des revendications 3 à 5, caractérisé en ce que l'ajustement de la résistance du fil (4, 40) est obtenu par variation de sa longueur et/ou variation de son diamètre.
  7. Appareil électrique de chauffage d'aliments ou de cuisson d'aliments selon l'une des revendications 3 à 6, caractérisé en ce que la puissance (Pc) de l'élément chauffant (2, 20, 37) à la température requise de la plaque (8, 36, 80, 82, 86) pour le chauffage ou la cuisson des aliments, soit environ 210°C, est comprise entre 0,4 et 0,7 fois la puissance (Pf) de l'élément chauffant (2, 20, 37) à température ambiante, sous une même tension d'alimentation dudit élément chauffant (2, 20, 37), ladite variation de puissance (ΔP) étant uniquement due à la variation thermique de la résistance (R) du fil.
  8. Appareil électrique de chauffage d'aliments ou de cuisson d'aliments selon l'une des revendications 3 à 7, caractérisé en ce qu'il comporte des moyens favorisant l'échange thermique entre l'élément chauffant (20, 37) et la plaque de chauffe (36, 80, 82, 86), par la présence, dans la plaque de cuisson, de gorges de logement de l'élément chauffant, et/ou par la qualité de l'isolant entourant le fil dans l'enveloppe tubulaire, et/ou par l'adaptation des propriétés de surface de l'enveloppe tubulaire.
  9. Appareil électrique de chauffage d'aliments ou de cuisson d'aliments selon la revendication précédente, caractérisé en ce que la plaque de chauffe (36, 80, 82, 86) comporte une gorge (12) de logement de l'élément chauffant (20, 37).
  10. Appareil électrique de chauffage d'aliments ou de cuisson d'aliments selon la revendication précédente, caractérisé en ce que la gorge (12) entoure l'élément chauffant (20, 37) sur au moins un demi-périmètre de l'enveloppe tubulaire (6) dudit élément chauffant (20, 37).
  11. Appareil électrique de chauffage d'aliments ou de cuisson d'aliments selon l'une des revendications 9 ou 10, caractérisé en ce que l'élément chauffant (20, 37) subit une étape de compression dans la gorge (12) afin d'augmenter la surface de contact entre ledit élément et ladite gorge.
  12. Appareil électrique de chauffage d'aliments ou de cuisson d'aliments selon l'une des revendications 9 à 11, caractérisé en ce que les parties de l'élément chauffant en contact avec la plaque de chauffe (8, 36, 80, 82, 86) présentent une émissivité de surface supérieure aux parties de l'élément chauffant qui ne sont pas en contact avec la plaque de chauffe (8, 36, 80, 82, 86).
  13. Appareil électrique de chauffage d'aliments ou de cuisson d'aliments selon l'une des revendications 9 à 12, caractérisé en ce que les parties de l'élément chauffant (37) qui ne sont pas en contact avec la plaque de chauffe (36) sont recouvertes d'une plaque de diffusion (84) en un matériau bon conducteur thermique, tel l'aluminium ou le cuivre.
  14. Appareil électrique de chauffage d'aliments ou de cuisson d'aliments selon la revendication précédente, caractérisé en ce que la plaque de diffusion (84) est également en contact avec la plaque de chauffe (36) en s'étendant sur une surface de l'ordre de 30 % de la surface de la plaque de chauffe (36).
  15. Appareil électrique de chauffage d'aliments ou de cuisson d'aliments selon l'une des revendications 9 à 14, caractérisé en ce que, à l'intérieur de l'enveloppe tubulaire (6), le fil résistif (40) est excentré en direction de la plaque de chauffe (82).
EP03356160A 2002-10-23 2003-10-20 Elément chauffant blindé à effet CTP Expired - Lifetime EP1422972B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0213251 2002-10-23
FR0213251A FR2846509B1 (fr) 2002-10-23 2002-10-23 Element chauffant blinde a effet ctp

Publications (2)

Publication Number Publication Date
EP1422972A1 EP1422972A1 (fr) 2004-05-26
EP1422972B1 true EP1422972B1 (fr) 2009-12-09

Family

ID=32088215

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03356160A Expired - Lifetime EP1422972B1 (fr) 2002-10-23 2003-10-20 Elément chauffant blindé à effet CTP

Country Status (7)

Country Link
US (1) US6919542B2 (fr)
EP (1) EP1422972B1 (fr)
CN (1) CN100479624C (fr)
AT (1) ATE451814T1 (fr)
DE (1) DE60330431D1 (fr)
FR (1) FR2846509B1 (fr)
TW (1) TW200414789A (fr)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2876535B1 (fr) * 2004-10-13 2006-12-01 Seb Sa Element chauffant
ITVE20060001U1 (it) * 2006-01-12 2007-07-13 I R C A S P A Ind Resistenze Corazzate ... Contenitore per fluidi da riscaldare
CN101263983B (zh) * 2007-03-16 2012-01-25 厦门灿坤实业股份有限公司 一种电热式煎烤器及利用该煎烤器煎烤食物的方法
US20090242573A1 (en) * 2008-03-25 2009-10-01 Moshe Ein-Gal Food plate with structure for accommodating fork tines
US20100252561A1 (en) * 2008-03-25 2010-10-07 Moshe Ein-Gal Food plate with structure for accommodating fork tines
CN201197641Y (zh) * 2008-04-17 2009-02-25 厦门灿坤实业股份有限公司 一种可局部高温加热的电煎烤器
KR101544552B1 (ko) * 2009-05-04 2015-08-13 엘지전자 주식회사 조리 기기
ITRM20100363A1 (it) * 2010-07-06 2012-01-07 I R C A S P A Ind Resistenze Corazzate Sistema di riscaldamento di acqua, in particolare per lavastoviglie
US10190814B2 (en) * 2011-11-17 2019-01-29 Component Hardware Group, Inc. Condensate evaporator for refrigeration apparatus
MA41647A (fr) * 2015-03-05 2018-01-09 Spectrum Brands Inc Dispositif de cuisson
US10251218B2 (en) * 2015-04-27 2019-04-02 Haier Us Appliance Solutions, Inc. Appliance heating element
US20170325293A1 (en) * 2016-05-06 2017-11-09 General Electric Company Appliance Heating Element with Integrated Temperature Sensing
CN106659034A (zh) * 2016-12-27 2017-05-10 艾思玛新能源技术(江苏)有限公司 一种用于放置发热元件的装置
US11154162B2 (en) * 2017-03-14 2021-10-26 Illinois Tool Works Inc. Cooking appliance and related heater assembly
CN207412066U (zh) * 2017-05-05 2018-05-29 广东美的厨房电器制造有限公司 电烤箱

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2499961A (en) * 1948-04-30 1950-03-07 Gen Electric Electric heating unit
US2767288A (en) * 1954-04-26 1956-10-16 Gen Electric Electric heating unit
US2816200A (en) * 1954-12-15 1957-12-10 Int Nickel Co Electrical heating unit
US2916594A (en) * 1957-08-05 1959-12-08 Gen Electric Electric heating
US3885128A (en) * 1974-07-01 1975-05-20 Gen Electric Glass-ceramic plate heating unit cast-in heat spreader
US4052590A (en) * 1976-10-28 1977-10-04 National Presto Industries, Inc. Electric appliance with intermittently staked sheathed heating element
GB9525947D0 (en) * 1995-12-19 1996-02-21 Strix Ltd Heating elements

Also Published As

Publication number Publication date
DE60330431D1 (de) 2010-01-21
CN100479624C (zh) 2009-04-15
FR2846509A1 (fr) 2004-04-30
EP1422972A1 (fr) 2004-05-26
FR2846509B1 (fr) 2006-03-17
ATE451814T1 (de) 2009-12-15
US20040084439A1 (en) 2004-05-06
US6919542B2 (en) 2005-07-19
TW200414789A (en) 2004-08-01
CN1498037A (zh) 2004-05-19

Similar Documents

Publication Publication Date Title
EP1422972B1 (fr) Elément chauffant blindé à effet CTP
EP1625772B1 (fr) Dispositif de chauffage d un liquide pour appareil electrome nager, appareil electromenager equipe d un tel dispositif
EP1812758B1 (fr) Procédé et dispositif de fourniture d'eau chaude
CA2231333C (fr) Friteuse a cuve amovible
CH640681A5 (fr) Ensemble electrique chauffant a rayonnement.
FR2694178A1 (fr) Procédé de grillage et/ou de réchauffage d'un produit agro-alimentaire, et dispositif de mise en Óoeuvre dudit procédé.
FR2608882A1 (fr) Agencement de protection thermique pour table de cuisson en verre a disque massif
EP1051099A1 (fr) Thermostat a thermistance et interrupteur-relais pour resistances chauffantes d'appareil electromenager
WO2006040476A1 (fr) Element chauffant, notamment destine aux bouilloires
EP1400193B1 (fr) Capot d'appareil éléctrique du type gaufrier
EP1433406B1 (fr) Dispositif de régulation de l'alimentation électrique d'une résistance pour barbecue
EP1400194B1 (fr) Sous-ensemble chauffant d'un appareil electrique du type gaufrier
WO2000040130A1 (fr) Friteuse electrique
EP1121884B1 (fr) Appareil électrique de cuisson à cuve amovible
EP0783860B1 (fr) Appareil de cuisson présentant plusieurs allures de chauffe
WO2000048496A1 (fr) Friteuse electrique adaptee a l'utilisation de produits surgeles
WO2002000077A2 (fr) Recipient chauffant pour appareil electromenager chauffe liquides
EP0939578A1 (fr) Dispositif de chauffage à piste sérigraphiée et procédé de fabrication d'un tel dispositif
FR2814056A1 (fr) Appareil electrique de cuisson du type barbecue, a limitation de chauffe
BE892173A (fr) Rechaud electrique ayant des moyens avertisseurs de temperature
FR2899784A1 (fr) Appareil a griller ou rotir, a chauffage par induction
BE513098A (fr)
WO1999063872A1 (fr) Appareil electrique de cuisson, notamment friteuse
BE569488A (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20041125

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20050524

17Q First examination report despatched

Effective date: 20050524

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60330431

Country of ref document: DE

Date of ref document: 20100121

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100320

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100309

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100409

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100310

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

26N No opposition filed

Effective date: 20100910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101020

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20151014

Year of fee payment: 13

Ref country code: GB

Payment date: 20151019

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20150921

Year of fee payment: 13

Ref country code: BE

Payment date: 20151029

Year of fee payment: 13

Ref country code: FR

Payment date: 20151102

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60330431

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20161101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20161020

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161102

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170503

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161101

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20161031