EP0849372A1 - Acier de construction faiblement allié à particules actives - Google Patents

Acier de construction faiblement allié à particules actives Download PDF

Info

Publication number
EP0849372A1
EP0849372A1 EP97402979A EP97402979A EP0849372A1 EP 0849372 A1 EP0849372 A1 EP 0849372A1 EP 97402979 A EP97402979 A EP 97402979A EP 97402979 A EP97402979 A EP 97402979A EP 0849372 A1 EP0849372 A1 EP 0849372A1
Authority
EP
European Patent Office
Prior art keywords
steel
zirconium
titanium
active particles
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP97402979A
Other languages
German (de)
English (en)
Other versions
EP0849372B1 (fr
Inventor
Dominique Kaplan
Louis Devillers
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AG Der Dillinger Huettenwerke
Dillinger Huettenwerke AG
Original Assignee
AG Der Dillinger Huettenwerke
Dillinger Huettenwerke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AG Der Dillinger Huettenwerke, Dillinger Huettenwerke AG filed Critical AG Der Dillinger Huettenwerke
Publication of EP0849372A1 publication Critical patent/EP0849372A1/fr
Application granted granted Critical
Publication of EP0849372B1 publication Critical patent/EP0849372B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium

Definitions

  • the present invention relates to a steel with active particles which favor obtaining a fine ferritic grain.
  • thermomechanical treatments intended to refine the grain austenitic before transformation of austenite into ferrite. These treatments are, for example, normalization by reheating for a time not too long, at a temperature not too high above the temperature transformation into austenite, or thermomechanical treatment with plastic deformation of steel in a temperature range such as, on the one hand the steel has an austenitic structure, and on the other hand that the grains hardened austenitics do not recrystallize as large grains.
  • This technique of grain refinement by heat treatments or thermomechanical is universally used. However, it presents the disadvantage of not being adapted to certain situations in which steel is subjected to thermal cycles imposed by circumstances particular use, the implementation processes or the manufacturing.
  • the object of the present invention is to remedy this drawback by providing a steel with improved grain refining ability ferritic and allowing to keep a fine grain, therefore properties of satisfactory ductility even when subjected to poor thermal cycles controlled resulting either from manufacturing conditions or from implementation, that is, finally, special circumstances of use. More specifically, the object of the invention is to provide a steel having, at the same time, a ferritic, ferrito-pearlitic or ferrito-bainitic structure, and a temperature "TK 28 J" below - 45 ° C.
  • the aluminum content and the titanium content satisfy the relationship (with Al and Ti expressed in% by weight): (Al - 0.0022) 2 / 1.6 2 + (Ti - 0.021) 2 / 13 2 ⁇ 10 -6
  • the content of this element is greater than 0.002%.
  • the active particles are then consisting of at least one mixed oxide of zirconium and titanium.
  • the active particles may also contain sulfide of manganese.
  • zirconium is added and the steel is poured less than 15 minutes after the addition of zirconium.
  • the inventors have found, in a new way, that so-called particles active, finely dispersed in steel, were germination sites for ferrite, not only by a local effect on the interfacial energy, but also because of the stresses generated in the metal around them. These constraints which result from differences in the coefficient of expansion between the metal and active particles, appear during any thermal cycle to which steel is subjected, provided that it involves reheating to a sufficient temperature. Such thermal cycles are encountered in numerous circumstances of use, implementation or manufacture.
  • the inventors have also found in a new way that, in order for the stresses generated around the active particles have an effect significant, on the one hand, it is necessary that the deformations generated by these constraints are greater than 1.5%. Finally, they found that only particles of mixed titanium oxide and at least one other element taken from aluminum, silicon and zirconium, induce local deformation greater than 1.5%.
  • the inventors have found that the particles pure aluminum, silicon or titanium oxides lead to deformations of less than 1.5%, than mixed oxide particles aluminum and titanium, or mixed particles of silicon oxides and titanium lead to deformations slightly greater than 1.5%, and, finally, that the particles of mixed zirconium and titanium oxide lead to deformations greater than 3.5%.
  • the particles of mixed zirconium and titanium oxides are sites of particularly effective ferrite germination. This efficiency is improved when the active particles contain a little sulfide of manganese associated with oxides.
  • the grains which have germinated on these active particles will be all the finer as the active particles will be more numerous.
  • the inventors have found that to obtain a significant effect, the number of active particles, counted on a micrographic section of 1 mm 2 , must be greater than 25.
  • the aluminum and titanium contents must satisfy the relationship: (Al - 0.0022) 2 / 1.6 2 + (Ti - 0.021) 2 / 13 2 ⁇ 10 -6 This makes it possible, in fact, to define in a “titanium content / aluminum content” plan the composition area most favorable to the formation of mixed titanium and aluminum oxides in liquid steel or in solidification courses.
  • steels 1 to 6 were manufactured according to the prior art, and 7 to 9 according to the invention, and their temperatures were measured “TK 28 J "(as defined above, ie measured after heating to 1300 ° C and rapid cooling).
  • Steel No. 8 also in accordance with the invention, differs from preceded by the presence of a small addition of zirconium which leads to the formation of active particles made up of mixed oxides of zirconium and titanium particularly effective in refining the microstructure.
  • This effect favorable results in a temperature "TK 28 J” 20 K lower by compared to the temperature "TK 28 J” of steel N ° 7 and, therefore, very below - 45 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

Acier dont la composition chimique comprend, en poids : 0,005% <= C <= 0,4%; 0,2% <= Mn <= 2,5%; 0,05% <= Si <= 0,6%; 0% <= Ni <= 6%; 0% <= Cr <= 3%; 0% <= Mo <= 1,5%; 0% <= Cu <= 1%; 0% <= V <= 0,2%; 0% <= Nb <= 0,1%; 0% <= B <= 0,005%; 0,% <= S <= 0,02%; 0,001% <= Al <= 0,004%; 0,01% <= Ti <= 0,03%; 0% <= N <= 0,006%; éventuellement du zirconium en des teneurs <= 0,006%; éventuellement des terres rares en des teneurs inférieures à 0,05%; éventuellement du calcium en des teneurs inférieures à 0,005%; le reste étant du fer et des impuretés résultant de l'élaboration. L'acier contient une fine dispersion de particules actives constituées au moins d'oxydes mixtes de titane et d'au moins un élément pris parmi l'aluminium, le silicium et le zirconium, le nombre de particules actives par mm<2>, comptées sur une coupe micrographique, étant supérieur à 25. Procédé pour l'élaboration de cet acier.

Description

La présente invention concerne un acier à particules actives qui favorisent l'obtention d'un grain ferritique fin.
Il est bien connu que les propriétés mécaniques de ductilité, de limite d'élasticité et de ténacité des aciers sont d'autant meilleurs que le grain est fin. C'est en particulier le cas pour les aciers dont la structure est ferritique, ferrito-perlitique ou ferrito-bainitique. Ces structures résultent généralement de la transformation au refroidissement de structures austénitiques stables à haute température et instables à basse température. Les grains ferritiques obtenus par ces transformations germent à partir des grains austénitiques et sont d'autant plus fins que la taille des grains austénitiques de départ est petite. Par ailleurs, il est bien connu que le grain austénitique peut être affiné par des traitements thermiques ou thermomécaniques adaptés. Aussi, afin d'obtenir des aciers qui ont des propriétés mécaniques de ductilité, de limite d'élasticité et de ténacité élevées, on cherche à affiner le grain ferritique par des traitements thermiques ou thermomécaniques destinés à affiner le grain austénitique avant transformation de l'austénite en ferrite. Ces traitements sont, par exemple, une normalisation par réchauffage pendant un temps pas trop long, à une température pas trop élevée au dessus de la température de transformation en austénite, ou un traitement thermomécanique par déformation plastique de l'acier dans un domaine de température tel que, d'une part l'acier ait une structure austénitique, et d'autre part que les grains austénitiques écrouis ne recristallisent pas sous forme de gros grains. Cette technique de l'affinement du grain par des traitements thermiques ou thermomécaniques est universellement utilisée. Cependant, elle présente l'inconvénient de ne pas être adaptées à certaines situations dans lesquelles l'acier est soumis à des cycles thermiques imposés par les circonstances particulières d'utilisation, les procédés de mise en oeuvre ou les procédés de fabrication.
Pour limiter les conséquences de cet inconvénient, on a proposé d'ajouter dans l'acier des éléments susceptibles de former une fine dispersion de précipités stables à haute température, qui bloquent la croissance des grains austénitiques. Cependant, cette technique n'est pas toujours suffisamment efficace, si bien qu'il est parfois difficile d'obtenir les caractéristiques de ductilité souhaitées.
L'inconvénient qui vient d'être décrit peut être exprimé de façon quantitative en utilisant la température de transition de la résilience au niveau 28 Joules après un cycle thermique constitué d'un chauffage à 1300°C suivi d'un refroidissement jusqu'à la température ambiante à la vitesse de 4 °C/s ; par convention, dans toute la suite, cette température de transition de résilience, mesurée après le cycle thermique défini ci-dessus, sera appelée "TK 28 J".
Dans un certain nombre de circonstances, la sécurité d'installations construites en acier ne peut être garantie que si la température "TK 28 J" est inférieure à - 45°C. Or, pour les aciers dont il est question ici, on ne peut, en général, pas garantir que la température "TK 28 J" sera inférieure à - 45°C. Il en résulte des limitations dans l'utilisation de ces aciers qui présentent d'autres avantages par ailleurs.
Le but de la présente invention est de remédier à cet inconvénient en proposant un acier ayant une aptitude améliorée à l'affinement du grain ferritique et permettant de conserver un grain fin, donc des propriétés de ductilité satisfaisantes, même lorsqu'il est soumis à des cycles thermiques mal contrôlés résultant soit des conditions de fabrication, soit des conditions de mise en oeuvre, soit, enfin, des circonstances particulières d'utilisation. Plus précisément, le but de l'invention est de proposer un acier ayant, à la fois, une structure ferritique, ferrito-perlitique ou ferrito-bainitique, et une température "TK 28 J" inférieure à - 45 °C.
A cet effet, l'invention a pour objet un acier dont la composition chimique comprend, en poids : 0,05% ≤ C ≤ 0,4% 0,2% ≤ Mn ≤ 2,5% 0,05% ≤ Si ≤ 0,6% 0% ≤ Ni ≤ 6% 0% ≤ Cr ≤ 3% 0% ≤ Mo ≤ 1,5% 0% ≤ Cu ≤ 1% 0% ≤ V ≤ 0,2% 0% ≤ Nb ≤ 0,1% 0% ≤ B ≤ 0,005% 0% ≤ S ≤ 0,02% 0,001% ≤ Al ≤ 0,004% 0,01% ≤ Ti ≤ 0,03% 0% ≤ N ≤ 0,006%
  • éventuellement du zirconium en des teneurs inférieures à 0,006%,
  • éventuellement des terres rares en des teneurs inférieures à 0,05%,
  • éventuellement du calcium en des teneurs inférieures à 0,005%,
le reste étant du fer et des impuretés résultant de l'élaboration. L'acier contient, en outre, une fine dispersion de particules actives constituées au moins d'un oxyde mixte de titane et d'au moins un élément pris parmi l'aluminium, le silicium et le zirconium ; le nombre de particules actives par mm2, comptées sur une coupe micrographique, étant supérieur à 25.
De préférence, la teneur en aluminium et la teneur en titane satisfont la relation (avec Al et Ti exprimés en % en poids): (Al - 0,0022)2/1,62 + (Ti - 0,021)2/132 ≤ 10-6
Lorsque l'acier contient du zirconium, il est préférable que la teneur en cet élément soit supérieure à 0,002%. Les particules actives sont alors constituées d'au moins un oxyde mixte de zirconium et de titane.
Les particules actives peuvent comporter également du sulfure de manganèse.
L'invention concerne également un procédé pour la fabrication de l'acier conforme à l'invention, selon lequel :
  • on élabore un acier liquide non désoxydé contenant moins de 0,005% d'aluminium,
  • on ajoute du silicium et du manganèse,
  • on désoxyde l'acier par le carbone sous vide,
  • puis on ajoute du titane,
et on coule l'acier sous forme d'un demi produit.
De préférence, on ajoute du zirconium et on coule l'acier moins de 15 minutes après l'addition de zirconium.
L'invention va maintenant être décrite plus en détails, de façon non limitative, et illustrée par des exemples.
Les inventeurs ont constaté, de façon nouvelle, que des particules dites actives, finement dispersées dans l'acier, étaient des sites de germination pour la ferrite, non seulement par un effet local sur l'énergie interfaciale, mais également du fait des contraintes engendrées dans le métal autour d'elles. Ces contraintes qui résultent de différences de coefficient de dilatation entre le métal et les particules actives, apparaissent au cours de tout cycle thermique au quel est soumis l'acier, pourvu qu'il comporte un réchauffage à une température suffisante. De tels cycles thermiques se rencontrent dans de nombreuses circonstances d'emploi, de mise en oeuvre ou de fabrication.
Les inventeurs ont également constaté de façon nouvelle que, pour que les contraintes engendrées autour des particules actives aient un effet significatif, d'une part, il est nécessaire que les déformations engendrées par ces contraintes soient supérieures à 1,5%. Ils ont, enfin, constaté que seules les particules d'oxyde mixte de titane et d'au moins un autre élément pris parmi l'aluminium, le silicium et le zirconium, induisent une déformation locale supérieure à 1,5%.
Plus précisément, les inventeurs ont constaté que les particules d'oxydes purs d'aluminium, de silicium ou de titane conduisent à des déformations inférieures à 1,5%, que les particules d'oxydes mixtes d'aluminium et de titane, ou les particules mixtes d'oxydes de silicium et de titane conduisent à des déformations légèrement supérieures à 1,5%, et, enfin, que les particules d'oxyde mixte de zirconium et de titane conduisent à des déformations supérieures à 3,5%.
Du fait des déformations importantes engendrées en leur voisinage, les particules d'oxydes mixtes de zirconium et de titane sont des sites de germination de la ferrite particulièrement efficaces. Cette efficacité est améliorée lorsque les particules actives comportent un peu de sulfure de manganèse associé aux oxydes.
Il est clair que les grains ayant germé sur ces particules actives seront d'autant plus fins que les particules actives seront plus nombreuses. Les inventeurs ont constaté que pour obtenir un effet significatif, il est nécessaire que le nombre de particules actives , compté sur une coupe micrographique de 1 mm2, soit supérieur à 25.
Pour contenir des particules actives conformes à ce qui a été indiqué ci dessus, l'acier doit contenir :
  • moins de 0,004 % et, de préférence, moins de 0,0035 % d'aluminium pour éviter la formation d'inclusions d'alumine pure, mais, plus de 0,001% pour éviter la formation d'oxydes de titane purs et pour favoriser une fine dispersion des particules actives hors des zones ségrégées ; de plus, lorsque la teneur en aluminium est trop faible, la température de transition de résilience dans les zones affectées par des cycles de chauffage rapide à haute température est dégradée ;
  • entre 0,01% et 0,03% de titane pour que les particules actives soient constituées partiellement d'oxyde de titane, ce qui est impératif ;
  • éventuellement du zirconium en des teneurs inférieures à 0,006%, et, de préférence, entre 0,002% et 0,006%, afin de former des oxydes de zirconium qui seront associés aux oxydes de titane, sans qu'il se forme de nitrures de zirconium défavorables à la ténacité ;
  • moins de 0,006% d'azote pour éviter la formation de gros nitrures de titane ou de zirconium défavorables à la ténacité ;
  • plus de 0,05% de silicium pour obtenir suffisamment de particules actives, mais, moins de 0,6% pour éviter de détériorer la ténacité notamment lors d'opérations de soudage ;
  • éventuellement du niobium en des teneurs pouvant aller jusqu'à 0,1% ; en faible teneur cet élément favorise l'affinement du grain, mais, au delà de 0,1% il a un effet défavorable sur la ténacité du fait d'une précipitation trop importante de carbonitrures ;
  • du soufre en des teneurs inférieures à 0,02% ; en général, cet élément est considéré comme étant une impureté, mais, en formant des sulfures de manganèse qui s'associent aux particules actives à base d'oxydes, il augmente l'efficacité de ces particules actives.
De préférence, dans le cas d'aciers calmés au titane (c'est à dire dont la teneur en silicium est faible, de l'ordre de moins de 0,15 %), et afin d'obtenir des particules actives optimales constituées d'oxydes mixtes de titane et d'aluminium, les teneurs en aluminium et titane doivent satisfaire à la relation : (Al - 0,0022)2/1,62 + (Ti - 0,021)2/132 ≤ 10-6 Celle-ci permet, en effet, de définir dans un plan "teneur en titane / teneur en aluminium" le domaine de composition le plus favorable à la formation d'oxydes mixtes de titane et d'aluminium dans de l'acier liquide ou en cours de solidification.
Outre les éléments qui viennent d'être indiqués et nécessaires pour maítriser la formation des particules actives, l'acier contient les éléments qui lui confèrent ses propriétés d'emploi générales, par exemple ses caractéristiques mécaniques. Les domaines de teneur pour chacun de ces élément définissent la famille des aciers aux quels la technique des particules actives s'applique. Il s'agit des aciers faiblement ou moyennement alliés susceptible de présenter une transformation d'austénite en ferrite et de présenter une structure de type ferritique ou ferrito-perlitique ou ferrito-bainitique, dont la composition comporte en poids (outre les éléments indiqués ci-dessus): 0,005% ≤ C ≤ 0,4% 0,2% ≤ Mn ≤ 2,5% 0% ≤ Ni ≤ 6% 0% ≤ Cr ≤ 3% 0% ≤ Mo ≤ 1,5% 0% ≤ Cu ≤ 1% 0% ≤ V ≤ 0,2% 0% ≤ B ≤ 0,005%
  • éventuellement des terres rares en des teneurs inférieures à 0,05%,
  • éventuellement du calcium en des teneurs inférieures à 0,005%, le reste étant du fer et des impuretés résultant de l'élaboration.
Pour obtenir une fine dispersion de particules actives, l'acier doit être élaboré selon l'un ou l'autre des modes d'élaboration suivants :
  • selon un premier mode de réalisation, on élabore un acier liquide non désoxydé contenant moins de 0,005% d'aluminium, au quel on ajoute du manganèse avant de le désoxyder sous vide par le carbone, le manganèse et le silicium, de façon à obtenir une activité en oxygène d'environ 30 ppm, puis on ajoute le titane soit sous forme de ferro-titane, soit de ferro-silico-titane, et, enfin on met à nuance en ajustant les teneurs en éléments d'alliage ; lorsque l'acier doit contenir du zirconium, cet élément est ajouté en fin d'élaboration moins de 15 minutes avant la coulée, que celle-ci soit effectuée en continu ou en lingots ;
  • selon un deuxième mode de réalisation, on élabore un acier liquide qu'on désoxyde par le silicium et le manganèse pour fixer l'activité en oxygène à 40 ppm environ, puis on laisse décanter les plus grosses inclusions, on règle alors la teneur en carbone et on ajoute le titane avant d'effectuer la mise à nuance finale; éventuellement on ajoute du zirconium moins de 15 minutes avant la coulée.
A titre d'exemple et de comparaison, on a fabriqué les aciers 1 à 6 selon l'art antérieur, et 7 à 9 selon l'invention, et on a mesuré leurs températures "TK 28 J" (telle que définie ci-dessus, c'est à dire mesurée après chauffage à 1300°C et refroidissement rapide).
Les compositions chimiques (en millièmes de % en poids) et les températures "TK 28 J"(en °C) étaient :
C Mn Si S P Al V Nb Ti Zr O N TK28J
art antérieur 1 80 1580 235 1 11 26 0 0 0,6 6 - 25
2 82 1620 250 1 12 3 0 0 1,8 3,7 - 10
3 82 1590 252 2,2 10 5 18 20 1,6 4,3 -25
4 73 1585 5 3 9 0,7 3 13 7 - 5,2 nd - 8
5 69 1555 101 4 9 1 3 11 4 - 2,5 nd 0
6 82 1590 252 2 10 5,2 - - 18 20 1,6 nd -25
inven tion 7 77 1485 234 nd nd 3 - - 18 0 1,4 1,7 - 50
8 77 1600 230 2 11 4 - - 10 3 2,7 2,5 - 70
9 68 1488 84 6 13 2 2 14 20 - 2,4 4,3 - 60
L'acier N°7, conforme à l'invention, contient des particules actives de 1 à 5 µm constituées d'oxydes de titane et d'aluminium partiellement associées à du sulfure de manganèse. L'affinement de la microstructure est attestée par la température de transition "TK 28 J" qui est inférieure à - 45°C.
L'acier N°8, également conforme à l'invention, se distingue du précédent par la présence d'une petite addition de zirconium qui conduit à la formation de particules actives constituées d'oxydes mixtes de zirconium et de titane particulièrement efficaces pour affiner la microstructure. Cet effet favorable se traduit par une température "TK 28 J" inférieure de 20 K par rapport à la température "TK 28 J" de l'acier N°7 et, par conséquent, très inférieure à - 45°C.
L'acier N°9, conforme à l'invention, a des teneurs en Al et Ti satifaisant la relation (Al - 0,0022)2/1,62 + (Ti - 0,021)2/132 ≤ 10-6, a été calmé au titane et a une excellente température de transition "TK 28 J".
A contrario :
  • l'acier N°1 calmé à l'aluminium, sans titane contient des inclusions d'alumine peu actives vis à vis de la germination ferritique ; sa température "TK 28 J" n'est que de -25°C, ce qui est trop élevé ;
  • l'acier N°2 calmé au silicium et au manganèse, sans titane, contient des inclusions de silicate de manganèse peu actives vis à vis de la germination de la ferrite, et la microstructure est très grossière ; sa température "TK 28 J" n'est que de -10°C ;
  • l'acier N°3 à bas aluminium, avec du titane et du zirconium n'a cependant pas une bonne ténacité car la teneur en zirconium est trop élevée et l'acier contient de gros nitrures de zirconium qui dégradent cette propriété ; sa température "TK 28 J" est de - 25°C ;
  • l'acier N°4, a une teneur en aluminium trop basse, si bien que la précipitation d'oxydes mixtes de titane et aluminium est insuffisante ; la température "TK 28 J" est de - 8°C, ce qui est beaucoup trop élevé ;
  • l'acier N°5, a une teneur en aluminium satisfaisante mais une teneur en titane trop basse ; la formation d'oxydes mixtes est insuffisante et la température "TK 28 J" est de 0°C, ce qui est encore moins bon que dans le cas précédent;
  • l'acier N°6 a une teneur en aluminium trop forte et une teneur en zirconium excessive qui donne naissance à des nitrures grossiers défavorables à la ténacité ; la température "TK 28 J" est de -25°C.

Claims (6)

  1. Acier caractérisé en ce que sa composition chimique comprend, en poids : 0,05% ≤ C ≤ 0,4% 0,2% ≤ Mn ≤ 2,5% 0,05% ≤ Si ≤ 0,6% 0% ≤ Ni ≤ 6% 0% ≤ Cr ≤ 3% 0% ≤ Mo ≤ 1,5% 0% ≤ Cu ≤ 1% 0% ≤ V ≤ 0,2% 0% ≤ Nb ≤ 0,1% 0% ≤ B ≤ 0,005% 0% ≤ S ≤ 0,02% 0,001% ≤ Al ≤ 0,004% 0,01% ≤ Ti ≤ 0,03% 0% ≤ N ≤ 0,006%
    éventuellement du zirconium en des teneurs inférieures à 0,006%,
    éventuellement des terres rares en des teneurs inférieures à 0,05%,
    éventuellement du calcium en des teneurs inférieures à 0,005%,
    le reste étant du fer et des impuretés résultant de l'élaboration, l'acier contenant une fine dispersion de particules actives constituées au moins d'un oxyde mixte de titane et d'au moins un élément pris parmi l'aluminium, le silicium et le zirconium, le nombre de particules actives par mm2, comptées sur une coupe micrographique, étant supérieur à 25.
  2. Acier selon la revendication 1 caractérisé en ce que la teneur en aluminium et la teneur en titane satisfont la relation : (Al - 0,0022)2/1,62 + (Ti - 0,021)2/132 ≤ 10-6
  3. Acier selon la revendication 1 caractérisé en ce que il contient plus de 0,002% de zirconium et en ce que les particules actives sont constituées d'au moins un oxyde mixte de zirconium et de titane.
  4. Acier selon l'une quelconque des revendications 1 à 3 caractérisé en ce que les particules actives comportent en outre du sulfure de manganèse.
  5. Procédé pour la fabrication d'un acier selon l'une quelconque des revendications 1 à 4 caractérisé en ce que :
    on élabore un acier liquide non désoxydé contenant moins de 0,005% d'aluminium,
    on ajoute du manganèse,
    on désoxyde l'acier sous vide, par le carbone, le manganèse et le silicium, de façon à obtenir une activité en oxygène inférieure à 30 ppm,
    on ajoute du titane,
    puis on met à nuance,
    et on coule l'acier sous forme d'un demi produit.
  6. Procédé selon la revendication 5 caractérisé en ce que, après l'addition de titane, on ajoute du zirconium et en ce que on coule l'acier moins de 15 minutes après l'addition de zirconium.
EP19970402979 1996-12-19 1997-12-10 Acier de construction faiblement allié à particules actives Expired - Lifetime EP0849372B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9615592A FR2757542B1 (fr) 1996-12-19 1996-12-19 Acier de construction faiblement allie a particules actives
FR9615592 1996-12-19

Publications (2)

Publication Number Publication Date
EP0849372A1 true EP0849372A1 (fr) 1998-06-24
EP0849372B1 EP0849372B1 (fr) 2003-10-08

Family

ID=9498820

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19970402979 Expired - Lifetime EP0849372B1 (fr) 1996-12-19 1997-12-10 Acier de construction faiblement allié à particules actives

Country Status (3)

Country Link
EP (1) EP0849372B1 (fr)
DE (1) DE69725414T2 (fr)
FR (1) FR2757542B1 (fr)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62109948A (ja) * 1985-11-07 1987-05-21 Kawasaki Steel Corp 溶接用高靭性鋼
JPH02125812A (ja) * 1988-07-14 1990-05-14 Nippon Steel Corp 溶接熱影響部靭性の優れたCu添加鋼の製造法
JPH02194115A (ja) * 1989-01-23 1990-07-31 Nippon Steel Corp チタン酸化物を含有する溶接部靭性の優れた低温用高張力鋼の製造法
JPH02220735A (ja) * 1989-02-20 1990-09-03 Nippon Steel Corp チタン酸化物を含有する溶接・低温用高張力鋼の製造法
EP0589424A2 (fr) * 1992-09-24 1994-03-30 Nippon Steel Corporation Profilés en acier ayant une bonne résistance mécanique, une bonne ductilité et une bonne résistance au feu et procédé de fabrication de profilés en acier par laminage
EP0589435A2 (fr) * 1992-09-24 1994-03-30 Nippon Steel Corporation Profilés en acier réfractaire contenant des oxydes et procédé de fabrication de profilés en acier par laminage
JPH06279848A (ja) * 1993-03-26 1994-10-04 Nippon Steel Corp 降伏点制御圧延形鋼
JPH06293937A (ja) * 1993-04-07 1994-10-21 Nippon Steel Corp Ti−Al複合系酸化物が分散した溶接部の靭性に優れた溶接構造用鋼の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62109948A (ja) * 1985-11-07 1987-05-21 Kawasaki Steel Corp 溶接用高靭性鋼
JPH02125812A (ja) * 1988-07-14 1990-05-14 Nippon Steel Corp 溶接熱影響部靭性の優れたCu添加鋼の製造法
JPH02194115A (ja) * 1989-01-23 1990-07-31 Nippon Steel Corp チタン酸化物を含有する溶接部靭性の優れた低温用高張力鋼の製造法
JPH02220735A (ja) * 1989-02-20 1990-09-03 Nippon Steel Corp チタン酸化物を含有する溶接・低温用高張力鋼の製造法
EP0589424A2 (fr) * 1992-09-24 1994-03-30 Nippon Steel Corporation Profilés en acier ayant une bonne résistance mécanique, une bonne ductilité et une bonne résistance au feu et procédé de fabrication de profilés en acier par laminage
EP0589435A2 (fr) * 1992-09-24 1994-03-30 Nippon Steel Corporation Profilés en acier réfractaire contenant des oxydes et procédé de fabrication de profilés en acier par laminage
JPH06279848A (ja) * 1993-03-26 1994-10-04 Nippon Steel Corp 降伏点制御圧延形鋼
JPH06293937A (ja) * 1993-04-07 1994-10-21 Nippon Steel Corp Ti−Al複合系酸化物が分散した溶接部の靭性に優れた溶接構造用鋼の製造方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 011, no. 322 (C - 453) 20 October 1987 (1987-10-20) *
PATENT ABSTRACTS OF JAPAN vol. 014, no. 342 (C - 0743) 24 July 1990 (1990-07-24) *
PATENT ABSTRACTS OF JAPAN vol. 014, no. 470 (C - 0769) 15 October 1990 (1990-10-15) *
PATENT ABSTRACTS OF JAPAN vol. 014, no. 523 (M - 1049) 16 November 1990 (1990-11-16) *
PATENT ABSTRACTS OF JAPAN vol. 095, no. 001 28 February 1995 (1995-02-28) *

Also Published As

Publication number Publication date
FR2757542A1 (fr) 1998-06-26
DE69725414D1 (de) 2003-11-13
FR2757542B1 (fr) 1999-01-15
EP0849372B1 (fr) 2003-10-08
DE69725414T2 (de) 2004-08-19

Similar Documents

Publication Publication Date Title
EP1913169B1 (fr) Procede de fabrication de tôles d&#39;acier presentant une haute resistance et une excellente ductilite, et tôles ainsi produites
KR100196989B1 (ko) 내마모성 구리계 합금
EP0714995B1 (fr) Procédé d&#39;élaboration d&#39;un acier au titane et acier obtenu
EP0629714B1 (fr) Acier inoxydable martensitique à usinabilité améliorée
EP1156126B1 (fr) Procédé de fabrication d&#39;une bande en alliage Fe-Ni et bandes obtenues
JPH08507107A (ja) 優れた熱間加工性を有する高マンガン鋼、および亀裂を生じないで高マンガン熱間圧延鋼板を製造する方法
FR2477183A1 (fr) Acier inoxydable ferritique presentant une grande facilite de faconnage
JP4025632B2 (ja) 銅合金
FR2643650A1 (fr) Tole d&#39;acier allie laminee a chaud
EP0738783A1 (fr) Acier inoxydable austénitique pour l&#39;élaboration notamment de fil
EP1563110B1 (fr) Piece d&#39;acier de construction soudable et procede de fabrication
EP1563109B1 (fr) Piece d&#39;acier de construction soudable et procede de fabrication
EP0931844B1 (fr) Acier maraging sans cobalt
EP0849372B1 (fr) Acier de construction faiblement allié à particules actives
FR2665461A1 (fr) Aciers non affines a tenacite elevee et procede pour leur fabrication.
EP1379706B1 (fr) Acier a outils a tenacite renforcee, procede de fabrication de pieces dans cet acier et pieces obtenues
JP3573344B2 (ja) 高清浄マルエージング鋼の製造方法
FR2495189A1 (fr) Tole d&#39;acier de haute resistance et son procede de fabrication
JP2003034842A (ja) 切屑処理性に優れた冷間鍛造用鋼
JPH0790504A (ja) 低温用Ni含有鋼およびその連続鋳造鋳片の2次冷却方法
JP2004183097A (ja) マルエージング鋼の製造方法及びマルエージング鋼
EP0170546B1 (fr) Acier nitrurable à haute résistance et bonne usinabilité, utilisable comme acier de construction et procédé pour sa fabrication
JP2005232551A (ja) マルエージング鋼
EP0935007B1 (fr) Acier maraging sans cobalt et sans titane
JP4085374B2 (ja) マルエージング鋼の製造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FI FR GB IT SE

17P Request for examination filed

Effective date: 19981228

AKX Designation fees paid

Free format text: DE FI FR GB IT SE

RBV Designated contracting states (corrected)

Designated state(s): DE FI FR GB IT SE

17Q First examination report despatched

Effective date: 20000317

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FI FR GB IT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 69725414

Country of ref document: DE

Date of ref document: 20031113

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040108

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040116

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040709

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20131219

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20141121

Year of fee payment: 18

Ref country code: FI

Payment date: 20141124

Year of fee payment: 18

Ref country code: GB

Payment date: 20141126

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20141127

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141231

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69725414

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20151210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160701

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151210