EP0796981B1 - Elektromagnetische Betätigungsvorrichtung für Brennkraftmaschinen-Hubventile - Google Patents

Elektromagnetische Betätigungsvorrichtung für Brennkraftmaschinen-Hubventile Download PDF

Info

Publication number
EP0796981B1
EP0796981B1 EP97102043A EP97102043A EP0796981B1 EP 0796981 B1 EP0796981 B1 EP 0796981B1 EP 97102043 A EP97102043 A EP 97102043A EP 97102043 A EP97102043 A EP 97102043A EP 0796981 B1 EP0796981 B1 EP 0796981B1
Authority
EP
European Patent Office
Prior art keywords
cylinder
cylinder head
longitudinal axis
actuator housing
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97102043A
Other languages
English (en)
French (fr)
Other versions
EP0796981A1 (de
Inventor
Karl Treffler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayerische Motoren Werke AG
Original Assignee
Bayerische Motoren Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke AG filed Critical Bayerische Motoren Werke AG
Publication of EP0796981A1 publication Critical patent/EP0796981A1/de
Application granted granted Critical
Publication of EP0796981B1 publication Critical patent/EP0796981B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means

Definitions

  • the invention relates to an electromagnetic actuator for the Lift valves of a multi-cylinder internal combustion engine cylinder head having a longitudinal axis, with an actuator housing within which an essentially between two solenoids in the valve axis direction Armature is slidably acting on the lift valve.
  • an electromagnetic actuator for the Lift valves of a multi-cylinder internal combustion engine cylinder head having a longitudinal axis, with an actuator housing within which an essentially between two solenoids in the valve axis direction Armature is slidably acting on the lift valve.
  • An electromagnetic lift valve operating device for an internal combustion engine has because of the freedom in valve timing, i.e. H. with regard to the respective opening and closing times of the globe valves immense advantages, however, have to be operated, especially to open of the globe valve relatively high forces are applied, which is a certain Requires minimum size of solenoid coils and armature.
  • arises in the magnetic coils when operating the globe valves, in particular at higher operating frequencies relatively much heat loss, which are dissipated in a suitable manner got to. A pure convection cooling of the actuator housing in the surrounding Air is not sufficient for this.
  • the object of the invention is therefore to demonstrate measures to remedy the problem described.
  • the outer walls of the actuator housing which extend essentially in the direction of the cylinder head longitudinal axis, have the shape of a circular cylinder segment, the circular cylinder axis of which coincides with the valve axis, and lie essentially over the entire surface of the cylinder head, while at least one of them Extending transversely to the cylinder head longitudinal axis outer walls is flat.
  • the actuators can be arranged relatively close to each other due to the flat outer wall, while the required base area, which is required with regard to a minimum dimension of the magnetic coils, can be provided by the extension transverse to the longitudinal axis of the cylinder head.
  • a rectangular cross section would now be possible, but the cylinder head machining then required would be too complex for this.
  • a further essential feature of the invention can be seen in the fact that the actuator housing, with the outer walls extending essentially in the direction of the cylinder head longitudinal axis, rests essentially over the entire surface of the cylinder head. This enables good heat dissipation via the cylinder head wall, which itself is liquid-cooled, for example.
  • the actuator housing can in principle be of multiple parts in order to a simple assembly of this electromagnetic actuator to enable d. H. to easily anchor first to be arranged between the two solenoids and then the individual Housing parts around the armature and the solenoids to the actuator housing put together.
  • the extrusion can be made of a light metal alloy similar to the material of the cylinder head be made to build up tension by different Avoid thermal expansion or to ensure that in the event of thermal expansion of the cylinder head and the actuator housing the latter always rests on the cylinder head.
  • the same components with the same reference numbers are used in all of the figures designated. Is always one in its entirety designated 1 Actuating device for a lift valve 2 in an internal combustion engine cylinder head 3 arranged.
  • Actuator housing 4 formed in several parts, d. H. it consists of individual Housing segments 4a, 4b, 4c, 4d, in a suitable manner, not shown are interconnected.
  • Two overhead housing segments 4a, 4b are essentially on the left side and on the right side of the upper magnet coil 5 arranged, in the same way, two lower housing segments 4c, 4d in essentially provided on the left and right sides of the lower magnet coil 5.
  • the actuator housing 4 thus four lateral outer walls 8a, 8b and 9a, 9b on all of them Exemplary embodiments, cf. 1b, 2b, 3b.
  • FIGS. 1b, 2b, 3b there are several electromagnetic actuating devices 1 arranged in the cylinder head 3 side by side. Because of this Cylinder head 3 two intake valves 6 and two exhaust valves per cylinder 20 has two actuators for each cylinder 20 1 arranged directly next to each other, after which under one a certain distance again a group of two actuators 1 for the next cylinder 20 of the cylinder head follows.
  • This cylinder head thus has a longitudinal axis 10, in the direction of which the individual Cylinder 20 are arranged side by side.
  • the individual outer walls of the Actuator housing 4 are now designated such that the outer walls 8a, 8b essentially in the direction of the cylinder head longitudinal axis 10 extend while the outer walls 9a, 9b substantially transverse to Extend longitudinal axis 10.
  • the outer walls 8a, 8b of the actuator housing 4 each have the shape of a circular cylinder segment, whose circular cylinder axis coincides with the valve axis 6.
  • the two Outer walls 9a, 9b of each actuator housing 4 are flat. This enables at least two actuator housings 4 to be optimal Arrange space directly next to each other.
  • two actuator housings per cylinder must be arranged side by side, is sufficient, only one of the two outer walls 9a, 9b, namely the one that faces the adjacent actuator housing 4, to train just while the cylinder-specific group of two this actuator housing 4 outer wall one of the flat shape may have a different shape.
  • the shape of the outer walls 8a, 8b of a circular cylinder segment is the shape of the outer walls 8a, 8b of a circular cylinder segment.
  • This allows the one available Construction space can be used optimally, d. H. the solenoids 5 and each armature 11 can be made as large as possible to accommodate the movement each lift valve to be able to easily generate 2 required forces.
  • the circular cylindrical segment shape also enables simple machining of the cylinder head 3 or the actuator housing 4 receiving Walls 3 'of this cylinder head 3, such that the actuator housing 4 with their outer walls 8a, 8b essentially over the entire surface of the cylinder head 3 issue.
  • the housing segments 4a, 4b, 4c, 4d, that are in contact with the cylinder head 3 should be made of one material, whose thermal expansion behavior is very similar to that of the cylinder head 3 is.
  • This cylinder head 3 usually consists of a suitable light metal alloy, in this case, the housing segments 4a to 4d should also a comparable light metal alloy to withstand tensions to avoid by different thermal expansions or to ensure that the actuator housing 4 always with its outer walls 8a, 8b bears against the cylinder head 3.
  • each solenoid 5 is used in its core 12.
  • each actuator housing 4 is attached to the cylinder head 3.
  • an electrical plug contact 14 can also be seen for supplying the magnetic coils 5 with electrical current.
  • a structure of the actuator housing 4 which differs from FIGS. 1, 2 shows the embodiment of FIGS. 3a to 3d.
  • the actuator housing 4 is in essentially designed as a hollow cylindrical extrusion into which above and below, the magnetic coils 5 with the interposition of the armature 11 are used with them assigned ferromagnetic coil cores 12.
  • the latter have a collar 12 'in the outer end faces, so that each coil core 12 rests on the end face of the actuator housing 4.
  • Two diagonally arranged locking screws 16 then connect this entire one Unit of the actuator housing 4 with the two coil cores 12 and the integrated anchor 11, while with the other two, also diagonally arranged fastening screws 13 of this actuator housing 4 is screwed back to the cylinder head 3.
  • This design stands out thus characterized by an extremely simple, compact design that only requires a small number of parts.
  • This can advantageously Actuator housing 4 or extrusion are prefabricated to fit, so that after assembling the electromagnetic actuator no rework is required.
  • the anchor 11 is advantageously exactly inside the extrusion or actuator housing 4, see above that he can not twist about the lift valve axis 6.
  • valve stem 2 ' is formed so long that it extends to the anchor 11 so that the coupling rod 7 can be omitted without replacement. All that is required is also that in the other exemplary embodiments 1a, 2a on the other side of the armature 11 provided so-called spring rod 7 ', a spring plate lying above the actuator housing 4 17 carries, on which one of the usual valve closing spring 18 'counteracting Valve opening spring 18 acts.
  • This design has the advantage that a otherwise required guide element for the coupling rod 7 without replacement can be omitted, since the valve stem 2 'already through the usual valve guide 19 is performed. It should be pointed out that, however this and other details are quite different from the exemplary embodiments shown can be designed without the content of the claims leave.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)

Description

Die Erfindung betrifft eine elektromagnetische Betätigungsvorrichtung für die Hubventile eines eine Längsachse aufweisenden mehrzylindrigen Brennkraftmaschinen-Zylinderkopfes, mit einem Aktuatorgehäuse, innerhalb dessen ein im wesentlichen zwischen zwei Magnetspulen in Ventilachsrichtung verschiebbar auf das Hubventil einwirkender Anker angeordnet ist. Zum bekannten Stand der Technik wird beispielshalber auf die EP 0 197 357 A2 oder die EP 0 405 189 B1 verwiesen.
Eine elektromagnetische Hubventil-Betätigungsvorrichtung für eine Brennkraftmaschine hat wegen der Freiheit hinsichtlich der Ventilsteuerzeiten, d. h. hinsichtlich des jeweiligen Öffnungs- und Schließzeitpunktes der Hubventile immense Vorteile, jedoch müssen zum Betätigen, insbesondere zum Öffnen des Hubventiles relativ hohe Kräfte aufgebracht werden, was eine gewisse Mindestgröße von Magnetspulen und Anker erforderlich macht. Als Folge hiervon ist es äußerst schwierig, die bekannten Aktuatorgehäuse überhaupt in einen heute üblichen Zylinderkopf beispielsweise einer ein Kraftfahrzeug antreibenden Brennkraftmaschine unterzubringen. Noch intensiver tritt dieses Problem bei Brennkraftmaschinen auf, die zwei oder mehr Einlaßventile oder Auslaßventile je Zylinder besitzen. Ferner entsteht in den Magnetspulen bei der Betätigung der Hubventile insbesondere bei höheren Betätigungsfrequenzen relativ viel Verlustwärme, die auf geeignete Weise abgeführt werden muß. Eine reine Konvektionskühlung des Aktuatorgehäuses in der umgebenden Luft ist hierfür nicht ausreichend.
Aufgabe der Erfindung ist es daher, Maßnahmen zur Abhilfe der geschilderten Problematik aufzuzeigen.
Zur Lösung dieser Aufgabe ist vorgesehen, daß die sich im wesentlichen in Richtung der Zylinderkopf-Längsachse erstreckenden Außenwände des Aktuatorgehäuses die Form eines Kreiszylinder-Segmentes, dessen Kreiszylinderachse mit der Ventilachse zusammenfällt, besitzen und im wesentlichen vollflächig am Zylinderkopf anliegen, während zumindest eine der sich quer zur Zylinderkopf-Längsachse erstreckenden Außenwände eben ausgebildet ist. Mit dieser beschriebenen Gestaltung stellt sich eine optimale Raumausnutzung ein, d. h. es ist möglich, in einem in seinen Abmessungen üblichen Brennkraftmaschinen-Zylinderkopf auch für zwei Einlaßventile und Auslaßventile die jeweils benötigte Anzahl von Aktuatorgehäusen, d. h. elektromagnetischen Hubventil-Betätigungsvorrichtungen unterzubringen. In Zylinderkopf-Längsrichtung können aufgrund der ebenen Außenwand die Aktuatoren relativ nahe nebeneinanderliegend angeordnet werden, während die erforderliche Grundfläche, die im Hinblick auf eine Mindestabmessung der Magnetspulen benötigt wird, durch die Erstreckung quer zur Zylinderkopf-Längsachse zur Verfügung gestellt werden kann. Grundsätzlich wäre nun ein ein Rechteckquerschnitt möglich, jedoch wäre hierfür die dann erforderliche Zylinderkopf-Bearbeitung zu aufwendig. Ein weiteres wesentliches Merkmal der Erfindung ist nämlich darin zu sehen, daß das Aktuatorgehäuse mit den sich im wesentlichen in Richtung der Zylinderkopf-Längsachse erstreckenden Außenwänden im wesentlichen vollflächig am Zylinderkopf anliegt. Dies ermöglicht eine gute Wärmeabfuhr über die ihrerseits beispielsweise selbst flüssigkeitsgekühlte Zylinderkopfwand. Sähe man nun für das Aktuatorgehäuse einen Rechteckquerschnitt vor, so müßte die entsprechende Aufnahme im Zylinderkopf ebenso rechtwinkelig ausgefräst werden, was äußerst aufwendig ist. Wesentlich einfacher ist demgegenüber die Bearbeitung eines Kreisquerschnittes, und zwar insbesondere dann, wenn die beiden Zylinderkopfwände, die die beiden einander gegenüberliegenden, sich in Richtung der Zylinderkopf-Längsachse erstreckenden Außenwände des Aktuatorgehäuses aufnehmen, gemeinsam bearbeitet werden können. Aus diesem Grunde wird vorgeschlagen, diese entsprechenden Außenwände als Kreiszylinder-Segmente zu formen, wobei die Kreiszylinderachse mit dem Zentrum des Aktuatorgehäuses und somit auch mit der Achse der Hubventile, der sog. Ventilachse, zusammenfällt.
Um auch für den Anker selbst, der sich im Aktuatorgehäuse befindet, eine möglichst große Grundfläche bereitzustellen, kann dessen Geometrie unter den gleichen Überlegungen ausgebildet sein, so daß auch hier die sich im wesentlichen Richtung der Zylinderkopf-Längsachse erstreckenden Außenseiten des Ankers die Form eines konzentrisch zur Ventilachse liegenden Kreiszylinder-Segmentes besitzen, während die sich quer zur Zylinderkopf-Längsachse erstreckenden Außenseiten des Ankers eben ausgebildet sind. Der Anker ist somit symmetrisch ausgebildet, um eine optimale Kraftverteilung bzw. Krafteinwirkung bei seiner durch die Magnetspulenerregung hervorgerufenen Bewegung sicherzustellen. Selbstverständlich kann auch das Aktuatorgehäuse symmetrisch ausgebildet sein, d. h. abweichend von der oben angegebenen Form, wonach zumindest eine der sich quer zur Zylinderkopf-Längsachse erstreckenden Außenwände eben ausgebildet ist, können auch die beiden sich quer zur Zylinderkopf-Längsachse erstreckenden Außenwände eben gestaltet sein.
Das Aktuatorgehäuse kann grundsätzlich mehrteilig ausgebildet sein, um einen einfachen Zusammenbau dieser elektromagnetischen Betätigungsvorrichtung zu ermöglichen, d. h. um auf einfache Weise den Anker zunächst zwischen den beiden Magnetspulen anzuordnen und anschließend die einzelnen Gehäuseteile um den Anker und die Magnetspulen herum zum Aktuatorgehäuse zusammenzufügen. Deutlich weniger Einzelteile werden jedoch benötigt, wenn das Aktuatorgehäuse im wesentlichen als hohlzylindrisches Strangpreßteil ausgebildet ist, in welches die Magnetspulen mit zugeordneten ferromagnetischen Spulenkernen eingesetzt sind. Das Strangpreßteil kann dabei aus einer dem Material des Zylinderkopfes ähnlichen Leichtmetall-Legierung gefertigt sein, um den Aufbau von Spannungen durch unterschiedliche Wärmedehnung zu vermeiden bzw. um sicherzustellen, daß bei einer Wärmeausdehnung des Zylinderkopfes sowie des Aktuatorgehäuses letzteres stets am Zylinderkopf anliegt.
Dies sowie weitere Vorteile und Merkmale der Erfindung gehen auch aus der folgenden Beschreibung mehrerer bevorzugter Ausführungsbeispiele hervor. Erfindungswesentlich können dabei sämtliche näher bezeichneten Merkmale sein. Im einzelnen zeigt
Fig. 1a
einen Querschnitt durch einen Brennkraftmaschinen-Zylinderkopf mit einer erfindungsgemäßen elektromagnetischen Betätigungsvorrichtung,
Fig. 1b
nebeneinanderliegend die Ansicht X sowie die Schnitte A-A und B-B aus Fig. 1a, wobei diese Schnitte verschiedenen Brennkraftmaschinen-Zylindern zugeordnet sind,
Fig. 2a
eine Darstellung gemäß Fig. 1a für eine andere Ausführungsform,
Fig. 2b
wieder die Ansicht X sowie die Schnitte A-A und B-B aus Fig. 2a, entsprechend der Darstellung in Fig. 1b,
Fig. 3a
noch eine weitere Ausführungsform in einem Querschnitt durch den Brennkraftmaschinen-Zylinderkopf,
Fig. 3b
wieder die Ansicht X sowie die Schnitte A-A und B-B aus Fig. 3a,
Fig. 3c
den Schnitt C-C und
Fig. 3d
den Schnitt D-D aus Fig. 3b.
In allen Figurendarstellungen sind gleiche Bauteile mit gleichen Bezugsziffern bezeichnet. Stets ist eine in ihrer Gesamtheit mit 1 bezeichnete elektromagnetische Betätigungsvorrichtung für ein Hubventil 2 in einem Brennkraftmaschinen-Zylinderkopf 3 angeordnet. Die elektromagnetische Betätigungsvorrichtung 1 besteht im wesentlichen aus einem Aktuatorgehäuse 4, innerhalb dessen zwischen zwei Magnetspulen 5 ein Anker 11 angeordnet ist, der in Richtung der Hubventil-Achse 6 (= Ventilachsrichtung 6) verschiebbar ist und über eine Kuppelstange 7 auf den Kopf des Ventilschaftes des Hubventiles 2 einwirkt. Wie dem Fachmann bekannt, kann durch entsprechende Erregung bzw. Entregung der Magnetspulen 5 somit der Anker in den Figurendarstellungen 1a, 2a, 3a ausgehend von der gezeigten Position nach unten bewegt werden, wodurch das Hubventil 2 geöffnet wird, und anschließend daran wieder nach oben bewegt werden, wodurch das Hubventil 2 in seine dargestellte, geschlossene Position gebracht wird.
Während auf den Aufbau des Aktuatorgehäuses 4 beim Ausführungsbeispiel nach den Fig. 3a bis 3d später eingegangen wird, ist bei den Fig. 1, 2 das Aktuatorgehäuse 4 mehrteilig ausgebildet, d. h. es besteht aus einzelnen Gehäusesegmenten 4a, 4b, 4c, 4d, die auf geeignete, nicht gezeigte Weise miteinander verbunden sind. Zwei obenliegende Gehäusesegmente 4a, 4b sind im wesentlichen linksseitig sowie rechtsseitig der oberen Magnetspule 5 angeordnet, in gleicher Weise sind zwei untere Gehäusesegmente 4c, 4d im wesentlichen linksseitig und rechtsseitig der unteren Magnetspule 5 vorgesehen. Im zusammengebauten Zustand weist das Aktuatorgehäuse 4 somit vier seitliche Außenwände 8a, 8b und 9a, 9b auf, und zwar bei sämtlichen Ausführungsbeispielen, vgl. Fig. 1b, 2b, 3b.
Wie die Fig. 1b, 2b, 3b zeigen, sind mehrere elektromagnetische Betätigungsvorrichtungen 1 im Zylinderkopf 3 nebeneinander angeordnet. Da dieser Zylinderkopf 3 zwei Einlaßventile 6 und auch zwei Auslaßventile je Zylinder 20 aufweist, sind jeweils für einen Zylinder 20 zwei Betätigungsvorrichtungen 1 direkt nebeneinanderliegend angeordnet, wonach unter einem gewissen Abstand abermals eine Zweiergruppe von Betätigungsvorrichtungen 1 für den nächsten Zylinder 20 des Zylinderkopfes folgt. Dieser Zylinderkopf besitzt somit eine Längsachse 10, in Richtung derer die einzelnen Zylinder 20 nebeneinander angeordnet sind. Die einzelnen Außenwände des Aktuatorgehäuses 4 sind nun derart bezeichnet, daß sich die Außenwände 8a, 8b im wesentlichen in Richtung der Zylinderkopf-Längsachse 10 erstrecken, während sich die Außenwände 9a, 9b im wesentlichen quer zur Längsachse 10 erstrecken.
Wie ersichtlich und wie oben bereits erläutert, besitzen die Außenwände 8a, 8b des Aktuatorgehäuses 4 jeweils die Form eines Kreiszylindersegmentes, dessen Kreiszylinderachse mit der Ventilachse 6 zusammenfällt. Die beiden Außenwände 9a, 9b jedes Aktuatorgehäuses 4 hingegen sind eben ausgebildet. Dies ermöglicht es, zumindest zwei Aktuatorgehäuse 4 unter optimaler Bauraumausnutzung direkt nebeneinanderliegend anzuordnen. In diesem Zusammenhang sei darauf hingewiesen, daß es dann, wenn wie hier lediglich zwei Akutatorgehäuse je Zylinder nebeneinander angeordnet sein müssen, ausreichend ist, lediglich eine der beiden Außenwände 9a, 9b, und zwar diejenige, welche dem benachbarten Aktuatorgehäuse 4 zugewandt ist, eben auszubilden, während die bezüglich der zylinderindividuellen Zweiergruppe dieser Aktuatorgehäuse 4 außenliegende Außenwand eine von der ebenen Formgebung abweichende Gestalt aufweisen kann.
Wesentlich ist jedoch die Ausbildung der Außenwände 8a, 8b in Form jeweils eines Kreiszylinder-Segmentes. Hierdurch kann der zur Verfügung stehende Bauraum optimal genutzt werden, d. h. die Magnetspulen 5 sowie jeder Anker 11 kann so groß als möglich ausgebildet werden, um die für die Bewegung jedes Hubventiles 2 erforderlichen Kräfte einfach erzeugen zu können. Ferner ermöglicht die Kreiszylindersegmentform auch eine einfache Bearbeitung des Zylinderkopfes 3 bzw. der das Aktuatorgehäuse 4 aufnehmenden Wände 3' dieses Zylinderkopfes 3, derart, daß die Aktuatorgehäuse 4 mit ihren Außenwänden 8a, 8b im wesentlichen vollflächig am Zylinderkopf 3 anliegen. Dies ermöglicht einen guten Wärmeübergang vom Aktuatorgehäuse 4 auf die entsprechende Zylinderkopf-Wand 3', so daß die ihrerseits durch Kühlflüssigkeit gut gekühlte Zylinderkopfwand 3' eine wirkungsvolle Kühlung des Aktuatorgehäuses 4 bewirkt. Die in den Magnetspulen 5 erzeugte Wärme wird somit über die Außenwände 8a, 8b des Aktuatorgehäuses 4 sowie über die Zylinderkopfwände 3' an die im Kühlflüssigkeitsraum 15 des Zylinderkopfes 3 geführte Kühlflüssigkeit abgegeben.
Der Vollständigkeit halber sei noch darauf hingewiesen, daß bei den Ausführungsbeispielen nach den Fig. 1 und 2 die Gehäusesegmente 4a, 4b, 4c, 4d, die am Zylinderkopf 3 anliegen, in einem Material ausgeführt sein sollten, dessen Wärmedehnverhalten demjenigen des Zylinderkopfes 3 sehr ähnlich ist. Zumeist besteht dieser Zylinderkopf 3 aus einer geeigneten Leichtmetall-Legierung, in diesem Falle sollten auch die Gehäusesegmente 4a bis 4d aus einer vergleichbaren Leichtmetall-Legierung bestehen, um Spannungen durch unterschiedliche Wärmedehnungen zu vermeiden bzw. um sicherzustellen, daß das Aktuatorgehäuse 4 stets mit seinen Außenwänden 8a, 8b am Zylinderkopf 3 anliegt. Zur Erzielung des erforderlichen Magnetflusses hingegen befindet sich zumindest innerhalb der Magnetspulen 5 - wie beim Ausführungsbeispiel nach Fig. 2 oder auch innerhalb und außerhalb dieser Magnetspulen 5 - wie beim Ausführungsbeispiel nach Fig. 1 - ein geeigneter ferromagnetischer Spulenkern 12. Dabei ist bei der Ausführungsform nach Fig. 1 jede Magnetspule 5 in ihren Spulenkern 12 eingesetzt.
Ebenfalls der Vollständigkeit halber soll noch auf die beiden Befestigungsschrauben 13 hingewiesen werden, mit Hilfe derer jedes Aktuatorgehäuse 4 am Zylinderkopf 3 befestigt ist. Diese Befestigungsschrauben 13 durchdringen das gesamte Aktuatorgehäuse 4 parallel zur Ventilachsrichtung 6. Ferner erkennt man in den Fig. 1b, 2b noch einen elektrischen Steckkontakt 14 für die Versorgung der Magnetspulen 5 mit elektrischem Strom.
Einen von den Fig. 1, 2 abweichenden Aufbau des Aktuatorgehäuses 4 zeigt das Ausführungsbeispiel nach den Fig. 3a bis 3d. Hier sind keine einzelnen Gehäusesegmente mehr vorgesehen, sondern das Aktuatorgehäuse 4 ist im wesentlichen als hohlzylindrisches Strangpreßteil ausgebildet, in das von oben und von unten die Magnetspulen 5 unter Zwischenlage des Ankers 11 mit ihnen zugeordneten ferromagnetischen Spulenkernen 12 eingesetzt sind. Letztere weisen dabei in den äußeren Stirnseiten einen Bund 12' auf, so daß jeder Spulenkern 12 auf der Stirnseite des Aktuatorgehäuses 4 aufliegt. Zwei diagonal angeordnete Schließschrauben 16 verbinden dann diese gesamte Baueinheit des Aktuatorgehäuses 4 mit den beiden Spulenkernen 12 sowie dem integrierten Anker 11, während mit den anderen beiden, ebenfalls diagonal angeordneten Befestigungsschrauben 13 dieses Aktuatorgehäuse 4 wieder am Zylinderkopf 3 angeschraubt ist. Diese Gestaltung zeichnet sich somit durch eine äußerst einfache, kompakte Bauweise aus, die lediglich eine geringe Teileanzahl erforderlich macht. Vorteilhafterweise kann dieses Aktuatorgehäuse 4 bzw. Strangpreßteil paßgenau vorgefertigt werden, so daß nach Zusammenbau der elektromagnetischen Betätigungsvorrichtung keine Nacharbeit erforderlich ist. Ferner ist vorteilhafterweise der Anker 11 im Inneren des Strangpreßteiles bzw. Aktuatorgehäuses 4 exakt geführt, so daß er sich nicht um die Hubventil-Achse 6 verdrehen kann.
Die Fig. 3a zeigt noch eine weitere Abwandlung gegenüber den Ausführungsbeispielen nach den Fig. 1, 2, nämlich bezüglich der Gestaltung des Hubventiles 2. Hier ist dessen Ventilschaft 2' so lange ausgebildet, daß er bis zum Anker 11 reicht, so daß die Koppelstange 7 ersatzlos entfallen kann. Benötigt wird lediglich die auch in den anderen Ausführungsbeispielen nach Fig. 1a, 2a auf der anderen Seite des Ankers 11 vorgesehene sog. Federstange 7', die einen oberhalb des Aktuatorgehäuses 4 liegenden Federteller 17 trägt, auf den eine der üblichen Ventilschließfeder 18' entgegenwirkende Ventilöffnungsfeder 18 einwirkt. Diese Gestaltung hat den Vorteil, daß ein ansonsten erforderliches Führungselement für die Koppelstange 7 ersatzlos entfallen kann, da der Ventilschaft 2' ohnehin bereits durch die übliche Ventilführung 19 geführt ist. Darauf hingewiesen werden soll noch, daß jedoch dies sowie weitere Details durchaus abweichend von den gezeigten Ausführungsbeispielen gestaltet sein kann, ohne den Inhalt der Patentansprüche zu verlassen.

Claims (3)

  1. Elektromagnetische Betätigungsvorrichtung für die Hubventile eines eine Längsachse (10) aufweisenden mehrzylindrigen Brennkraftmaschinen-Zylinderkopfes (3), mit einem Aktuatorgehäuse (4), innerhalb dessen ein im wesentlichen zwischen zwei Magnetspulen (5) in Ventilachsrichtung (6) verschiebbar auf das Hubventil (2) einwirkender Anker (11) angeordnet ist,
    dadurch gekennzeichnet, daß die sich im wesentlichen in Richtung der Zylinderkopf-Längsachse (10) erstreckenden Außenwände (8a, 8b) des Aktuatorgehäuses (4) die Form eines Kreiszylindersegmentes, dessen Kreiszylinderachse mit der Ventilachse (6) zusammenfällt, besitzen, und im wesentlichen vollflächig am Zylinderkopf (3) anliegen, während zumindest eine der sich quer zur Zylinderkopf-Längsachse (10) erstreckenden Außenwände (9a, 9b) des Aktuatorgehäuses (4) eben ausgebildet ist.
  2. Elektromagnetische Betätigungsvorrichtung nach Anspruch 1,
    dadurch gekennzeichnet, daß die sich im wesentlichen in Richtung der Zylinderkopf-Längsachse (10) erstreckenden Außenseiten des Ankers (11) die Form eines konzentrisch zur Ventilachse (6) liegenden Kreiszylinder-Segmentes besitzen, während die sich quer zur Zylinderkopf-Längsachse erstreckenden Außenseiten des Ankers (11) eben ausgebildet ist.
  3. Elektromagnetische Betätigungsvorrichtung nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, daß das Aktuatorgehäuse (4) im wesentlichen als hohlzylindrisches Strangpreßteil ausgebildet ist, in welches die Magnetspulen (5) mit zugeordneten ferromagnetischen Spulenkernen (12) eingesetzt sind.
EP97102043A 1996-03-23 1997-02-10 Elektromagnetische Betätigungsvorrichtung für Brennkraftmaschinen-Hubventile Expired - Lifetime EP0796981B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19611547 1996-03-23
DE19611547A DE19611547A1 (de) 1996-03-23 1996-03-23 Elektromagnetische Betätigungsvorrichtung für Brennkraftmaschinen-Hubventile

Publications (2)

Publication Number Publication Date
EP0796981A1 EP0796981A1 (de) 1997-09-24
EP0796981B1 true EP0796981B1 (de) 2000-09-27

Family

ID=7789219

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97102043A Expired - Lifetime EP0796981B1 (de) 1996-03-23 1997-02-10 Elektromagnetische Betätigungsvorrichtung für Brennkraftmaschinen-Hubventile

Country Status (4)

Country Link
EP (1) EP0796981B1 (de)
JP (1) JPH09256826A (de)
DE (2) DE19611547A1 (de)
ES (1) ES2151690T3 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10202476A1 (de) * 2002-01-23 2003-08-07 Tyco Electronics Belgium Ec Nv Elektromagnetische Spule mit Rechteckform

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19646937C2 (de) * 1996-11-13 2000-08-31 Bayerische Motoren Werke Ag Elektromagnetische Betätigungsvorrichtung für ein Brennkraftmaschinen-Hubventil
DE29712502U1 (de) * 1997-07-15 1997-09-18 FEV Motorentechnik GmbH & Co. KG, 52078 Aachen Elektromagnetischer Aktuator mit Gehäuse
DE19753746A1 (de) * 1997-12-04 1999-06-10 Bayerische Motoren Werke Ag Elektromagnetischer Aktuator zum Antrieb eines dem Gaswechsel dienenden Hubventils einer Brennkraftmaschine
US6094118A (en) * 1997-12-09 2000-07-25 Siemens Automotive Corporation Electromagnetic actuator with stamped steel housing
US6157277A (en) * 1997-12-09 2000-12-05 Siemens Automotive Corporation Electromagnetic actuator with improved lamination core-housing connection
DE19756095C2 (de) * 1997-12-17 2001-11-22 Telefunken Microelectron Vorrichtung zum Betrieb von Aktoren zur elektromagnetischen Ventilsteuerung bei Brennkraftmaschinen
DE19757505C2 (de) * 1997-12-23 2000-02-10 Daimler Chrysler Ag Betätigungsvorrichtung für ein Gaswechselventil in einer Brennkraftmaschine
DE19808703C1 (de) * 1998-03-02 1999-09-23 Isad Electronic Sys Gmbh & Co Verbrennungsmotor sowie Verfahren zum Beheizen von Teilen eines Verbrennungsmotors
DE19819401C1 (de) * 1998-04-30 1999-09-16 Daimler Chrysler Ag Vorrichtung zum Betätigen von Gaswechselventilen
DE19821550C1 (de) * 1998-05-14 1999-09-16 Daimler Chrysler Ag Zylinderkopf
JP3907835B2 (ja) * 1998-06-25 2007-04-18 日産自動車株式会社 車両用エンジンの動弁装置
DE19831250C1 (de) * 1998-07-11 1999-10-07 Daimler Chrysler Ag Vorrichtung zum Betätigen eines Gaswechselventils mit einem elektromagnetischen Aktuator
DE19924417C2 (de) * 1998-07-29 2000-11-30 Daimler Chrysler Ag Aktor zur elektromagnetischen Ventilsteuerung
DE19838102A1 (de) * 1998-08-21 2000-02-24 Bayerische Motoren Werke Ag Rahmenartiges Gehäuse eines elektromagnetischen Aktuators zur Ventilbetätigung, insbesondere in Brennkraftmaschinen
DE19907850C2 (de) 1999-02-24 2002-08-01 Siemens Ag Mehrzylindrige Brennkraftmaschine mit von elektromagnetischen Aktuatoren betätigten Gaswechsel-Hubventilen
JP2000283316A (ja) 1999-03-29 2000-10-13 Honda Motor Co Ltd 電磁弁駆動装置
DE19922425C1 (de) * 1999-05-14 2000-10-19 Siemens Ag Elektromechanischer Stellantrieb und seine Montage z.B. als Gaswechselventil in den Zylinderkopf einer Brennkraftmaschine
DE19926413C2 (de) 1999-06-10 2002-12-05 Bayerische Motoren Werke Ag Elektromagnetischer Aktuator zur Betätigung eines Brennkraftmaschinen-Hubventils
DE19947924C2 (de) * 1999-10-06 2003-01-23 Daimler Chrysler Ag Elektromagnetische Betätigungseinrichtung für ein Gaswechselventil in einer Brennkraftmaschine
DE19961609A1 (de) * 1999-12-21 2001-07-12 Daimler Chrysler Ag Verfahren zur Herstellung von Aktoren zur elektromagnetischen Betätigung von eine Ventilfeder aufweisenden Ventilen
DE19961608A1 (de) * 1999-12-21 2001-07-26 Daimler Chrysler Ag Aktor zur elektromagnetischen Ventilsteuerung
JP2001234743A (ja) * 2000-02-24 2001-08-31 Mikuni Corp 内燃機関の排気制御装置
DE10008958A1 (de) * 2000-02-25 2001-08-30 Daimler Chrysler Ag Verfahren zum Verbinden einer Ankerplatte mit mindestens einem Stößel eines Aktors zur elektromagnetischen Ventilsteuerung
JP2003077722A (ja) * 2001-08-31 2003-03-14 Mitsubishi Electric Corp 積層コアの形成方法および電磁式バルブ駆動装置
JP4110920B2 (ja) * 2002-10-25 2008-07-02 トヨタ自動車株式会社 電磁駆動弁装置
DE10321017A1 (de) * 2003-05-10 2004-12-02 Bayerische Motoren Werke Ag Hubaktuator für Verbrennungsmotoren mit elektrischem Ventiltrieb
DE102007028600B4 (de) 2007-06-19 2011-06-22 ETO MAGNETIC GmbH, 78333 Elektromagnetische Stellvorrichtung

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1474842A (en) * 1921-11-14 1923-11-20 Louis J Misuraca Internal-combustion engine
GB1391955A (en) * 1972-07-12 1975-04-23 British Leyland Austin Morris Actuating internal combustion engine poppet valves
DE3513107A1 (de) 1985-04-12 1986-10-16 Fleck, Andreas, 2000 Hamburg Elektromagnetisch arbeitende stelleinrichtung
DE3826978A1 (de) * 1988-08-09 1990-02-15 Meyer Hans Wilhelm Elektromagnetisch betaetigbare stellvorrichtung
DE3920976A1 (de) 1989-06-27 1991-01-03 Fev Motorentech Gmbh & Co Kg Elektromagnetisch arbeitende stelleinrichtung
DE4004876A1 (de) * 1990-02-16 1991-09-26 Ulrich Karrer Elektrisch betaetigte ventilsteuerung fuer periodisch betriebene ventile fuer kraftmaschinen
DE4225329A1 (de) * 1992-07-31 1993-02-18 Dreyer Dietmar Ventilansteuerungseinrichtung fuer den einsatz in verbrennungsmotoren

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10202476A1 (de) * 2002-01-23 2003-08-07 Tyco Electronics Belgium Ec Nv Elektromagnetische Spule mit Rechteckform
DE10202476B4 (de) * 2002-01-23 2005-09-29 Tyco Electronics Belgium Ec N.V. Elektromagnetische Spule mit Rechteckform

Also Published As

Publication number Publication date
JPH09256826A (ja) 1997-09-30
ES2151690T3 (es) 2001-01-01
DE59702391D1 (de) 2000-11-02
EP0796981A1 (de) 1997-09-24
DE19611547A1 (de) 1997-09-25

Similar Documents

Publication Publication Date Title
EP0796981B1 (de) Elektromagnetische Betätigungsvorrichtung für Brennkraftmaschinen-Hubventile
DE19825728C2 (de) Elektromagnetischer Aktuator
DE3334159C2 (de)
EP0970295B1 (de) Elektromagnetischer antrieb
DE19714496B4 (de) Elektromagnetische Betätigungsvorrichtung für ein Brennkraftmaschinen-Hubventil
EP1179121B1 (de) Elektromagnetischer mehrfachstellantrieb
DE10053596A1 (de) Elektromagnetischer Aktuator zur Betätigung eines Stellgliedes
DE19751609B4 (de) Schmalbauender elektromagnetischer Aktuator
DE60200819T2 (de) Ventilbetätigungsvorrichtung einer Brennkraftmaschine
EP0748416B1 (de) Elektromagnetische Stellvorrichtung eines Gaswechselventils an einer Kolbenbrennkraftmaschine
DE19719299C1 (de) Betätigungseinrichtung für Gaswechselventile einer Brennkraftmaschine mit elektromagnetischen Aktuatoren
DE19922422C2 (de) Elektromagnetische Stellantriebe
EP1181443A2 (de) Elektromagnetisches einspritzventil zur steuerung einer in eine verbrennungskraftmaschine einzuspeisenden kraftstoffmenge
WO1998042958A1 (de) Elektromagnetische stellvorrichtung
DE102011012020A1 (de) Nockenwelle mit Nockenwellenversteller
WO2000070197A1 (de) Elektromechanischer stellantrieb
DE19922424A1 (de) Elektromagnetischer Stellantrieb
DE19852287A1 (de) Elektromagnetischer Aktuator
DE19838101A1 (de) Elektromagnetischer Aktuator zur Betätigung eines Gaswechselventils einer Brennkraftmaschine
DE19931052C2 (de) Elektromagnetischer Stellantrieb
DE3226456A1 (de) Elektromagnetischer stellantrieb, insbesondere fuer abgasrueckfuehrventile an kraftfahrzeugmotoren
DE202004011676U1 (de) Elektromagnetische Linear-Stelleinrichtung
DE19925355A1 (de) Vorrichtung zum Betätigen eines Gaswechselventils mit einem Aktuator
EP1479880A2 (de) Elektrischer Ventiltrieb mit Elektro- und Permanentmagneten
DE19821550C1 (de) Zylinderkopf

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

17P Request for examination filed

Effective date: 19971016

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 20000306

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20001002

REF Corresponds to:

Ref document number: 59702391

Country of ref document: DE

Date of ref document: 20001102

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN P. & C. S.N.C.

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2151690

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20040127

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040205

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040227

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040331

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050210

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050901

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051031

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20051031

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20050211