EP0842784B1 - Presse multicouleur à la continue par jet d'encre, procédé de synchronisation d'une telle presse, et produit imprimé obtenu à l'aide d'une telle presse - Google Patents

Presse multicouleur à la continue par jet d'encre, procédé de synchronisation d'une telle presse, et produit imprimé obtenu à l'aide d'une telle presse Download PDF

Info

Publication number
EP0842784B1
EP0842784B1 EP97402713A EP97402713A EP0842784B1 EP 0842784 B1 EP0842784 B1 EP 0842784B1 EP 97402713 A EP97402713 A EP 97402713A EP 97402713 A EP97402713 A EP 97402713A EP 0842784 B1 EP0842784 B1 EP 0842784B1
Authority
EP
European Patent Office
Prior art keywords
printing
marks
substrate
press according
printed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97402713A
Other languages
German (de)
English (en)
Other versions
EP0842784A1 (fr
Inventor
Alain Dunand
Daniel Esteoulle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Markem Imaje SAS
Original Assignee
Imaje SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Imaje SA filed Critical Imaje SA
Publication of EP0842784A1 publication Critical patent/EP0842784A1/fr
Application granted granted Critical
Publication of EP0842784B1 publication Critical patent/EP0842784B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J19/00Character- or line-spacing mechanisms
    • B41J19/16Special spacing mechanisms for circular, spiral, or diagonal-printing apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J11/00Devices or arrangements  of selective printing mechanisms, e.g. ink-jet printers or thermal printers, for supporting or handling copy material in sheet or web form
    • B41J11/36Blanking or long feeds; Feeding to a particular line, e.g. by rotation of platen or feed roller
    • B41J11/42Controlling printing material conveyance for accurate alignment of the printing material with the printhead; Print registering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J3/00Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed
    • B41J3/407Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed for marking on special material
    • B41J3/4078Printing on textile

Definitions

  • the present invention relates to a press multi-color continuous inkjet, a process of implementation of such a press, and a product print obtained using such a press.
  • inkjet offers a cost advantage and superior performance for the restitution of colors, as well as better printability substrates of various natures.
  • the printing industry will adopt digital production techniques which are more flexible, faster, provided they do not do not compromise print quality.
  • the jet ink is one of the main candidate techniques considered.
  • the problem of synchronization in transient speed phase (acceleration or deceleration) of the substrate is currently unknown.
  • the shims are carried out at speed stabilized by relative mechanical displacements of the forms printers.
  • the frame rate is low, examining the quality of color matching is done visually on the printed substrate.
  • a help electronic adjustment is provided by printing repetitive calibration patterns at the edge of the width, and by viewing them on a control monitor, the targets being observed by a camera associated with a strobe lighting.
  • a slow drift in the timing is always observed in practice, at due to variations in the environment, friction or even dimensional differences between different forms of printers, maintaining timing is provided by the printer operator who continuously monitors and adjusts the print timing.
  • the document referenced [2] at the end of the description describes the synchronization of a single pass color electrostatic printer in which print head of the first color prints at regular intervals and at the edge of the substrate synchronization targets. Scroll speed is kept constant thanks to the enslavement of the substrate drive motor. In phase of scrolling of the substrate this test pattern is reread by CCD cameras located downstream, each camera being associated with a print head. Each head then interprets the distance between the landmarks of the test pattern measured by his camera, so to print the dot lines in its own color of evenly distributed among the test marks on the substrate and thus obtain the superposition of different colours.
  • the distance between the test marks being smaller than the size of an image it is also necessary to determine the start of the image for each print head. This is done in determining, at nominal operating speed, the time difference between the different heads printing. This offset is determined by the operator which performs a sequence of impression tests of a other specific calibration target, combining different colours.
  • the document referenced [3] discloses another type of synchronization system applied to a electrophotographic printer.
  • a difference with the electrostatic system mentioned above comes from fact that electrophotographic printing is not a direct printing technique. This requires indeed a transfer of the colored image, previously materialized on a transfer tape. This image is then transferred by mechanical contact between the transfer tape and the substrate to be printed.
  • the disclosed synchronization system implements printing of different targets by each cylinder associated with each of the colors on the transfer tape.
  • the document referenced [4] discloses a synchronization system for a printer electrophotographic.
  • the image start signal is materialized by a hole in the transfer tape. the detection of this hole by an optical system and the definition of delays for each printing cylinder allows you to synchronize the different colors.
  • this solution does not allow overprinting or customize an already printed document.
  • Printing substrates at speed variable is, moreover, known in industrial marking applications, but in these cases, printing is done in one color, or several independent colors: positioning relative points of different colors is not required. Note however that even in printing monochrome, variable speed printing poses specific timing issues at the inkjet technology, due to response time intrinsic to the printheads. These project droplets at a distance ink, which will impact the substrate for the impression. The duration of the trajectory of the drops of the print head to the substrate being fixed by the ejection speed of the drops and the distance from the ejection nozzle to the substrate, it is understood that in case of substrate speed variation, compensation specific should be done to account for the duration of trajectory of the drops. Such systems of compensation of the trajectory time of the drops in theft are known in the state of the art and used to commercially, as in the jet printer IMAJE Series 4 ink.
  • Patent application EP 0 729 846 describes a device for control of the recording of images printed on a substrate in a jet printing device ink comprising several printheads, in which of the registration marks associated with images are printed on the substrate and then read by a captor.
  • this press includes a system of the first brands, regularly printed on the substrate, located upstream of the print heads.
  • these first marks can be printed or even simply materialized by manufacturing on this same substrate conveyor belt. In the case of a substrate preprinted, the first marks will have been produced during the preprint.
  • These first brands have a geometry and a color allowing an unambiguous reading in environment industrial by an optical system such as a CCD camera and a lighting, or a sensor measuring the optical reflection of the substrate.
  • An optical system such as a CCD camera and a lighting, or a sensor measuring the optical reflection of the substrate.
  • a square block of one to a few millimeters in side and fluorescent color are possible choices particularly suitable.
  • These marks can be indifferently printed on the front or back of the substrate or the conveyor belt if necessary, depending on the best lighting conditions and reading system. Reading marks on each printhead is done by a system optical. This reading allows the generation of a signal precise pulse time DTOPi, which defines the moment of passage of a first mark under the sensor associated with the Ti print head. The distance between two first marks is of the order of distance separating 100 to 5000 lines of printed dots.
  • the duration between two signal pulses DTOPi permanently contains an integer and constant M of periods of a clock HTRAMi.
  • the clock HTRAMi is the print command signal of a line of dots through the print head. This allows to have permanently the same number M of lines of dots printed on the substrate between two first marks, for each color. So, these brands being physically linked to the substrate, positioning relative of the different colors is noticeably assured, even if the substrate undergoes deformation between two printheads.
  • the optical generator sensor DTOPi signal, placed upstream of a head is more exactly arranged at a distance from the print head less than twice the distance between the first two marks.
  • second marks are printed on the substrate, which can be distinguished unambiguously from first brands. These second marks can be printed on the edge of the substrate by the first head printing.
  • a preferred embodiment consists of printing these marks at the edge of the substrate on a line parallel to the direction of scrolling, but located at a good distance from the first line brands. In the case of a preprinted substrate, the second marks will have been made during the preprint.
  • These second marks are read by an optical system, in order to generate a signal called MOTIF, more precise rough, indicating the change in the pattern to be printed.
  • the signal MOTIF is detected by printing and detection a rapid succession of a few separate paving stones from a distance much less than that separating the first brands.
  • a second mark may be naturally generated by the appearance of the edge downstream of the sheet under the optical sensor, and the synchronization is performed in a similar way to width substrate case.
  • the synchronization circuit performs prediction, filtering, and windowing operations the reading operation of the DTOPi signal in order to confer a very high robustness to the system. Detection of first brands is first authorized in a limited time window, which is centered on the first brand likely to pass under the sensor. This solution makes it possible to limit the disruptive detections that could be related to the presence of parasites. In the absence of detection of a first mark in the reading window, a fictitious DTOPi signal is generated, from a prediction based on the interval between two previous impulses. This allows to continue printing, especially when changing the pattern, even when the first mark could not be detected. Simultaneously the reading window is expanded for the next detection time. Printing is stopped if the fault persists after four missing DTOPi signals.
  • the offsets between the print heads of the different colors making up the printing system are measured by intermittent test patterns of multi-color calibration printed by these same heads printing.
  • the calibration patterns include geometric patterns that allow you to locate without ambiguity the dots printed by the different heads printing.
  • the impression of the sights is interspersed in the sequenced process of producing printed products.
  • Target analysis can be done by output from the production line, if the time to product residence in the line is brief, allowing corrections and calibration within a short time. Yes however, the production line is long, which is the case for vinyl flooring which must spend several minutes in ovens placed in line immediately downstream of the place of printing, then an online analysis of the test patterns must be carried out work, before the release of the product at the end of the line production.
  • a test pattern analysis system comprising a color camera (CCD type) equipped with optics adapted and mounted on a mechanical system displacement with micrometric position indexer arranged substantially perpendicular to the direction of substrate scrolling, as well as a system associated IT.
  • the substrate conveyor line is stopped intermittently when the test pattern calibration is located significantly below the area swept by the movement of the camera. Detection the presence of the calibration target on the substrate can be made through the printing of a characteristic MOTIF mark at the edge of the substrate, signaling the presence of a calibration target and commanding the momentary cessation of the running of the substrate.
  • the MOTIF mark is detected by a optical sensor associated with the target analysis system, similar to the sensors fitted to the print heads.
  • the camera is moved by the system mechanical, while analyzing the impacts of drops of different colors.
  • the system IT simultaneously notes the characteristics of printed dots and the position of the camera thanks position information from the indexer of position on the axis of movement. By comparing the positions of the test pattern printed dots with their theoretical values, point position deviations prints of each color can be determined and compensated in the printing system during the next production. These compensations are automatically calculated by the computer system and uploaded to the process controller printing.
  • the present invention also relates to a width or sheet product (floor / wall covering, textile, poster) printed or overprinted using the synchronization method of the invention.
  • This (over) printed product, produced using the press of the invention is such that it includes a fixed background image and some parts of the decoration are variable, printed continuously by the object press of the invention, for example (address or photo of local distributor for an advertising poster of big brand in an international campaign or national, ).
  • the fixed and variable parts of the image are printed on the same substrate.
  • Figures 1A and 1B show schematically the mechanical architecture of a press conventional screen printing printing on a substrate textile 10, continuously scrolling, fed from a roll 11.
  • This substrate is stuck on a strip adhesive conveyor 12.
  • the device 13 is a device for laminating and driving the substrate 10.
  • the device 14 is a device gluing of the belt 12.
  • This conveyor belt 12, less deformable than the textile substrate 10, is set in motion by a motor. Textile is therefore driven by the conveyor belt 12 and maintained in position as it scrolls under the units color printing of rolls engraved with serigraphy 15.
  • Each roll 15 deposits a quantity ink on the substrate 10, the ink being circulated at inside the roller and forced through holes engraved in this roll, and corresponding to the image to print.
  • Each roller or rotating frame 15 applies controlled pressure to the substrate 10, which conditions the amount of ink transferred.
  • the substrate 10 is peeled downstream of the conveyor belt 12 for the following operations of production, such as fixing or drying inks. A color is printed here while the previous color is still wet.
  • the printing system includes a device for cleaning 16 of the conveyor belt 12, to remove the ink that has passed through the fabric and impregnated the latter.
  • FIGS 2A and 2B show schematically the mechanical architecture of a press rotogravure printing on a substrate 20 passing by continuous, thanks to a drive motor 21.
  • the roller 22 is the input roller of the substrate.
  • This substrate 20 which can be, for example, a coating vinyl flooring, usually armed with a fabric core of fiberglass, is more resistant mechanically and less deformable than a textile. So it does require no conveyor belt and can be used mechanically by the conveyor system.
  • Each printing cylinder 23 has etched cells intaglio corresponding to the image to be printed (process gravure). These cells are filled with ink by an inking device 24 (inkwell, inking roller and doctor blade) in contact with the cylinder.
  • a heating system 25 is interposed between each of the printing units 23, so that freshly printed ink is not transferred by contact to the rollers located downstream.
  • FIGS 3A, 3B and 4A, 4B show schematically mechanical architectures of continuous inkjet printing machines. In these figures are represented heads inkjet printing 30.
  • the machine of Figures 3A and 3B uses a conveyor belt 31 and is particularly suitable printing porous and deformable substrates such as textiles presented in rolls, or as substrates in sheets or plates unstacked as input.
  • first and second readers brands 32A and 32B are represented first and second readers brands 32A and 32B, a device for marking first brands 33, a calibration target reader 34, a drive motor 35, as well as drying devices 36.
  • Figure 5 shows the architecture of an inkjet press according to the invention.
  • printer 40 of first brands 51, sensors 41 and 49, a color camera 42, a drive motor 43, ink circuits 44 respectively connected to several print heads T1, T2, T3 and T4, as well a synchronization circuit 45, connected to the heads T1, T2, T3 and T4 and to sensors 41 (referenced 32 on Figures 3 and 4) and 49, and a circuit for reading calibration test patterns 47 linked to a computer system process controller 46.
  • the substrate 50 is driven directly as illustrated in Figure 4; or indirectly, glued, or simply worn, on a conveyor belt as illustrated in figure 3, to go under the successive print heads T1, T2, T3 and T4. he can be animated by one (or more) device (s) motorization.
  • Each T1, T2, T3 or T4 printhead prints an ink associated with a primary color of the image to print. Printing is done using the simultaneous piloting of a multitude of jets arranged in parallel, as described in the document referenced [1].
  • Each print head is supplied with ink thanks to an ink circuit 44 which is specific to it.
  • the computer system 46 called “process controller” supervise the printing of these different heads T1, T2, T3 or T4.
  • the motor 43 is equipped with an encoder 48 of high resolution position, typically 3000 at 300,000 points per engine revolution, which gives a high frequency pulse (typically 100-500 kHz) representative of a step of a few microns (3 to 30 microns) in advance of substrate 50.
  • This resolution is on the order of ten to fifty times lower than addressability, i.e. nominal distance between adjacent printed dot lines, measured in the direction of travel of the substrate 50.
  • This level of resolution allows, thanks to the system of synchronization, to precisely position the drops of different colors, with precision greater than about 1/10 of the addressability. This resolution would be inaccessible to a system operating with printed and reread marks on the substrate.
  • the signal from the encoder 48 is transmitted to the synchronization circuit 45.
  • This signal presents in Figures 6 and 9, gives an image approximate speed and position of the substrate 50. It is inaccurate in the sense that it does not does not take into account possible slippages or the deformation of the substrate.
  • the TACHY signal is the basis for the development of a frame clock, noted HTRAMi, associated with each print head Ti of color.
  • This frame clock is the start signal each line of dots.
  • the HTRAMi signal period is a multiple of the TACHY signal (so it contains a number TACHY pulse integer), typically corresponding from 10 to 50 pulses, depending on the addressability.
  • This number of TACHY pulses contained in the period HTRAMi signal is variable over time, and moreover different for each Ti printhead, depending a second DTOPi signal, explained below.
  • first marks 51 are regularly printed on the substrate 50, preferably using the printing system 40 located upstream of the Ti printheads.
  • these first marks can be printed or even simply materialized by manufacturing on this same conveyor belt.
  • the brands must already be present (therefore pre-printed) at the input of the system printing in the case of overprinting the product.
  • These marks 51 have a geometry and a color as they allow replay without ambiguity, in an industrial environment, by a system optics such as a CCD camera and lighting, or a sensor measuring the optical reflection of the substrate.
  • a square paving stone of typical size 5 mm ⁇ 5 mm (or 1 cm ⁇ 1 cm) and a fluorescent color are choices particularly suitable. These brands can be indifferently printed on the front or back of the substrate, depending on the best conditions lighting and reading system.
  • Reading a first mark 51 at level of each printhead Ti is performed by the associated sensor 41 which is an optical system.
  • This read allows generation of a time signal precise impulse, denoted DTOPi in FIG. 6.
  • This DTOPi signal defines the moment of passage of a mark 51 under a sensor 41 associated with a print head Ti.
  • the DTOPi signal can be generated by appropriate processing of the read signal of optical sensor 41, using wired operators such as smoothing and time derivative, in order to translate the precise moment of passage of an edge of the printed mark 51.
  • the distance between two marks 51 can be in the range of 100 to 5000 lines of dots printed. So the frequency of reading these marks 51 is about 100 to 5000 times lower than that of HTRAMi signal.
  • the duration between two successive pulses of the DTOPi signal permanently contains an integer and constant of periods of the HTRAMi signal, noted M on the figures.
  • This allows to have the same permanently number M of lines of dots printed on the substrate between two marks 51, for each color. So the marks 51 being physically linked to the substrate, the relative positioning of the different colors is substantially assured, even if the substrate is subjected to deformation between two printheads.
  • the distance between the marks 51 is chosen such that so that for the extreme conditions of deformation substrate (maximum acceleration, deceleration maximum) the variation in length of the substrate 50 between two marks 51 consecutive is less than addressability (the distance between lines of points successive). This constraint is compatible with scrolling and deformation characteristics of substrates (or conveyor belt if applicable) commonly encountered (maximum deformations of around 1%).
  • each optical sensor 41 generating a DTOPi signal is not placed at the head associated printing Ti, but placed upstream. It is more exactly arranged at a distance slightly greater than the distance between the first two marks and less than twice that distance. This offset allows synchronization circuit 45 to count the TACHY pulses in the interval between successive marks 51, before the same DTOP interval scrolls under the head print, and therefore calculate the corrected values HTRAMi clock parameters and transmit to the print head.
  • the number of TACHY pulses is redistributed in M substantially equal periods for constitute the HTRAMi clock which synchronizes printing the dots at the Ti print head.
  • the ATACHY gap between the TACHY pulse numbers measured for two intervals between first successive marks is used to modify the TACHY pulse numbers in HTRAMi clocks, to compensate for the deformation of the substrate 50.
  • the ATACHY gap is redistributed approximately linearly in the interval between first brands considered, as shown in the figure 8.
  • This compensation ensures a variation monotonic of the HTRAM clock period, and particular equality of the first HTRAM period of the interval between first marks considered with that of the last TRAM period of the interval previous. It also obviously ensures equality strict number of HTRAMi pulses in the interval between corresponding first marks, here equal to M.
  • second marks are printed on the substrate 50 (not on the conveyor belt). These seconds brands can be distinguished unambiguously from first marks 51. These second marks can be printed on the edge of the substrate by the first head T1 printing. In the case of a preprinted substrate, the second marks will have been made during the preprint.
  • a preferred embodiment consists of printing these second marks at the edge of the substrate on a line parallel to the direction of travel, but located a good distance from the first line marks 51.
  • the function of these second marks is to report the change in the pattern to be printed.
  • These brands are read by an optical system (which can be same or the same type as the previous one), in order to generate a signal called MOTIF, of coarser precision, indicating the change of the pattern to be printed.
  • MOTIF the MOTIF signal is spotted by printing and detecting a rapid succession of paving stones 53 separated by a distance much less than the distance between first marks, as shown in figure 9. This redundancy of pavers allow unambiguous detection of change pattern.
  • the synchronization circuit 45 gives the order to the head printing to stop printing production in course and move on to the next production as soon as the next pulse of the DTOPi signal.
  • mark 53 is naturally generated by the appearance of the downstream edge of the sheet under the optical sensor, and the synchronization is performed in a similar way to width substrate case.
  • the synchronization circuit 45 performs prediction, filtering, and windowing operations the reading operation of the DTOPi signal in order to confer a very high robustness to the system. Detection of a first mark 51 is first authorized in a limited time window, which is centered on the probable time of passage of this mark under the sensor. This solution makes it possible to limit the disruptive detections that could be related to the presence of parasites (printed defects or electrical disturbances). In the absence of detection of a first mark 51 in the reading window, a fictitious DTOPi signal is generated, from a prediction based on the interval between firsts previous brands. This allows to continue printing, especially when changing the pattern or between two sheets preprinted or not, even when the first mark 51 could not be detected. At the same time the reading window is widened to the next detection time. The impression is stopped if the fault persists after four pulses Missing DTOPi.
  • these shifts of printing system are measured by analysis intermittent multi-color calibration test patterns printed by the printing system all over the width of the substrate.
  • Calibration targets have geometric patterns that allow unambiguously identify the dots printed by the different printing units. The impression of targets is interspersed in the sequenced process of the production of printed products. Analysis of targets can be made at the machine outlet, if the product residence in the line is brief, and allows corrections and calibration within a short time. Yes however, the production line is long, which is the case for vinyl flooring which must spend several minutes in ovens placed in line immediately downstream of the place of printing, then an online analysis of the test patterns must be carried out work, before the substrate leaves the line of production.
  • print heads downstream a test pattern analysis system including a camera color (CCD type) fitted with suitable optics, and mounted on a mechanical displacement system at micrometric position indexer arranged substantially perpendicular to the direction of travel of the substrate, and an associated processing system.
  • the line of conveying of the substrate 50 is stopped so intermittent when the calibration target is placed substantially in the area scanned by the camera.
  • the detection of the presence of the calibration target on the substrate can be made through the printing of a characteristic MOTIF mark at the edge of the substrate, signaling the presence of a calibration target.
  • the MOTIF mark detection is carried out by a sensor optics 49 associated with the test pattern analysis system, similar to readers of second brands 41 associated to the Ti printheads: it triggers the shutdown momentary of the substrate.
  • the camera 42 is moved by the mechanical system (transversely in the sense of scrolling of the substrate), at the same time as it analyzes the impacts of drops of different colors.
  • the treatment system simultaneously records the characteristics of the printed dots and the position of camera 42 using position information from the position indexer on the axis of displacement. By comparing the positions of the points with their theoretical values, position differences can thus be determined and compensated for in the printing system during the next production. These compensations are automatically calculated by the processing system and remote transmissions to the controller of the printing process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Ink Jet (AREA)
  • Accessory Devices And Overall Control Thereof (AREA)
  • Handling Of Sheets (AREA)

Description

La présente invention concerne une presse multicouleur à la continue par jet d'encre, un procédé de mise en oeuvre d'une telle presse, et un produit imprimé obtenu à l'aide d'une telle presse.
Etat de la technique antérieure
Les systèmes d'impression numériques par jet d'encre se sont considérablement développés ces dernières années, particulièrement dans les applications d'impression bureautique d'images en couleur. Le procédé du jet d'encre présente des avantages indéniables vis-à-vis des technologies anciennes d'impression par contact, comme l'absence de bruit de fonctionnement, et l'absence de contact avec le substrat.
Par rapport aux autres techniques d'impression numérique couleur comme l'électrophotographie, le jet d'encre offre un avantage de coût et une performance supérieure pour la restitution des couleurs, ainsi qu'une meilleure aptitude à imprimer des substrats de natures variées.
Dans les applications industrielles d'impression couleur, comme l'impression textile, d'affiches, de revêtements de murs ou de sol, d'étiquettes, de cartes plastiques, ou même l'impression de livres/magazines ou catalogues, les systèmes d'impression utilisés à ce jour mettent encore en oeuvre les technologies traditionnelles opérant par contact, comme l'héliogravure, l'offset, ou la sérigraphie. Ces technologies sont lourdes à mettre en oeuvre, car elles nécessitent la fabrication préalable de formes mécaniques imprimantes qui matérialisent l'image à imprimer, telles que les rouleaux gravés pour l'héliogravure, les écrans de sérigraphie ou les plaques pour l'offset. Le coût et le délai de fabrication de ces formes imprimantes constituent un frein important à l'impression de petites séries avec des délais courts.
La conception des produits industriels imprimés a évolué sous la contrainte des technologies traditionnelles d'impression :
  • La personnalisation de produits est effectuée hors ligne de production, ce qui est long et coûteux.
  • La production en petites séries est découragée par les imprimeurs qui répercutent les coûts élevés causés par l'arrêt de la production lors des changements des formes imprimantes, les pertes d'encres lors de changements de couleurs et les pertes de produits engendrées par le calage des nouvelles formes lors de la remise en route de l'impression.
  • La production est organisée en séries longues, regroupant un grand nombre de commandes identiques. La production « juste à temps », pour fournir aux circuits de distribution les produits correspondant à la demande immédiate des consommateurs, est impossible. Au contraire, ces systèmes de production traditionnels génèrent des inventaires volumineux et coûteux ; les invendus et produits démarqués sont fréquents, et les encours de production importants.
Cependant les systèmes traditionnels sont en passe d'être remplacés par des systèmes basés sur l'impression numérique :
  • avec l'avènement des systèmes de communications numériques, tels que les autoroutes de l'information, qui permettent de connaítre à chaque instant la demande de produits et de commander et fabriquer « juste à temps » ;
  • sous la pression des consommateurs et utilisateurs dont les besoins, les goûts et les modes sont de plus en plus variés et changeants ;
  • sous la contrainte des circuits de distribution qui veulent réduire leurs coûts, notamment ceux occasionnés par les stocks et les invendus.
L'industrie de l'impression va adopter les techniques de production numériques qui sont plus souples, plus rapides, à condition qu'elles ne compromettent pas la qualité d'impression. Le jet d'encre est l'une des principales techniques candidates envisagées.
L'impression par jet d'encre, notamment la technologie du jet continu dévié, se prête bien à la construction de têtes d'impression en grande largeur, comme décrit dans le document référencé [1] en fin de description. Des presses multicouleurs à la continue, dans lesquelles plusieurs têtes d'impression sont disposées en série pour imprimer un substrat en laize défilant en continu sous les têtes d'impression, peuvent être fabriquées. Le coût de ces presses électroniques est supérieur à celui des presses mécaniques traditionnelles, mais leurs conditions économiques d'exploitation sont meilleures car elles permettent la production juste à temps, les séries courtes, la personnalisation des produits en lignes, et la suppression des investissements liés à la mise en place de formes imprimantes pour les nouveaux dessins. Les nouvelles conditions d'exploitation des presses numériques font toutefois apparaítre de nouvelles contraintes, inconnues jusqu'alors :
  • L'impression à vitesse variable doit être possible, car les séries sont courtes et engendrent des arrêts et redémarrages fréquents du défilement du substrat. Pour minimiser les en-cours de production, le processus d'impression est dorénavant effectué en ligne ou intégré avec d'autres étapes de production telles que la fabrication du substrat proprement dit, son contrecollage, son laminage, ou son emballage. Les variations de vitesse du substrat sont donc fréquentes, car liées aux aléas des autres processus de la ligne de production.
  • Les exigences de qualité des produits imposent de travailler avec une résolution élevée et une précision de superposition et juxtaposition des couleurs accrues.
  • Les séries ou métrages imprimés sont très courts, parfois même de longueur inférieure à la longueur du substrat présent dans la machine d'impression, ce qui conduit à l'impression simultanée de plusieurs motifs dans une même machine.
  • Les impératifs économiques exigent de produire en continu, en minimisant les arrêts, avec des vitesses effectives de production de plus en plus élevées.
  • La personnalisation en ligne des produits nécessite de pouvoir imprimer une image numérique variable sur un substrat comportant un premier motif de base préimprimé, ceci avec un excellent positionnement relatif des images.
  • L'impression est de plus en plus fréquemment réalisée avec des encres aqueuses, donc sans solvants, afin de préserver l'environnement. Ceci nécessite d'interposer entre les unités d'impression de différentes couleurs des systèmes de réticulation et/ou de séchage, qui augmentent les longueurs de produits entre ces unités par leur encombrement et modifient la température du substrat. Ces deux facteurs, augmentation de la longueur de la ligne de production et environnement de températures variables, accentuent la déformation des substrats dans l'imprimante.
Les imprimantes traditionnelles à contact utilisées à ce jour, qu'elles soient de technologies héliogravure, sérigraphie à cadre rotatif, ou offset, fonctionnent à vitesse stabilisée. En effet, les phases d'accélération du substrat lors du démarrage de l'impression sont généralement plus courtes que la durée nécessaire au calage des formes imprimantes (correspondant aux images des différentes couleurs primaires) les unes par rapport aux autres.
La problématique de la synchronisation en phase de vitesse transitoire (accélération ou décélération) du substrat est aujourd'hui inconnue. Les calages sont effectués à vitesse stabilisée par des déplacements mécaniques relatifs des formes imprimantes. Lorsque la vitesse de défilement est faible, l'examen de la qualité du calage entre couleurs est fait visuellement sur le substrat imprimé. Lorsque la vitesse du substrat est plus élevée, une aide électronique au réglage est apportée par l'impression répétitive de mires de calage en lisière de la laize, et par leur visualisation sur un moniteur de contrôle, les mires étant observées par une caméra associée à un éclairage stroboscopique. Une dérive lente dans le temps du calage étant toujours observée en pratique, à cause des variations de l'environnement, des frottements ou même des différences de dimensions entre les différentes formes imprimantes, le maintien du calage est assuré par l'opérateur de l'imprimante qui effectue une surveillance continue et un réglage du calage de l'impression.
Le problème de la synchronisation entre couleurs différentes a été abordé dans les imprimantes numériques de bureau. Ainsi, le document référencé [2] en fin de description décrit la synchronisation d'une imprimante électrostatique couleur monopasse dans laquelle la tête d'impression de la première couleur imprime à intervalle régulier et en lisière du substrat des mires de synchronisation. La vitesse de défilement est maintenue constante grâce à l'asservissement du moteur d'entraínement du substrat. En phase de défilement du substrat cette mire est relue par des caméras CCD situées en aval, chaque caméra étant associée à une tête d'impression. Chaque tête d'impression interprète alors la distance entre les repères de la mire mesurée par sa caméra, afin d'imprimer les lignes de points de sa propre couleur de manière équirépartie entre les repères de la mire sur le substrat et d'obtenir ainsi la superposition des différentes couleurs.
La distance entre les repères de la mire étant plus petite que la taille d'une image, il est aussi nécessaire de déterminer le début de l'image pour chaque tête d'impression. Ceci est réalisé en déterminant, à la vitesse nominale de fonctionnement, le décalage temporel entre les différentes têtes d'impression. Ce décalage est déterminé par l'opérateur qui effectue une séquence d'essais d'impressions d'une autre mire spécifique de calibration, combinant les différentes couleurs.
Le document référencé [3] divulgue un autre type de système de synchronisation appliqué à une imprimante électrophotographique. Une différence avec le système électrostatique évoqué plus haut provient du fait que l'impression électrophotographique n'est pas une technique d'impression directe. Celle-ci nécessite en effet un transfert de l'image colorée, préalablement matérialisée sur une bande de transfert. Cette image est ensuite transférée par un contact mécanique entre la bande de transfert et le substrat à imprimer. Le système de synchronisation divulgué met en oeuvre l'impression de différentes mires par chaque cylindre d'impression associé à chacune des couleurs sur la bande de transfert. Un seul système optique situé, en aval de tous les cylindres d'impression (mais en amont du lieu de transfert sur le substrat), analyse les écarts de positionnement des mires matérialisées sur la bande de transfert dans chacune des couleurs. Ces écarts sont exploités pour générer des corrections à appliquer aux moteurs qui entraínent les cylindres associés à chacune des couleurs. Dans ce cas également, l'impression et la synchronisation sont réalisées à vitesse constante du substrat et de la bande de transfert. Aucune solution n'est par ailleurs décrite pour définir l'instant précis de début d'image.
Le document référencé [4] divulgue un système de synchronisation pour une imprimante électrophotographique. Le signal de début d'image est matérialisé par un trou dans la bande de transfert. la détection de ce trou par un système optique et la définition de retards pour chaque cylindre d'impression permet de synchroniser les différentes couleurs. Toutefois, cette solution ne permet pas de surimprimer ou personnaliser un document déjà imprimé.
L'impression de substrats à vitesse variable est, par ailleurs, connue dans les applications de marquage industriel, mais dans ces cas, l'impression est effectuée en une seule couleur, ou en plusieurs couleurs indépendantes : le positionnement relatif des points de différentes couleurs n'est pas requis. On note toutefois que même en impression monochrome, l'impression à vitesse variable pose des problèmes spécifiques de synchronisation à la technologie jet d'encre, à cause du temps de réponse intrinsèque des têtes d'impression. Celles-ci projettent en effet à distance des gouttelettes d'encre, qui vont impacter le substrat pour l'impression. La durée de la trajectoire des gouttes de la tête d'impression au substrat étant fixée par la vitesse d'éjection des gouttes et la distance de la buse d'éjection au substrat, on comprend qu'en cas de variation de vitesse du substrat, une compensation spécifique doit être effectuée pour tenir compte de la durée de trajectoire des gouttes. De tels systèmes de compensation de la durée de trajectoire des gouttes en vol sont connus dans l'état de l'art et utilisés de manière commerciale, comme dans l'imprimante à jet d'encre IMAJE Série 4.
La difficulté de synchronisation d'un système d'impression multicouleur imprimant à vitesse variable provient de la nécessité de disposer d'horloges de synchronisation et d'informations présentant à la fois :
  • une excellente résolution pour effectuer les réglages fins de synchronisation. Ceci implique une horloge très rapide, et/ou une indexation spatiale très fine du déplacement du substrat ;
  • une excellente représentativité de la position du substrat au niveau de chaque tête d'impression, afin que la position relative des points de couleurs différentes soit précise. L'horloge ne doit pas être entachée d'erreurs provenant de glissements ou de déformations du substrats entre les têtes d'impression, notamment lors d'accélérations ou décélérations ;
  • un codage de la référence de la production (ou de l'image) en cours, plusieurs productions différentes pouvant être imprimées à un instant donné dans la machine d'impression.
De telles caractéristiques, nouvelles par rapport aux techniques d'impression traditionnelles, sont de surcroít très difficiles à obtenir en environnement industriel, à cause de plusieurs facteurs, tels que :
  • les vitesses de défilement élevées ;
  • la structure, la couleur ou la texture des substrats qui ne permettent pas d'imprimer des marques d'indexation à haute résolution et qui soient lisibles en environnement industriel.
   la présente invention a pour objet une presse multicouleur à la continue par jet d'encre permettant de résoudre les problèmes énoncés ci-dessus.
Une demande de brevet de l'art connu, la demande de brevet EP 0 729 846, décrit un dispositif de contrôle de l'enregistrement d'images imprimées sur un substrat dans un dispositif d'impression par jet d'encre comprenant plusieurs têtes d'impression, dans lequel des marques d'enregistrement associées aux images sont imprimées sur le substrat et puis lues par un capteur.
Exposé de l'invention
La présente invention concerne une presse multicouleur à la continue par jet d'encre, dans laquelle plusieurs têtes d'impression Ti sont disposées en série pour imprimer au moins un substrat défilant en continu sous celles-ci, chaque tête étant alimentée en une encre de couleur donnée grâce à un circuit d'encre qui lui est propre, ladite presse comprenant :
  • un moteur d'entraínement entraínant un substrat à passer successivement sous chacune de ces têtes,
  • un codeur de position de résolution élevée, typiquement de 3000 points à 300000 points par tour de moteur, placé sur le moteur, qui délivre un signal à haute fréquence TACHY,
  • plusieurs capteurs pour lire des marques, chaque capteur étant associé avec une tête d'impression,
  • un circuit de synchronisation connecté aux têtes d'impression, aux capteurs et au codeur, ledit circuit de synchronisation étant contrôlé par un système informatique qui supervise l'impression de chacune des têtes d'impression,
caractérisée en ce que ces marques sont des premières marques régulièrement espacées, en ce que le circuit de synchronisation, qui reçoit le signal TACHY issu du codeur de position délivre une horloge trame HTRAMi associée à chaque tête d'impression Ti, dont la période est un multiple dudit signal TACHY, en ce que chaque capteur associé à une tête d'impression Ti, est un capteur optique permettant la lecture de ces première marques et la génération d'un signal impulsionnel DTOPi qui définit l'instant de passage d'une première marque sous ledit capteur, la durée entre deux signaux temporels impulsionnels DTOPi contenant en permanence un nombre entier et constant de périodes de l'horloge trame correspondante HTRAMi, et en ce que chaque capteur est placé en amont de la tête correspondante Ti à une distance légèrement supérieure à la distance séparant deux premières marques.
Avantageusement, cette presse comprend un système d'impression des premières marques, régulièrement imprimées sur le substrat, situé en amont des têtes d'impression.
L'utilisation d'un codeur placé par exemple sur l'axe de rotation du moteur, et fonctionnant préférablement grâce à un dispositif optique donne un signal de très haute résolution.
Dans le cas de l'utilisation d'une bande transporteuse, ces premières marques peuvent être imprimées ou même simplement matérialisées par fabrication sur cette même bande transporteuse du substrat. Dans le cas d'un substrat préimprimé, les premières marques auront été réalisées lors de la préimpression.
Ces premières marques ont une géométrie et une couleur permettant une relecture sans ambiguïté en environnement industriel par un système optique tel qu'une caméra CCD et un éclairage, ou un capteur mesurant la réflexion optique du substrat. Un pavé carré d'un à quelques millimètres de côté et une couleur fluorescente sont des choix possibles particulièrement adaptés. Ces marques peuvent être indifféremment imprimées au recto ou au verso du substrat ou de la bande transporteuse le cas échéant, dépendant des meilleures conditions d'éclairage et du système de lecture. La lecture des marques au niveau de chaque tête d'impression est effectuée par un système optique. Cette lecture permet la génération d'un signal temporel impulsionnel précis DTOPi, qui définit l'instant de passage d'une première marque sous le capteur associé à la tête d'impression Ti. La distance entre deux premières marques est de l'ordre de la distance séparant 100 à 5000 lignes de points imprimés.
Dans le circuit de synchronisation selon l'invention, la durée entre deux impulsions du signal DTOPi contient en permanence un nombre entier et constant M de périodes d'une horloge HTRAMi. L'horloge HTRAMi est le signal de commande d'impression d'une ligne de points par la tête d'impression. Ceci permet d'avoir en permanence le même nombre M de lignes de points imprimés sur le substrat entre deux premières marques, pour chaque couleur. Ainsi, ces marques étant physiquement liées au substrat, le positionnement relatif des différentes couleurs est sensiblement assuré, même si le substrat subit une déformation entre deux têtes d'impression.
En pratique, le capteur optique générateur de signal DTOPi, placé en amont d'une tête d'impression, est plus exactement disposé à une distance de la tête d'impression inférieure à deux fois la distance séparant deux premières marques..
Selon une troisième caractéristique de l'invention, pour les substrats se présentant en laize, des secondes marques sont imprimées sur le substrat, qui peuvent être distinguées sans ambiguïté des premières marques. Ces secondes marques peuvent être imprimées en bordure du substrat par la première tête d'impression. Un mode préférentiel de réalisation consiste à imprimer ces marques en lisière du substrat sur une ligne parallèle au sens du défilement, mais située à bonne distance de la ligne des premières marques. Dans le cas d'un substrat préimprimé, les secondes marques auront été réalisées lors de la préimpression.
La fonction de ces secondes marques est de signaler le changement du motif à imprimer. Ces secondes marques sont relues par un système optique, afin de générer un signal dit MOTIF, de précision plus grossière, indiquant le changement du motif à imprimer. Dans un mode préférentiel de réalisation, le signal MOTIF est repéré grâce à l'impression et à la détection d'une succession rapides de quelques pavés séparés d'une distance très inférieure à celle séparant les premières marques.
Pour les substrats se présentant en feuille, préimprimée ou non, une seconde marque peut être naturellement générée par l'apparition du bord aval de la feuille sous le capteur optique, et la synchronisation est effectuée de manière similaire au cas du substrat en laize.
Selon une autre caractéristique de l'invention, le circuit de synchronisation effectue des opérations de prédiction, filtrage, et fenêtrage de l'opération de lecture du signal DTOPi afin de conférer une très grande robustesse au système. La détection des premières marques est tout d'abord autorisée dans une fenêtre temporelle limitée, qui est centrée sur l'instant de passage probable de la première marque sous le capteur. Cette solution permet de limiter les détections perturbatrices qui pourraient être liées à la présence de parasites. En l'absence de détection d'une première marque dans la fenêtre de lecture, un signal DTOPi fictif est généré, à partir d'une prédiction basée sur l'intervalle séparant deux impulsions précédentes. Ceci permet de continuer l'impression, notamment lors d'un changement de motif, même lorsque la première marque n'a pas pu être détectée. Simultanément la fenêtre de lecture est élargie pour l'instant de détection suivant. L'impression est arrêtée si le défaut persiste après quatre signaux DTOPi manquants.
Dans un mode préférentiel de réalisation, les décalages entre les têtes d'impression des différentes couleurs composant le système d'impression sont mesurés par l'analyse intermittente de mires de calibration multicouleurs imprimées par ces mêmes têtes d'impression. Les mires de calibration comportent des motifs géométriques qui permettent de repérer sans ambiguïté les points imprimés par les différentes têtes d'impression. L'impression des mires est intercalée dans le processus séquencé de la production des produits imprimés.
L'analyse des mires peut être faite en sortie de la ligne de production, si le temps de résidence du produit dans la ligne est bref, permettant les corrections et calibration dans un délai court. Si par contre, la ligne de production est longue, ce qui est le cas pour le revêtement de sol vinyllique qui doit passer plusieurs minutes dans des fours placés en ligne immédiatement en aval du lieu d'impression, alors une analyse en ligne des mires doit être mise en oeuvre, avant la sortie du produit en fin de ligne de production.
Selon une autre caractéristique de l'invention, on dispose en aval de toutes les têtes d'impression un système d'analyse des mires comportant une caméra couleur (type CCD) équipée d'optiques adaptées et montée sur un système mécanique de déplacement à indexeur de position micrométrique disposé sensiblement perpendiculairement au sens de défilement du substrat, ainsi qu'un système informatique associé. La ligne de convoyage du substrat est arrêtée de manière intermittente lorsque la mire de calibration est située sensiblement sous la zone balayée par le déplacement de la caméra. La détection de la présence de la mire de calibration sur le substrat peut être faite grâce à l'impression d'un repère MOTIF caractéristique en bordure du substrat, signalant la présence d'une mire de calibration et commandant l'arrêt momentané du défilement du substrat. La détection du repère MOTIF est effectuée par un capteur optique associé au système d'analyse de mire, similaire aux capteurs équipant les têtes d'impression. A l'arrêt du substrat sous la zone d'action du système d'analyse, la caméra est déplacée par le système mécanique, en même temps qu'elle analyse les impacts de gouttes des différentes couleurs. Le système informatique relève simultanément les caractéristiques de points imprimés et la position de la caméra grâce aux informations de position provenant de l'indexeur de position sur l'axe de déplacement. En comparant les positions des points imprimés de la mire avec leurs valeurs théoriques, les écarts de positions des points imprimés de chaque couleur peuvent ainsi être déterminés et compensés dans le système d'impression lors de la production suivante. Ces compensations sont automatiquement calculées par le système informatique et télétransmises au contrôleur du processus d'impression.
La présente invention concerne aussi un produit en laize ou en feuille (revêtement de sol/mur, textile, affiche) imprimé ou surimprimé en utilisant le procédé de synchronisation de l'invention.
Ce produit (sur)imprimé, réalisé à l'aide de la presse de l'invention est tel qu'il comporte une image de fond fixe et certaines parties de la décoration sont variables, imprimées en continu par la presse objet de l'invention, par exemple (adresse ou photo du distributeur local pour une affiche publicitaire de grande marque dans une campagne internationale ou nationale, ...). Les partie fixes et variables de l'image sont imprimées sur le même substrat.
La presse de l'invention permet une impression d'images couleur de qualité :
  • lors des phases d'accélération ou décélération du substrat ;
  • avec une résolution élevée et une précision de superposition et de juxtaposition des couleurs accrues ;
  • permettant l'impression simultanée de plusieurs motifs dans la machine ;
  • minimisant les arrêts, avec des vitesses effectives de production élevées ;
  • autorisant la surimpression en ligne de produits qui comportent un premier motif de base préimprimé, ceci avec un excellent positionnement relatif des images ;
  • autorisant l'impression avec des distances importantes entre têtes d'impression, notamment pour permettre d'interposer entre ces unités d'impression de différentes couleurs les systèmes de réticulation et/ou de séchage.
Brève description des dessins
  • Les figures 1A et 1B représentent schématiquement l'architecture mécanique d'une presse sérigraphique classique à cadre rotatif respectivement dans une vue de côté et dans une vue de dessus ;
  • les figures 2A et 2B représentent schématiquement l'architecture mécanique d'une presse héliogravure, respectivement dans une vue de côté et dans une vue de dessus ;
  • les figures 3A, 4A ; et 3B, 4B illustrent schématiquement deux architectures mécaniques de machines d'impression par jet d'encre à la continue, respectivement dans deux vues de côté et deux vues de dessus ;
  • la figure 5 illustre une architecture fonctionnelle d'une presse par jet d'encre selon l'invention ;
  • la figure 6 illustre la synchronisation du système d'impression illustré sur la figure 5 ;
  • les figures 7 à 9 illustrent différentes caractéristiques de la presse de l'invention.
Exposé détaillé de modes de réalisation
Les figures 1A et 1B représentent schématiquement l'architecture mécanique d'une presse sérigraphique classique imprimant sur un substrat textile 10, défilant en continu, alimenté à partir d'un rouleau 11. Ce substrat est collé sur une bande transporteuse adhésive 12. Le dispositif 13 est un dispositif de contrecollage et d'entraínement du substrat 10. Le dispositif 14 est un dispositif d'encollage de la bande 12. Cette bande transporteuse 12, moins déformable que le substrat textile 10, est mise en mouvement par un moteur. Le textile est donc entraíné par la bande transporteuse 12 et maintenu en position alors qu'il défile sous les unités d'impression couleurs formées de rouleaux gravés de sérigraphie 15. Chaque rouleau 15 dépose une quantité d'encre sur le substrat 10, l'encre étant circulée à l'intérieur du rouleau et forcée au travers des orifices gravés dans ce rouleau, et correspondant à l'image à imprimer. Chaque rouleau ou cadre rotatif 15 applique une pression contrôlée sur le substrat 10, qui conditionne la quantité d'encre transférée. Après son impression, le substrat 10 est décollé en aval de la bande transporteuse 12 pour les opérations suivantes de production, telles que la fixation ou le séchage des encres. L'impression d'une couleur est ici effectuée alors que la couleur précédente est encore humide. Le système d'impression comporte un dispositif de nettoyage 16 de la bande transporteuse 12, pour éliminer l'encre qui a traversé le tissu et imprégné cette dernière.
Les figures 2A et 2B représentent schématiquement l'architecture mécanique d'une presse héliogravure imprimant sur un substrat 20 défilant en continu, grâce à un moteur d'entraínement 21. Le rouleau 22 est le rouleau d'entrée du substrat. Ce substrat 20, qui peut être, par exemple, un revêtement de sol vinylique, généralement armé d'une âme en tissu de fibre de verre, est plus résistant mécaniquement et moins déformable qu'un textile. Il ne nécessite donc pas de bande transporteuse et peut être sollicité mécaniquement par le système de convoyage. Chaque cylindre d'impression 23 comporte des alvéoles gravées en creux correspondant à l'image à imprimer (procédé héliogravure). Ces alvéoles sont remplies d'encre par un dispositif encreur 24 (encrier, rouleau encreur et racle) en contact avec le cylindre. Compte tenu de la faible porosité du substrat 20 et de l'utilisation classique d'encres à eau, un système de chauffage 25 est interposé entre chacune des unités d'impression 23, afin que l'encre fraíchement imprimée ne soit pas transférée par contact aux rouleaux situés en aval.
Les figures 3A, 3B et 4A, 4B représentent schématiquement des architectures mécaniques de machines d'impression par jet d'encre à la continue. Sur ces figures sont représentées des têtes d'impression à jet d'encre 30.
La machine des figures 3A et 3B utilise une bande transporteuse 31 et convient particulièrement à l'impression de substrats poreux et déformables tels que les textiles présentés en rouleaux, ou de substrats en feuilles ou plaques dépilés en entrée.
Pour les substrats résistants mécaniquement tels que les revêtements vinyliques, une machine telle que représentée sur les figures 4A et 4B est parfois mieux adaptée. Sur ces figures 4A et 4B sont représentés des lecteurs de premières et deuxièmes marques 32A et 32B, un dispositif de marquage de premières marques 33, un lecteur de mire de calibration 34, un moteur d'entraínement 35, ainsi que des dispositifs de séchage 36.
Ces architectures de machine sont directement adaptées des machines d'impression traditionnelles sérigraphique ou héliogravure, illustrées respectivement sur les figures 1 et 2, qui opèrent par contact. Une différence fondamentale dans leur réalisation provient du fait que l'impression des gouttes des jets d'encre doit être synchronisée avec le déplacement du substrat, par un procédé souple et robuste qui fonctionne en environnement industriel, même lors des phases de vitesse transitoires ; ce qui est l'objet de l'invention.
La figure 5 présente l'architecture fonctionnelle d'une presse par jet d'encre selon l'invention.
Sur cette figure sont représentés une imprimante 40 de premières marques 51, des capteurs 41 et 49, une caméra couleur 42, un moteur d'entraínement 43, des circuits d'encre 44 reliés respectivement à plusieurs têtes d'impression T1, T2, T3 et T4, ainsi qu'un circuit de synchronisation 45, connecté aux têtes T1, T2, T3 et T4 et aux capteurs 41 (référencés 32 sur les figures 3 et 4) et 49, et un circuit de lecture des mires de calibration 47 relié à un système informatique contrôleur de processus 46.
Le substrat 50 est entraíné directement comme illustré sur la figure 4 ; ou indirectement, collé, ou simplement porté, sur une bande transporteuse comme illustré sur la figure 3, pour passer sous les têtes d'impression successives T1, T2, T3 et T4. Il peut être animé par un (ou plusieurs) dispositif(s) de motorisation. Chaque tête d'impression T1, T2, T3 ou T4 imprime une encre associée à une couleur primaire de l'image à imprimer. L'impression est effectuée grâce au pilotage simultané d'une multitude de jets disposés en parallèle, tels que décrits dans le document référencé [1]. Chaque tête d'impression est alimentée en encre grâce à un circuit d'encre 44 qui lui est propre. Le système informatique 46 dit « contrôleur de process » supervise l'impression de ces différentes têtes d'impression T1, T2, T3 ou T4.
Selon une première caractéristique de l'invention, le moteur 43 est équipé d'un codeur 48 de position de résolution élevée, typiquement 3 000 à 300 000 points par tour de moteur, qui donne une impulsion à haute fréquence (typiquement 100-500 kHz) représentative d'un pas de quelques microns (3 à 30 microns) d'avance du substrat 50. Cette résolution est de l'ordre de dix à cinquante fois plus faible que l'adressabilité, c'est-à-dire la distance nominale entre lignes de points adjacentes imprimées, mesurée dans la direction du défilement du substrat 50. Ce niveau de résolution permet, grâce au système de synchronisation, de positionner de manière précise les gouttes des différentes couleurs, avec une précision supérieure à environ 1/10 de l'adressabilité. Cette résolution serait inaccessible à un système fonctionnant grâce à des marques imprimées et relues sur le substrat. Le signal issu du codeur 48, noté TACHY, est transmis au circuit de synchronisation 45. Ce signal, présenté aux figures 6 et 9, donne une image approximative de la vitesse et de la position du substrat 50. Elle est inexacte en ce sens qu'elle ne tient pas compte de glissements éventuels ou de la déformation du substrat. L'utilisation du codeur rotatif 48 placé sur le moteur, et fonctionnant préférablement grâce à un dispositif optique, donne un signal de très haute résolution.
Le signal TACHY sert de base à l'élaboration d'une horloge trame, notée HTRAMi, associée à chaque tête Ti d'impression de couleur. Cette horloge trame est le signal de début d'impression de chaque ligne de points. Par construction, la période du signal HTRAMi est un multiple du signal TACHY (elle contient donc un nombre entier d'impulsions TACHY), correspondant typiquement de 10 à 50 impulsions, dépendant de l'adressabilité. Ce nombre d'impulsions TACHY contenues dans la période du signal HTRAMi, est variable dans le temps, et de plus différent pour chaque tête d'impression Ti, en fonction d'un deuxième signal DTOPi, explicité ci-dessous.
Selon une deuxième caractéristique de l'invention, des premières marques 51 sont régulièrement imprimées sur le substrat 50, préférentiellement à l'aide du système d'impression 40 situé en amont des têtes d'impression Ti. Dans le cas de l'utilisation d'une bande transporteuse, ces premières marques peuvent être imprimées ou même simplement matérialisées par fabrication sur cette même bande transporteuse. Les marques doivent déjà être présentes (donc préimprimées) en entrée du système d'impression dans le cas de la surimpression du produit.
Ces marques 51 ont une géométrie et une couleur telles qu'elles permettent la relecture sans ambiguïté, en environnement industriel, par un système optique tel qu'une caméra CCD et un éclairage, ou un capteur mesurant la réflexion optique du substrat. Un pavé carré de dimension typique 5 mm × 5 mm (ou 1 cm × 1 cm) et une couleur fluorescente sont des choix possibles particulièrement adaptés. Ces marques peuvent être indifféremment imprimées au recto ou au verso du substrat, en fonction des meilleures conditions d'éclairage et du système lecture.
La lecture d'une première marque 51 au niveau de chaque tête d'impression Ti est effectuée par le capteur 41 associé qui est un système optique. Cette lecture permet la génération d'un signal temporel impulsionnel précis, noté DTOPi sur la figure 6. Ce signal DTOPi définit l'instant de passage d'une marque 51 sous un capteur 41 associé à une tête d'impression Ti. Préfé-rentiellement, le signal DTOPi peut être généré par un traitement approprié du signal de lecture du capteur optique 41, utilisant des opérateurs câblés tels que lissage et dérivée temporelle, afin de traduire l'instant précis de passage d'un bord de la marque imprimée 51. La distance entre deux marques 51 peut être de l'ordre de 100 à 5000 lignes de points imprimés. Ainsi, la fréquence de lecture de ces marques 51 est environ 100 à 5000 fois plus faible que celle du signal HTRAMi.
Dans le circuit de synchronisation selon l'invention, la durée entre deux impulsions successives du signal DTOPi contient en permanence un nombre entier et constant de périodes du signal HTRAMi, noté M sur les figures. Ceci permet d'avoir en permanence le même nombre M de lignes de points imprimés sur le substrat entre deux marques 51, pour chaque couleur. Ainsi, les marques 51 étant physiquement liées au substrat, le positionnement relatif des différentes couleurs est sensiblement assuré, même si le substrat subit une déformation entre deux têtes d'impression. En pratique, la distance entre les marques 51 est choisie de telle sorte que pour les conditions extrêmes de déformation du substrat (accélération maximale, décélération maximale) la variation de longueur du substrat 50 entre deux marques 51 consécutives soit inférieure à l'adressabilité (la distance entre lignes de points successifs). Cette contrainte est compatible avec les caractéristiques de défilement et de déformation des substrats (ou bande transporteuse le cas échéant) couramment rencontrées (déformations maximales de l'ordre de 1 %).
Le principe de la correction de l'horloge HTRAMi, pour tenir compte de la déformation du substrat 50 est décrit plus en détail à la figure 8. En pratique, chaque capteur optique 41 générateur d'un signal DTOPi n'est pas disposé à l'endroit de la tête d'impression associée Ti, mais placé en amont. Il est plus exactement disposé à une distance légèrement supérieure à la distance séparant deux premières marques et inférieure à deux fois cette distance. Ce décalage permet au circuit de synchronisation 45 d'effectuer un comptage des impulsions TACHY dans l'intervalle entre les marques 51 successives, avant que le même intervalle DTOP ne défile sous la tête d'impression, et donc de calculer les valeurs corrigées des paramètres de l'horloge HTRAMi et de les transmettre à la tête d'impression.
Le nombre d'impulsions TACHY est redistribué en M périodes sensiblement égales pour constituer l'horloge HTRAMi qui synchronise l'impression des points à la tête d'impression Ti.
A vitesse de défilement du substrat établie, ses déformations sont faibles à nulles, et les périodes successives du signal HTRAM diffèrent au plus de une impulsion TACHY. Lorsqu'il y a déformation mesurable du substrat, le nombre d'impulsions TACHY comptées entre deux marques 51 successives varie (ce nombre augmente lorsque le substrat est étiré et diminue lorsque le substrat est relaxé). L'écart ΔTACHY entre les nombres d'impulsions TACHY mesurés pour deux intervalles entre premières marques successives est utilisé pour à modifier les nombres d'impulsions TACHY dans les horloges HTRAMi, afin de compenser la déformation du substrat 50. Dans un mode préférentiel de réalisation, l'écart ATACHY est redistribué approximativement linéairement dans l'intervalle entre premières marques considéré, comme représenté à la figure 8. Cette compensation assure une variation monotone de la période de l'horloge HTRAM, et en particulier l'égalité de la première période HTRAM de l'intervalle entre premières marques considéré avec celle de la dernière période TRAM de l'intervalle précédent. Elle assure aussi, évidemment, l'égalité stricte du nombre d'impulsions HTRAMi dans l'intervalle entre premières marques correspondant, ici égal à M.
Selon une troisième caractéristique de l'invention, pour les substrats se présentant en laize, de secondes marques sont imprimées sur le substrat 50 (et non sur la bande transporteuse). Ces secondes marques peuvent être distinguées sans ambiguïté des premières marques 51. Ces secondes marques peuvent être imprimées en bordure du substrat par la première tête d'impression T1. Dans le cas d'un substrat préimprimé, les secondes marques auront été réalisées lors de la préimpression. Un mode préférentiel de réalisation consiste à imprimer ces secondes marques en lisière du substrat sur une ligne parallèle au sens du défilement, mais située à bonne distance de la ligne des premières marques 51.
La fonction de ces secondes marques est de signaler le changement du motif à imprimer. Ces marques sont relues par un système optique (qui peut être le même ou du même type que le précédent), afin de générer un signal dit MOTIF, de précision plus grossière, indiquant le changement du motif à imprimer. Dans un mode préférentiel de réalisation, le signal MOTIF est repéré grâce à l'impression et à la détection d'une succession rapides de pavés 53 séparés d'une distance bien inférieure à la distance entre premières marques, comme représenté à la figure 9. Cette redondance de pavés permet de détecter sans ambiguïté le changement de motif. Lors de la détection du signal MOTIF, le circuit de synchronisation 45 donne l'ordre à la tête d'impression de cesser l'impression de la production en cours et de passer à la production suivante dès l'impulsion suivante du signal DTOPi.
Pour les substrats se présentant en feuille, préimprimée ou non, la marque 53 est naturellement générée par l'apparition du bord aval de la feuille sous le capteur optique, et la synchronisation est effectuée de manière similaire au cas du substrat en laize.
Selon une autre caractéristique de l'invention, le circuit de synchronisation 45 effectue des opérations de prédiction, filtrage, et fenêtrage de l'opération de lecture du signal DTOPi afin de conférer une très grande robustesse au système. La détection d'une première marque 51 est tout d'abord autorisée dans une fenêtre temporelle limitée, qui est centrée sur l'instant de passage probable de cette marque sous le capteur. Cette solution permet de limiter les détections perturbatrices qui pourraient être liées à la présence de parasites (défauts imprimés ou perturbations électriques). En l'absence de détection d'une première marque 51 dans la fenêtre de lecture, un signal DTOPi fictif est généré, à partir d'une prédiction basée sur l'intervalle entre premières marques précédent. Ceci permet de continuer l'impression, notamment lors d'un changement de motif ou entre deux feuilles préimprimées ou non, même lorsque la première marque 51 n'a pas pu être détectée. Simultanément la fenêtre de lecture est élargie pour l'instant de détection suivant. L'impression est arrêtée si le défaut persiste après quatre impulsions DTOPi manquantes.
Pour effectuer une synchronisation correcte, il est aussi nécessaire de tenir comptes des décalages temporels exacts entre chacun des capteurs et sa tête d'impression associée ainsi qu'entre les différentes têtes d'impression. Ces décalages sont exprimés en nombre entiers et fractions de HTRAMi. De la même manière, certains décalages peuvent exister entre les jets d'une même unité d'impression. Dans un mode préférentiel de réalisation, ces décalages du système d'impression sont mesurés par l'analyse intermittente de mires de calibration multicouleur imprimées par le système d'impression sur toute la largeur du substrat. Les mires de calibration comportent des motifs géométriques qui permettent de repérer sans ambiguïté les points imprimés par les différentes unités d'impression. L'impression des mires est intercalée dans le processus séquencé de la production des produits imprimés. L'analyse des mires peut être faite en sortie de machine, si le temps de résidence du produit dans la ligne est bref, et permet les corrections et calibration dans un délai court. Si par contre la ligne de production est longue, ce qui est le cas pour le revêtement de sol vinyllique qui doit passer plusieurs minutes dans des fours placés en ligne immédiatement en aval du lieu d'impression, alors une analyse en ligne des mires doit être mise en oeuvre, avant que le substrat ne sorte de la ligne de production.
Selon une autre caractéristique de l'invention, on dispose en aval des têtes d'impression un système d'analyse des mires comportant une caméra couleur (type CCD) équipée d'optiques adaptées, et montée sur un système mécanique de déplacement à indexeur de position micrométrique disposé sensiblement perpendiculairement au sens de défilement du substrat, ainsi qu'un système de traitement associé. La ligne de convoyage du substrat 50 est arrêtée de manière intermittente lorsque la mire de calibration est placée sensiblement dans la zone balayée par la caméra. La détection de la présence de la mire de calibration sur le substrat peut être faite grâce à l'impression d'un repère MOTIF caractéristique en bordure du substrat, signalant la présence d'une mire de calibration. La détection du repère MOTIF est effectuée par un capteur optique 49 associé au système d'analyse de mire, similaire aux lecteurs de deuxièmes marques 41 associés aux têtes d'impression Ti : elle déclenche l'arrêt momentané du substrat. A l'arrêt du substrat sous le système d'analyse, la caméra 42 est déplacée par le système mécanique (transversalement au sens de défilement du substrat), en même temps qu'elle analyse les impacts de gouttes de différentes couleurs. Le système de traitement relève simultanément les caractéristiques des points imprimés et la position de la caméra 42 grâce aux informations de position provenant de l'indexeur de position sur l'axe de déplacement. En comparant les positions des points avec leurs valeurs théoriques, les écarts de positions peuvent ainsi être déterminés et compensés dans le système d'impression lors de la production suivante. Ces compensations sont automatiquement calculées par le système de traitement et télétransmises au contrôleur du processus d'impression.
Même si l'arrêt momentané du substrat, pour lecture de la mire de calibration, pénalise la productivité globale de l'imprimante, cette solution apparaít la plus robuste pour mesurer sans ambiguïté et avec précision les points imprimés en différentes couleurs sur un substrat industriel dont la texture peut parfois être complexe. L'impression étant par ailleurs possible en phases d'accélération et décélération, cette phase de calibration n'engendre que des pertes mineures de substrat, limitées à la surface des mires qui sont elles-mêmes très compactes, limitées à un, deux ou trois intervalles DTOP.
REFERENCES
  • [1] FR-A-91 11151
  • [2] « Design of a Paper Drive Mechanism of a Single-Pass Color Electrostatic Plotter for Accurate Image Registration » de M. Dizechi, publié dans « Journal of Imaging Technology », volume 15, numéro 16, décembre 1989
  • [3] US-A-5 452 073
  • [4] « A Strategy for Tandem Color Registration » de Caselli et al. dans SPIE, volume 2658, pages 96-104, 1995.
  • Claims (28)

    1. Presse multicouleur à la continue par jet d'encre, dans laquelle plusieurs têtes d'impression (Ti) sont disposées en série pour imprimer au moins un substrat défilant en continu sous celles-ci, chaque tête étant alimentée en une encre de couleur donnée grâce à un circuit d'encre qui lui est propre, ladite presse comprenant :
      un moteur d'entraínement (43) entraínant un substrat (50) à passer successivement sous chacune de ces têtes,
      un codeur de position (48) de résolution élevée, typiquement de 3000 points à 300000 points par tour de moteur, placé sur le moteur, qui délivre un signal à haute fréquence (TACHY),
      plusieurs capteurs (41) pour lire des marques, chaque capteur (41) étant associé avec une tête d'impression (Ti),
      un circuit de synchronisation (45) connecté aux têtes d'impression (Ti), aux capteurs (41) et au codeur (48), ledit circuit de synchronisation étant contrôlé par un système informatique qui supervise l'impression de chacune des têtes d'impression (Ti).
      caractérisée en ce que ces marques sont des premières marques (51) régulièrement espacées, en ce que le circuit de synchronisation, qui reçoit le signal (TACHY) issu du codeur de position (48) délivre une horloge trame (HTRAMi) associée à chaque tête d'impression (Ti), dont la période est un multiple dudit signal (TACHY), en ce que chaque capteur (41), associé à une tête d'impression (Ti), est un capteur optique permettant la lecture de ces première marques (51) et la génération d'un signal impulsionnel (DTOPi) qui définit l'instant de passage d'une première marque (51) sous ledit capteur, la durée entre deux signaux temporels impulsionnels (DTOPi) contenant en permanence un nombre entier et constant de périodes de l'horloge trame correspondante (HTRAMi), et en ce que chaque capteur (41) est placé en amont de la tête correspondante (Ti) à une distance légèrement supérieure à la distance séparant deux premières marques (51).
    2. Presse selon la revendication 1, caractérisée en ce qu'elle comprend un système d'impression (40) des premières marques (51), régulièrement imprimées sur le substrat, situé en amont des têtes d'impression (Ti).
    3. Presse selon la revendication 1, caractérisée en ce que le codeur (48) fonctionne grâce à un dispositif optique.
    4. Presse selon la revendication 1, caractérisée en ce qu'elle comporte une bande transporteuse, les premières marques (51) étant matérialisées par fabrication sur cette bande transporteuse.
    5. Presse selon la revendication 1, caractérisée en ce qu'elle comprend un circuit de traitement du signal de lecture du capteur optique (41) délivrant ce signal impulsionnel (DTOPi) ; ce circuit utilisant des opérateurs câblés tels que lissage et dérivée temporelle, afin de traduire l'instant précis de passage d'un bord d'une première marque (51).
    6. Presse selon la revendication 1, caractérisée en ce qu'une première marque (51) est formée d'un pavé carré de quelques millimètres de côté.
    7. Presse selon la revendication 1, caractérisée en ce qu'une première marque (51) a une couleur fluorescente.
    8. Presse selon l'une quelconque des revendications 1 ou 4, caractérisée en ce que la distance entre deux premières marques est de l'ordre de la distance séparant 100 à 5000 lignes de points imprimés.
    9. Presse selon la revendication 1, caractérisée en ce qu'on a en permanence le même nombre M de points imprimés sur le substrat entre deux premières marques (51) pour chaque couleur.
    10. Presse selon la revendication 1, caractérisée en ce que l'écart entre chaque capteur optique (41) et la tête d'impression associée (Ti) est inférieur à deux fois la distance entre deux premières marques (51).
    11. Presse selon la revendication 1, caractérisée en ce qu'elle comprend un système de lecture de secondes marques.
    12. Presse selon la revendication 11, caractérisée en ce que la première tête d'impression (T1) imprime ces secondes marques.
    13. Presse selon la revendication 12, caractérisée en ce que ces secondes marques sont imprimées en bordure du substrat.
    14. Presse selon la revendication 13, caractérisée en ce que ces secondes marques sont situées en lisière du substrat sur une ligne parallèle au sens du défilement, à bonne distance de la ligne des premières marques (51).
    15. Presse selon la revendication 12, caractérisée en ce qu'elle comprend un système optique de lecture de ces secondes marques, qui génère un signal (MOTIF) indiquant le changement du motif à imprimer.
    16. Presse selon la revendication 12, caractérisée en ce qu'une seconde marque est formée d'une succession de pavés (53) séparés d'une distance bien inférieure à la distance entre deux premières marques.
    17. Presse selon la revendication 4, caractérisée en ce que, pour les substrats se présentant en feuille, des secondes marques sont générées par l'apparition du bord aval de chaque feuille sous un système de lecture de telles secondes marques.
    18. Presse selon la revendication 1, caractérisée en ce que le circuit de synchronisation (45) effectue des opérations de prédiction, filtrage et fenêtrage de l'opération de lecture du signal (DTOPi) correspondant au passage d'une première marque sous un capteur (41).
    19. Presse selon la revendication 1, caractérisée en ce qu'elle comprend en aval des têtes d'impression (Ti) un système (47) à d'analyse de mires comportant une caméra couleur (42) équipée d'optiques adaptées, et montée sur un système mécanique de déplacement à indexeur de position micrométrique disposé sensiblement perpendiculairement au sens de défilement du substrat (50), ainsi qu'un système de traitement.
    20. Presse selon la revendication 19, caractérisée en ce que les mires de calibration comportent des motifs géométriques qui permettent de repérer sans ambiguïté les points imprimés par les différentes têtes d'impression (Ti), couvrant la largeur du substrat.
    21. Presse selon la revendication 19, caractérisée en ce que la détection de la présence d'une mire de calibration sur le substrat est faite grâce à l'impression d'un repère caractéristique, en bordure de ce substrat.
    22. Presse selon la revendication 21, caractérisée en ce que le détecteur (49) du repère de présence de mire est similaire aux capteurs (41) associés aux têtes d'impression (Ti).
    23. Procédé de synchronisation d'une presse selon l'une quelconque des revendications précédentes, caractérisé en ce que la détection d'une première marque (51) est tout d'abord autorisée dans une fenêtre temporelle limitée, qui est centrée sur l'instant de passage probable d'une première marque (51) sous un capteur (41).
    24. Procédé selon la revendication 23, caractérisé en ce qu'en l'absence de détection d'une première marque (51) dans la fenêtre de lecture, un signal (DTOPi) fictif est généré, à partir d'une prédiction basée sur l'intervalle (DTOP) précédent, et en ce que simultanément la fenêtre de lecture est élargie pour l'instant de détection suivant, l'impression étant arrêtée si le défaut persiste après quatre signaux (DTOPi) manquants.
    25. Procédé selon la revendication 23, caractérisé en ce que les décalages du système d'impression sont mesurés par l'analyse intermittente de mires de calibration multicouleurs imprimées par le système d'impression, ces mires de calibration comportant des motifs géométriques qui permettent de repérer sans ambiguïté les points imprimés par les différentes unités d'impression (Ti).
    26. Procédé selon la revendication 25, caractérisé en ce que l'analyse des mires est faite en sortie de ligne, si le temps de résidence du produit dans la ligne est bref.
    27. Procédé selon la revendication 25, caractérisé en ce qu'une analyse en ligne des mires est mise en oeuvre par arrêt momentané du défilement du substrat lorsque la ligne de production est longue.
    28. Procédé selon la revendication 23, caractérisé en ce qu'à l'arrêt du substrat sous le système d'analyse, une caméra (42) est déplacée par le système mécanique, transversalement au sens de défilement du substrat (50), en même temps qu'elle analyse les impacts de gouttes des différentes couleurs, en ce qu'un système de traitement relève simultanément les caractéristiques des points imprimés et la position de la caméra (42) grâce aux informations de position provenant de l'indexeur de position sur l'axe de déplacement, en ce qu'en comparant les positions des points avec leurs valeurs théoriques, les écarts de positions peuvent ainsi être déterminés et compensés dans le système d'impression lors de la production suivant, et en ce que ces compensations sont automatiquement calculées par un système de traitement et télétransmises à un contrôleur du processus d'impression.
    EP97402713A 1996-11-15 1997-11-13 Presse multicouleur à la continue par jet d'encre, procédé de synchronisation d'une telle presse, et produit imprimé obtenu à l'aide d'une telle presse Expired - Lifetime EP0842784B1 (fr)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    FR9613961A FR2755900B1 (fr) 1996-11-15 1996-11-15 Presse multicouleur a la continue par jet d'encre, procede de synchronisation d'une telle presse, et produit imprime obtenu a l'aide d'une telle presse
    FR9613961 1996-11-15

    Publications (2)

    Publication Number Publication Date
    EP0842784A1 EP0842784A1 (fr) 1998-05-20
    EP0842784B1 true EP0842784B1 (fr) 2002-08-21

    Family

    ID=9497662

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP97402713A Expired - Lifetime EP0842784B1 (fr) 1996-11-15 1997-11-13 Presse multicouleur à la continue par jet d'encre, procédé de synchronisation d'une telle presse, et produit imprimé obtenu à l'aide d'une telle presse

    Country Status (10)

    Country Link
    US (1) US6068362A (fr)
    EP (1) EP0842784B1 (fr)
    JP (1) JPH10151774A (fr)
    KR (1) KR19980042461A (fr)
    CN (1) CN1154571C (fr)
    AU (1) AU725580B2 (fr)
    CA (1) CA2221112A1 (fr)
    DE (1) DE69714825T2 (fr)
    ES (1) ES2182009T3 (fr)
    FR (1) FR2755900B1 (fr)

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO2012098190A1 (fr) 2011-01-19 2012-07-26 OCé PRINTING SYSTEMS GMBH Procédé et appareil d'impression permettant d'imprimer une information de type image groupée par lignes sur un support d'enregistrement

    Families Citing this family (114)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US6325480B1 (en) * 1998-07-28 2001-12-04 Eastman Kodak Company Ink jet printer and method capable of forming a plurality of registration marks on a receiver and sensing the marks formed thereby
    US5992973A (en) * 1998-10-20 1999-11-30 Eastman Kodak Company Ink jet printing registered color images
    US7236271B2 (en) * 1998-11-09 2007-06-26 Silverbrook Research Pty Ltd Mobile telecommunication device with printhead and media drive
    AUPQ056099A0 (en) * 1999-05-25 1999-06-17 Silverbrook Research Pty Ltd A method and apparatus (pprint01)
    AUPQ439299A0 (en) * 1999-12-01 1999-12-23 Silverbrook Research Pty Ltd Interface system
    AUPQ291299A0 (en) * 1999-09-17 1999-10-07 Silverbrook Research Pty Ltd A self mapping surface and related applications
    US6816274B1 (en) 1999-05-25 2004-11-09 Silverbrook Research Pty Ltd Method and system for composition and delivery of electronic mail
    US7999964B2 (en) * 1999-12-01 2011-08-16 Silverbrook Research Pty Ltd Printing on pre-tagged media
    EP1235690B1 (fr) * 1999-12-09 2004-03-03 Encad, Inc. Transport de supports entraines par une courroie dans une imprimante
    US6464414B1 (en) * 2000-03-21 2002-10-15 Lexmark International, Inc. Print media sensor adjustment mechanism
    US6977751B1 (en) 2000-06-30 2005-12-20 Silverbrook Research Pty Ltd Print engine/controller to work in multiples and a printhead driven by multiple print engine/controllers
    JP4546697B2 (ja) * 2000-06-30 2010-09-15 シルバーブルック リサーチ ピーティワイ リミテッド インクドロッププリンタ
    SG153635A1 (en) * 2000-06-30 2009-07-29 Silverbrook Res Pty Ltd Print engine/controller with half-toner/compositor
    SG152904A1 (en) 2000-10-20 2009-06-29 Silverbrook Res Pty Ltd Cartridge for an electronic pen
    US20020054781A1 (en) * 2000-11-07 2002-05-09 Aharon Korem Method for environmentally-friendly textile transportation in printing systems and a system thereof cross-reference to related applications
    US6650077B1 (en) 2001-06-27 2003-11-18 Lexmark International, Inc. Method for controlling printer paper feed
    EP1433616B1 (fr) * 2001-10-05 2008-07-09 Shima Seiki Mfg., Ltd Dispositif d'impression a jet d'encre et procede d'impression par jet d'encre
    JP2003321015A (ja) * 2002-04-26 2003-11-11 Nippon Seiki Co Ltd 充填包装機
    TWI403698B (zh) * 2009-03-03 2013-08-01 Ind Tech Res Inst 列印信號產生系統與方法
    DE10246735B4 (de) * 2002-10-07 2005-07-28 OCé PRINTING SYSTEMS GMBH Sensormodul für einen Drucker
    JP4507509B2 (ja) * 2002-10-18 2010-07-21 コニカミノルタホールディングス株式会社 インクジェット記録装置
    US20050206944A1 (en) * 2002-12-02 2005-09-22 Silverbrook Research Pty Ltd Cartridge having one-time changeable data storage for use in a mobile device
    US7740347B2 (en) * 2002-12-02 2010-06-22 Silverbrook Research Pty Ltd Ink usage tracking in a cartridge for a mobile device
    US7991432B2 (en) * 2003-04-07 2011-08-02 Silverbrook Research Pty Ltd Method of printing a voucher based on geographical location
    JP2005035082A (ja) * 2003-07-17 2005-02-10 Fuji Xerox Co Ltd 記録装置
    JP4492147B2 (ja) * 2004-02-17 2010-06-30 コニカミノルタホールディングス株式会社 インクジェット記録装置及び記録媒体の移動制御方法
    US7364251B2 (en) * 2003-08-13 2008-04-29 Konica Minolta Holdings, Inc. Inkjet recording apparatus and recording medium movement control method
    CN100500435C (zh) * 2004-01-09 2009-06-17 精工精密有限公司 喷墨打印机和打印方法
    US20050217791A1 (en) * 2004-03-31 2005-10-06 Kimberly-Clark Worldwide, Inc. Two-step registered printing
    US7093989B2 (en) * 2004-05-27 2006-08-22 Silverbrook Research Pty Ltd Printer comprising two uneven printhead modules and at least two printer controllers, one which spends print data to the other
    US7370932B2 (en) * 2004-05-27 2008-05-13 Silverbrook Research Pty Ltd Cartridge having integrated circuit for enabling validation thereof by a mobile device
    US7607774B2 (en) * 2005-05-09 2009-10-27 Silverbrook Research Pty Ltd Mobile telecommunication device with a printhead and single media feed roller
    US7680512B2 (en) * 2005-05-09 2010-03-16 Silverbrook Research Pty Ltd Method of using a mobile device to print onto a print medium taking into account an orientation of a print medium
    US20060252456A1 (en) * 2005-05-09 2006-11-09 Silverbrook Research Pty Ltd Mobile device with printhead for receiving data via modulate light signal
    US7780288B2 (en) * 2005-05-09 2010-08-24 Silverbrook Research Pty Ltd Ducting between ink outlets of sectioned ink reservoir
    US20060250474A1 (en) * 2005-05-09 2006-11-09 Silverbrook Research Pty Ltd Print medium with lateral data track
    US7843484B2 (en) 2005-05-09 2010-11-30 Silverbrook Research Pty Ltd Mobile telecommunication device having a printer for printing connection history information
    US7735993B2 (en) * 2005-05-09 2010-06-15 Silverbrook Research Pty Ltd Print medium having coded data and an orientation indicator
    US7566182B2 (en) * 2005-05-09 2009-07-28 Silverbrook Research Pty Ltd Printhead that uses data track for print registration on print medium
    US7447908B2 (en) * 2005-05-09 2008-11-04 Silverbrook Research Pty Ltd Method of authenticating a print medium offline
    US7874659B2 (en) * 2005-05-09 2011-01-25 Silverbrook Research Pty Ltd Cartridge with printhead and media feed mechanism for mobile device
    US8061793B2 (en) * 2005-05-09 2011-11-22 Silverbrook Research Pty Ltd Mobile device that commences printing before reading all of the first coded data on a print medium
    US20060250640A1 (en) * 2005-05-09 2006-11-09 Silverbrook Research Pty Ltd Method of reading coded data from a print medium before printing
    US7824031B2 (en) * 2005-05-09 2010-11-02 Silverbrook Research Pty Ltd Print cartridge with friction driven media feed shaft
    US7392950B2 (en) * 2005-05-09 2008-07-01 Silverbrook Research Pty Ltd Print medium with coded data in two formats, information in one format being indicative of information in the other format
    US7753517B2 (en) * 2005-05-09 2010-07-13 Silverbrook Research Pty Ltd Printhead with an optical sensor for receiving print data
    US20060251868A1 (en) * 2005-05-09 2006-11-09 Silverbrook Research Pty Ltd Print medium including coded data indicative of a physical characteristic thereof
    US8104889B2 (en) * 2005-05-09 2012-01-31 Silverbrook Research Pty Ltd Print medium with lateral data track used in lateral registration
    US20060250487A1 (en) * 2005-05-09 2006-11-09 Silverbrook Research Pty Ltd Mobile device configured to commence printing when a print medium is inserted
    US7558962B2 (en) * 2005-05-09 2009-07-07 Silverbrook Research Pty Ltd Method of authenticating a print medium online
    US7465047B2 (en) * 2005-05-09 2008-12-16 Silverbrook Research Pty Ltd Mobile telecommunication device with a printhead and media sheet position sensor
    US7841713B2 (en) 2005-05-09 2010-11-30 Silverbrook Research Pty Ltd Mobile device for printing schedule data
    US20060251867A1 (en) * 2005-05-09 2006-11-09 Silverbrook Research Pty Ltd Print medium with removable portion
    US20060250477A1 (en) * 2005-05-09 2006-11-09 Silverbrook Research Pty Ltd Cartridge with capping mechanism for use in a mobile device
    US7517046B2 (en) * 2005-05-09 2009-04-14 Silverbrook Research Pty Ltd Mobile telecommunications device with printhead capper that is held in uncapped position by media
    US20060250486A1 (en) * 2005-05-09 2006-11-09 Silverbrook Research Pty Ltd. Mobile device that reads entire of first coded data before commencing printing
    US7645022B2 (en) * 2005-05-09 2010-01-12 Silverbrook Research Pty Ltd Mobile telecommunication device with a printhead, a capper and a locking mechanism for holding the capper in an uncapped position during printing
    US7726764B2 (en) * 2005-05-09 2010-06-01 Silverbrook Research Pty Ltd Method of using a mobile device to determine a position of a print medium configured to be printed on by the mobile device
    US7284921B2 (en) * 2005-05-09 2007-10-23 Silverbrook Research Pty Ltd Mobile device with first and second optical pathways
    US7470019B2 (en) * 2005-05-09 2008-12-30 Silverbrook Research Pty Ltd Mobile telecommunications device with a capper moveable between capping and uncapping positions by the printhead
    US7697159B2 (en) * 2005-05-09 2010-04-13 Silverbrook Research Pty Ltd Method of using a mobile device to determine movement of a print medium relative to the mobile device
    US20060250481A1 (en) * 2005-05-09 2006-11-09 Silverbrook Research Pty Ltd Print medium with self-clocking data track and method of printing onto the print medium
    US7466993B2 (en) * 2005-05-09 2008-12-16 Silverbrook Research Pty Ltd Mobile telecommunications device dual media coding detectors
    US7595904B2 (en) * 2005-05-09 2009-09-29 Silverbrook Research Pty Ltd Method of using a mobile device to determine a first rotational orientation of coded data on a print medium
    US20060250484A1 (en) * 2005-05-09 2006-11-09 Silverbrook Research Pty Ltd Print cartridge with single drive shaft and opposing media guide
    JP2007001183A (ja) * 2005-06-24 2007-01-11 Riso Kagaku Corp 画像形成装置
    JP2007168267A (ja) * 2005-12-22 2007-07-05 Konica Minolta Holdings Inc インクジェット印画装置
    US7967407B2 (en) * 2006-02-03 2011-06-28 R.R. Donnelley Use of a sense mark to control a printing system
    EP2010118B1 (fr) * 2006-04-27 2013-08-21 SCA Hygiene Products AB Procédé et dispositif permettant la détection d'une marque de synchronisation utilisée dans le positionnement synchronisé d'au moins une nappe de matière sensiblement continue
    DE102006033296A1 (de) * 2006-07-17 2008-01-31 Manz Automation Ag Anlage zur Strukturierung von Solarmodulen
    FR2908076B1 (fr) * 2006-11-03 2010-02-19 Dubuit Mach Poste d'impression,procede d'impression et machine a imprimer.
    US8753026B2 (en) 2007-06-29 2014-06-17 R.R. Donnelley & Sons Company Use of a sense mark to control a printing system
    JP5327462B2 (ja) * 2008-09-30 2013-10-30 セイコーエプソン株式会社 基準マーク形成装置、該基準マーク形成装置を備えた記録装置
    JP5176846B2 (ja) * 2008-10-03 2013-04-03 セイコーエプソン株式会社 印刷装置および印刷方法
    US8462380B2 (en) * 2008-10-16 2013-06-11 Xerox Corporation In-line image geometrics measurement via local sampling on sheets in a printing system
    CN101519000B (zh) * 2009-03-31 2010-12-08 吴东杰 实现在线印刷变化内容的方法及混合数码印刷***
    US9098903B2 (en) * 2009-07-21 2015-08-04 R.R. Donnelley & Sons Company Systems and methods for detecting alignment errors
    DE102009039444A1 (de) * 2009-08-31 2011-03-03 Eastman Kodak Co. Druckvorrichtung und Verfahren zum Bedrucken eines Bedruckstoffs
    US8123326B2 (en) 2009-09-29 2012-02-28 Eastman Kodak Company Calibration system for multi-printhead ink systems
    JP5593924B2 (ja) * 2010-07-28 2014-09-24 セイコーエプソン株式会社 印刷制御装置、印刷装置及び印刷装置における印刷制御方法
    CN102463752B (zh) * 2010-10-29 2014-05-07 北大方正集团有限公司 喷印位置控制方法和装置
    IT1402897B1 (it) * 2010-11-24 2013-09-27 Fim Srl Procedimento di stampa digitale e di finissaggio per tessuti e simili.
    KR101253865B1 (ko) * 2010-12-21 2013-04-12 주식회사 포스코 선재 가이드 장치
    DE102010055852A1 (de) * 2010-12-22 2012-06-28 Eastman Kodak Company Verfahren zum Drucken eines Mehrfarbenbildes auf einer Bedruckstoffbahn
    US8752924B2 (en) 2012-01-26 2014-06-17 Eastman Kodak Company Control element for printed drop density reconfiguration
    US8807715B2 (en) 2012-01-26 2014-08-19 Eastman Kodak Company Printed drop density reconfiguration
    US8454134B1 (en) 2012-01-26 2013-06-04 Eastman Kodak Company Printed drop density reconfiguration
    US8714675B2 (en) 2012-01-26 2014-05-06 Eastman Kodak Company Control element for printed drop density reconfiguration
    US8764168B2 (en) 2012-01-26 2014-07-01 Eastman Kodak Company Printed drop density reconfiguration
    US8714674B2 (en) 2012-01-26 2014-05-06 Eastman Kodak Company Control element for printed drop density reconfiguration
    US20130215208A1 (en) * 2012-02-20 2013-08-22 Ronald J. Duke Automated print and image capture position adjustment
    DE102012101432A1 (de) * 2012-02-23 2013-08-29 OCé PRINTING SYSTEMS GMBH Verfahren zur Einstellung mindestens eines Druckkopfes in einer Druckkopfanordnung bei einem Tintendruckgerät
    DE102012017284A1 (de) * 2012-08-31 2014-03-06 Heidelberger Druckmaschinen Ag Verfahren und Vorrichtung zum Bedrucken von Bedruckstoff
    TWI498222B (zh) * 2013-01-11 2015-09-01 Dinkle Entpr Co Ltd 印刷品質檢驗方法及檢驗裝置
    JP2014159152A (ja) * 2013-01-25 2014-09-04 Seiko Epson Corp 記録装置及び記録方法
    US8842330B1 (en) 2013-03-25 2014-09-23 Eastman Kodak Company Method to determine an alignment errors in image data and performing in-track alignment errors correction using test pattern
    US8842331B1 (en) 2013-03-25 2014-09-23 Eastman Kodak Company Multi-print head printer for detecting alignment errors and aligning image data reducing swath boundaries
    US8931874B1 (en) 2013-07-15 2015-01-13 Eastman Kodak Company Media-tracking system using marking heat source
    US9429419B2 (en) 2013-07-15 2016-08-30 Eastman Kodak Company Media-tracking system using deformed reference marks
    US9056736B2 (en) 2013-07-15 2015-06-16 Eastman Kodak Company Media-tracking system using thermally-formed holes
    US8960842B2 (en) * 2013-07-15 2015-02-24 Eastman Kodak Company Media-tracking system using thermal fluoresence quenching
    JP6212332B2 (ja) * 2013-09-05 2017-10-11 キヤノン株式会社 記録装置及び検出方法
    JP2015124044A (ja) * 2013-12-26 2015-07-06 セイコーエプソン株式会社 ベルト搬送装置、媒体搬送装置ならびにプリンター
    WO2016025003A1 (fr) * 2014-08-15 2016-02-18 Hewlett-Packard Development Company, Lp Module d'alignement utilisé dans l'impression
    US9511603B2 (en) * 2014-09-30 2016-12-06 Eastman Kodak Company Method for printing image planes on substrate
    US9387670B1 (en) 2015-06-26 2016-07-12 Eastman Kodak Company Controlling a printing system using encoder ratios
    US20170128274A1 (en) 2015-11-11 2017-05-11 The Procter & Gamble Company Methods and Apparatuses for Registering Substrates in Absorbent Article Converting Lines
    JP2017189909A (ja) * 2016-04-13 2017-10-19 東芝テック株式会社 インクジェットヘッド及びインクジェットプリンタ
    US10370214B2 (en) 2017-05-31 2019-08-06 Cryovac, Llc Position control system and method
    JP7500921B2 (ja) 2019-03-29 2024-06-18 ブラザー工業株式会社 印刷装置
    JP7451966B2 (ja) * 2019-11-27 2024-03-19 富士フイルムビジネスイノベーション株式会社 吐出装置、吐出制御装置及び吐出制御プログラム
    US11945240B1 (en) 2023-06-22 2024-04-02 Eastman Kodak Company Image-adaptive inkjet printhead stitching process
    CN116945770B (zh) * 2023-09-07 2024-02-20 广州市普理司科技有限公司 一种数码印刷机多色套印控制***
    CN117119115B (zh) * 2023-10-23 2024-02-06 杭州百子尖科技股份有限公司 基于机器视觉的校准方法、装置、电子设备及存储介质

    Family Cites Families (14)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JPS5557489A (en) * 1978-10-26 1980-04-28 Toray Ind Inc Type printing method and printer
    JPS59215880A (ja) * 1983-05-25 1984-12-05 Canon Inc 記録装置
    US4574291A (en) * 1984-08-29 1986-03-04 Tektronix, Inc. Phase locked synchronizer for printer timing control
    JPS61272759A (ja) * 1985-05-28 1986-12-03 Olympus Optical Co Ltd カラ−静電記録装置における色ずれ補正方法
    US4686540A (en) * 1986-04-15 1987-08-11 Microdynamics, Inc. Compact plotter for generation of accurate plotted images of long length
    JPH03219271A (ja) * 1989-11-20 1991-09-26 Matsushita Graphic Commun Syst Inc カラー画像記録装置
    US5121145A (en) * 1990-08-03 1992-06-09 Eastman Kodak Company Line printhead device for nonimpact printer
    JP3272756B2 (ja) * 1992-01-14 2002-04-08 キヤノン株式会社 画像形成装置
    US5448269A (en) * 1993-04-30 1995-09-05 Hewlett-Packard Company Multiple inkjet cartridge alignment for bidirectional printing by scanning a reference pattern
    US5598201A (en) * 1994-01-31 1997-01-28 Hewlett-Packard Company Dual-resolution encoding system for high cyclic accuracy of print-medium advance in an inkjet printer
    EP0729846B1 (fr) * 1995-03-02 2000-01-12 SCITEX DIGITAL PRINTING, Inc. Compensation d'image au moyen de marques de référence imprimées
    JP3175539B2 (ja) * 1995-06-21 2001-06-11 富士ゼロックス株式会社 記録装置および印字制御方法
    US5521674A (en) * 1995-08-22 1996-05-28 Hewlett-Packard Company System and method for controlling a printer device
    US5777638A (en) * 1996-02-22 1998-07-07 Hewlett-Packard Company Print mode to compensate for microbanding

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO2012098190A1 (fr) 2011-01-19 2012-07-26 OCé PRINTING SYSTEMS GMBH Procédé et appareil d'impression permettant d'imprimer une information de type image groupée par lignes sur un support d'enregistrement

    Also Published As

    Publication number Publication date
    CN1154571C (zh) 2004-06-23
    KR19980042461A (ko) 1998-08-17
    US6068362A (en) 2000-05-30
    AU725580B2 (en) 2000-10-12
    JPH10151774A (ja) 1998-06-09
    FR2755900B1 (fr) 1999-01-29
    DE69714825D1 (de) 2002-09-26
    DE69714825T2 (de) 2003-04-10
    ES2182009T3 (es) 2003-03-01
    FR2755900A1 (fr) 1998-05-22
    EP0842784A1 (fr) 1998-05-20
    CN1194208A (zh) 1998-09-30
    CA2221112A1 (fr) 1998-05-15
    AU4517297A (en) 1998-05-21

    Similar Documents

    Publication Publication Date Title
    EP0842784B1 (fr) Presse multicouleur à la continue par jet d'encre, procédé de synchronisation d'une telle presse, et produit imprimé obtenu à l'aide d'une telle presse
    EP1132203B1 (fr) Procede de mise en reperage automatique d'impressions dans une machine rotative et dispositif pour la mise en oeuvre du procede
    US7216952B2 (en) Multicolor-printer and method of printing images
    EP1979117B1 (fr) Procédé d'utilisation d'une marque de détection pour commander un système d'impression
    EP2771188B1 (fr) Procede et agencement de reglage pour une machine d'impression
    JP6242190B2 (ja) ベルト表面速度測定を用いた印字周波数の調整により改良された画質
    JP5547008B2 (ja) ウェブ印刷システムにおけるプリントヘッドの吐出動作システム
    EP1106371B1 (fr) Imprimante à fabrication simplifiée et procédé de réalisation
    CA2364092C (fr) Machine d'impression graphique pour support de memorisation de type carte, procede d'impression graphique desdits supports de memorisation et supports de memorisation
    WO2019102297A1 (fr) Système d'impression numérique
    US20090015621A1 (en) Image forming apparatus and defective nozzle detection method
    GB2148194A (en) Ink jet printer with two printing modes
    FR2905630A1 (fr) Dispositif d'impression par transfert sur un support d'impression cylindrique
    EP2619012B1 (fr) Procede et agencement de mise en registre des couleurs pour une machine d'impression
    EP0949081B1 (fr) Imprimante à jet d'encre à plusieurs couleurs à haute résolution
    FR2749573A1 (fr) Systeme de commande d'impression a boucle fermee
    EP1106370A1 (fr) Procédé et imprimante avec contrôle d'avance du substrat
    US7922286B2 (en) Image recording apparatus
    WO2009005766A2 (fr) Utilisation d'une marque de détection pour commander un système d'impression
    JP2011067991A (ja) 画像記録装置及び吐出タイミング調整方法
    FR2783459A1 (fr) Imprimante pour l'impression par transfert thermique mettant en oeuvre des moyens perfectionnes pour l'entrainement du ruban encreur
    EP0702334A1 (fr) Système de réglage par effet vernier d'une tête d'impression à jet d'encre dans une machine d'affranchissement
    FR2783460A1 (fr) Procede d'impression polychrome par transfert thermique permettant d'economiser le ruban encreur, et imprimante pour la mise en oeuvre de ce procede
    JP2004181697A (ja) インクジェットプリンタのレジずれ検出方法
    FR2760269A1 (fr) Procede et dispositif de controle de presence d'un produit transferable sur un support et procede et dispositif d'impression mettant en oeuvre un tel controle

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): DE ES GB IT NL SE

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17P Request for examination filed

    Effective date: 19981026

    AKX Designation fees paid

    Free format text: DE ES GB IT NL SE

    RBV Designated contracting states (corrected)

    Designated state(s): DE ES GB IT NL SE

    17Q First examination report despatched

    Effective date: 19991027

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: IMAJE S.A.

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE ES GB IT NL SE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20020821

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REF Corresponds to:

    Ref document number: 69714825

    Country of ref document: DE

    Date of ref document: 20020926

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20021112

    NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2182009

    Country of ref document: ES

    Kind code of ref document: T3

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20030522

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20041022

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: SE

    Payment date: 20041105

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20041110

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20041201

    Year of fee payment: 8

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20051113

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20051113

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20051114

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20051114

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060601

    EUG Se: european patent has lapsed
    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20051113

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20051114