EP0792944B1 - Acier utilisable notamment pour la fabrication de moules pour injection de matière plastique - Google Patents

Acier utilisable notamment pour la fabrication de moules pour injection de matière plastique Download PDF

Info

Publication number
EP0792944B1
EP0792944B1 EP97400354A EP97400354A EP0792944B1 EP 0792944 B1 EP0792944 B1 EP 0792944B1 EP 97400354 A EP97400354 A EP 97400354A EP 97400354 A EP97400354 A EP 97400354A EP 0792944 B1 EP0792944 B1 EP 0792944B1
Authority
EP
European Patent Office
Prior art keywords
steel
kth
steel according
chemical composition
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97400354A
Other languages
German (de)
English (en)
Other versions
EP0792944A1 (fr
Inventor
Jean Beguinot
Frédéric Chenou
Gilbert Primon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industeel France SAS
Original Assignee
Industeel France SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industeel France SAS filed Critical Industeel France SAS
Publication of EP0792944A1 publication Critical patent/EP0792944A1/fr
Application granted granted Critical
Publication of EP0792944B1 publication Critical patent/EP0792944B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper

Definitions

  • the present invention relates to structural hardening steel usable, in particular, for the manufacture of molds for material injection plastic.
  • the molds for plastic injection are made up assemblies of parts machined from steel blocks so as to form a imprint having the form of the objects to be produced by molding.
  • the objects are mass-molded and successive moldings cause surface wear of the imprint.
  • the molds are out of order and must be replaced or repaired.
  • Repair when it is possible, consists of reloading by welding followed by machining and polishing or chemical blasting of the surface of the impression. So that the repair by welding is possible, it is necessary, in particular, that the metal brought by welding and that the areas affected by the welding heat in the metal base have satisfactory properties.
  • the ability to repair by welding is obtained, in particular, by using a steel with structural hardening treated by quenching and tempering.
  • Structural hardening is obtained by adding to steel from 2% to 5% nickel and at least one element selected from aluminum and copper, in contents between 0.5% and 3%.
  • the combined presence of nickel and copper or aluminum provides quenching and tempering bainitic or martensitic structure, the tensile strength of which is around 1400 MPa and the hardness of around 400 HB.
  • the hardening resulting from precipitation during the income of intermetallic compounds, the content of carbon may be limited. This limited carbon content makes it possible to repair the welded parts without the hardness of heat affected areas significantly exceeds 400 HB.
  • the chemical composition of steel includes, by weight, less than 0.25% carbon, less than 1% silicon, 0.9% to 2% manganese, 2% to 5% nickel, 0% to 18% chromium, 0.05% to 1% molybdenum, 0% to 0.2% sulfur, possibly titanium, niobium or vanadium in contents of less than 0.1%, possibly boron in contents of less than 0.005%, the remainder being iron and impurities resulting from processing.
  • the chromium content is chosen to be greater than 8%.
  • corrosion resistance is of no particular interest, and the chromium content remains below 2%.
  • the object of the present invention is to remedy these drawbacks by proposing a steel, usable for the manufacture of molds for injection of plastic material, having a tensile strength Rm of the order of 1400 MPa, a hardness greater than 350 HB, and preferably greater than 380 HB, a good weldability, satisfactory machinability even for very thick materials important and making it possible to increase the productivity of the installations of injection molding by shortening the cooling times after injection.
  • composition of the steel can advantageously be chosen in such a way that: 3.8 x C + 3.3 x Mn + 2.4 x Ni + ⁇ x Cr + 1.4 x (Mo + W / 2) ⁇ 8
  • the chemical composition of the steel must be such that the manganese content is less than or equal to 0.7%, and, better still, less than or equal to 0.5%; Similarly, it is preferable that the silicon content either less than or equal to 0.1%.
  • the chromium content should preferably be greater than or equal to 8%.
  • the content of chromium should preferably be less than or equal to 5%, and more preferably less than or equal to 2%, and it is preferable that the steel contains boron.
  • the invention also relates to a steel block according to the invention of characteristic dimension d greater than or equal to 20 mm, which has, at all points, either a martensitic, bainitic or martensito-bainitic structure, tempered, hardness greater than 350 HB.
  • log (d) represents the decimal logarithm of the dimension characteristic d expressed in mm.
  • the nitrogen content it is not always possible or desirable to limit the nitrogen content to less than 0.003%, in particular because it is expensive to remove the nitrogen supplied by the preparation.
  • the nitrogen content cannot be limited to less than 0.003%, it is preferable to fix the nitrogen in the form of fine titanium or zirconium nitrides.
  • the contents of titanium, zirconium and nitrogen are such that: 0.00003 ⁇ (N) x (Ti + Zr / 2) ⁇ 0.0016 and that the titanium or zirconium are introduced into the steel by progressive dissolution of an oxidized phase of titanium or zirconium, for example by effecting the addition of titanium or zirconium in non-deoxidized steel, then by adding a strong deoxidizer such as aluminum.
  • the number of titanium or zirconium nitrides of size greater than 0.1 ⁇ m, counted over an area of 1 mm 2 of a micrographic section of solid steel is lower 4 times the sum of the total content of titanium precipitated in the form of nitrides and half the total content of zirconium precipitated in the form of nitrides, expressed in thousandths of%.
  • the chemical composition of steel must, moreover, satisfy two conditions relating on the one hand to the quenchability and on the other hand to the conductivity thermal.
  • the parts constituting the material injection molds plastic must be machined in blocks first tempered for their give a structure either entirely martensitic or entirely bainitic, either mixed martensito-bainitic, but, in any event, free of ferrite and perlite, then returned to harden them by precipitation of intermetallic compounds. Quenching can be done, for example, by water, oil or air cooling after austenitization, preferably, between 850 ° C and 1050 ° C, or directly in the hot forging or rolling. Tempering generally takes place between 500 ° C and 550 ° C.
  • the blocks are, for example, rolled sheets or large forged plates whose thickness is greater than 20 mm and can range up to 800 mm, or even 1000 mm. Under these conditions, for the structure to be fully hardened, including the core of the blocks, the hardenability of the steel must be sufficient.
  • the constant Bt which represents the minimum quenchability to be obtained must minus be equal to 3.1 and, for large thicknesses, at least equal to 4.1.
  • each block has a characteristic dimension d which determines the cooling rate at the core for a determined cooling mode.
  • log (d) represents the decimal logarithm of the dimension characteristic d expressed in mm. This characteristic dimension is, by for example, the thickness of a sheet or the diameter of a round bar.
  • the inventors have found that it is possible to minimize the thermal conductivity of steel by choosing its chemical composition appropriately. This has the advantage of making it possible to increase the productivity of the plastic injection operations by shortening the cooling phase which follows the injection phase.
  • the composition must be such that: 3.8 x C + 3.3 x Mn + 2.4 x Ni + ⁇ x Cr + 1.4 x (Mo + W / 2) ⁇ 8
  • 1.4 if the chromium content is less than 8%
  • 0 if the chromium content is greater than or equal to 8%.
  • Kth is a dimensionless index varying in the same direction as the thermal resistivity of steel, i.e. inversely proportional to the thermal conductivity.
  • the main difficulty consists in reconciling a sufficient hardenability to obtain the core of thick pieces desired mechanical characteristics, low manganese content for limit, or even avoid, the presence of segregated bands, and a resistivity the lowest possible thermal or, which is equivalent, a conductivity as high as possible (for steels which must resist corrosion, because of the high chromium content, the quenchability problem does not arise not).
  • Kth / Tr is less than or equal to 3, preferably less than or equal to 2.8, and better still less than or equal to 2.5.
  • mold parts were made for plastic injection, by machining sheets of thickness from 80 to 500 mm marked A, B, C, D, E, F, F1, G, H, I, J and J1.
  • the sheets marked A to F1 were in accordance with the invention, and, for comparison, the sheets marked G to J1 were according to the prior art.
  • the chemical compositions, in thousandths of% by weight are indicated in Table 1.
  • the thicknesses d (in mm), the heat treatments, the thermal resistivity indices Kth, the thermal conductivity values Cth (in W / m / ° K) and the hardenability indices Tr (K and Tr are dimensionless indices) are shown in Table 2.
  • the results reported in Table 2 show that the steels according to the invention have thermal conductivities of 10% (E compared to H) to 60% (F compared to J) stronger than those of steels according to the prior art. These higher thermal conductivities make it possible to significantly increase the productivity of the molds by reducing the duration of the cooling phases during the molding cycles.
  • the steel F1 according to the invention has a thermal conductivity 30% higher than that of the steels J and J1 according to the prior art.
  • the manganese content of the steel F1 is very significantly lower than that of these steels, which is very favorable for the reduction of segregation.
  • the steel according to the invention is, in general, produced in the form of sheets rolled or in the form of bars or wide forged plates but it can, also, be manufactured in any other form, and, in particular, in the form of thread.
  • the repair by welding must, preferably, be made with welding wires of composition close to the composition of the mold mass.
  • the steel according to the invention is also manufactured in the form of welding wire.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Heat Treatment Of Steel (AREA)
  • Nonmetallic Welding Materials (AREA)
  • Heat Treatment Of Articles (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Description

La présente invention concerne un acier à durcissement structural utilisable, notamment, pour la fabrication de moules pour injection de matière plastique.
Les moules pour injection de matières plastiques sont constitués d'assemblages de pièces usinées dans des blocs d'acier de façon à former une empreinte ayant la forme des objets à fabriquer par moulage. Les objets sont moulés en série et les moulages successifs engendrent une usure de la surface de l'empreinte. Après la fabrication d'un certain nombre d'objets, les moules sont hors d'usage et doivent être remplacés ou réparés. La réparation, lorsqu'elle est possible, consiste en un rechargement par soudure suivi d'un usinage et d'un polissage ou d'un grenage chimique de la surface de l'empreinte. Pour que la réparation par soudure soit possible, il faut, notamment, que le métal apporté par soudure et que les zones affectées par la chaleur de soudage dans le métal de base aient des propriétés satisfaisantes. L'aptitude à la réparation par soudage est obtenue, notamment, en utilisant un acier à durcissement structural traités par trempe et revenu. Le durcissement structural est obtenu en ajoutant à l'acier de 2% à 5% de nickel et au moins un élément pris parmi l'aluminium et le cuivre, en des teneurs comprises entre 0,5% et 3%. La présence combinée de nickel et de cuivre ou d'aluminium permet d'obtenir par trempe et revenu une structure bainitique ou martensitique, dont la résistance à la traction est de l'ordre de 1400 MPa et la dureté d'environ 400 HB. Le durcissement résultant de la précipitation au cours du revenu de composés intermétalliques, la teneur en carbone peut être limitée. Cette teneur en carbone limitée permet de réparer les pièces par soudure sans que la dureté des zones affectées par la chaleur dépasse sensiblement 400 HB.
Outre le nickel, le cuivre et l'aluminium, la composition chimique de l'acier comprend, en poids, moins de 0,25% de carbone, moins de 1% de silicium, de 0,9% à 2% de manganèse, de 2% à 5% de nickel, de 0% à 18% de chrome, de 0,05% à 1% de molybdène, de 0% à 0,2% de soufre, éventuellement du titane, du niobium ou du vanadium en des teneurs inférieures à 0,1%, éventuellement du bore en des teneurs inférieures à 0,005%, le reste étant du fer et des impuretés résultant de l'élaboration.
Pour certaines applications, les moules ont besoin de résister à la corrosion, et la teneur en chrome est choisie supérieure à 8%. Pour d'autres applications, la résistance à la corrosion ne présente pas d'intérêt particulier, et la teneur en chrome reste inférieure à 2%.
L'utilisation de moules ainsi fabriqués, qu'ils aient ou non besoin de résister à la corrosion, présente l'inconvénient de limiter la productivité des installations de moulage par injection de matières plastiques. En effet, une opération de moulage comporte plusieurs phases successives, dont une phase de solidification de la matière plastique par refroidissement qui est relativement longue.
De plus, la fabrication des moules qui se fait notamment par usinage de blocs d'acier dont l'épaisseur peut atteindre 800 mm, voire 1000 mm, peut présenter des difficultés résultant de la présence de bandes ségrégées. Ces difficultés sont, d'ailleurs, d'autant plus importantes que les blocs d'acier sont épais.
Le but de la présente invention est de remédier à ces inconvénients en proposant un acier, utilisable pour la fabrication de moules pour injection de matière plastique, ayant une résistance à la traction Rm de l'ordre de 1400 MPa, une dureté supérieure à 350 HB, et de préférence supérieure à 380 HB, une bonne soudabilité, une usinabilité satisfaisante même pour des épaisseurs très importantes et permettant d'augmenter la productivité des installations de moulage par injection en raccourcissant les durées de refroidissement après injection.
A cet effet, l'invention a pour objet un acier, utilisable notamment pour la fabrication de moules pour injection de matières plastiques, dont la composition chimique comprend, en poids: 0,03% ≤ C ≤ 0,25% 0% ≤ Si ≤ 0,2% 0% ≤ Mn ≤ 0,9% 1,5% ≤ Ni ≤ 5% 0% ≤ Cr ≤ 18% 0,05% ≤ Mo + W/2 ≤ 1% 0% ≤ S ≤ 0,3%
  • au moins un élément pris parmi Al et Cu en des teneurs comprises chacune entre 0,5% et 3%,
  • éventuellement de 0,0005% à 0,015% de bore,
  • éventuellement au moins un élément pris parmi V, Nb, Zr, Ta et Ti, en des teneurs comprises, chacune, entre 0% et 0,3%,
  • éventuellement au moins un élément pris parmi Pb, Se, Te et Bi, en des teneurs comprises chacune entre 0% et 0,3%,
  • de préférence moins de 0,003 % d'azote,
le reste étant du fer et des impuretés résultant de l'élaboration ; la composition chimique satisfaisant, en outre et simultanément, les relations : Kth = 3,8 x C + 9,8 x Si + 3,3 x Mn + 2,4 x Ni +α x Cr + 1,4 x (Mo + W/2) ≤ At dans cette formule, α = 1,4 si Cr < 8%, et α = 0 si Cr ≥ 8% ; et At = 15, de préférence At = 13, et mieux encore At = 11 ;
et : Tr = 3,8 x C + 1,07 x Mn + 0,7 x Ni + 0,57 x Cr + 1,58 x (Mo + W/2) + kB ≥ Bt kB = 0,8 lorsque l'acier contient entre 0,0005 % et 0,015 % de bore, et kB = 0 si non ; Bt = 3,1, et de préférence Bt = 4,1 ;
et : Kth/Tr ≤ Ct avec Ct = 3 , de préférence Ct = 2,8 , et mieux encore Ct = 2,5 .
La composition de l'acier peut être avantageusement choisie de telle façon que : 3,8 x C + 3,3 x Mn + 2,4 x Ni +α x Cr + 1,4 x (Mo + W/2) ≤ 8
De préférence, la composition chimique de l'acier doit être telle que la teneur en manganèse soit inférieure ou égale à 0,7%, et, mieux encore, inférieure ou égale à 0,5% ; de même, il est préférable que la teneur en silicium soit inférieure ou égale à 0,1%.
Lorsque l'acier est destiné à fabriquer des moules devant résister à la corrosion, la teneur en chrome doit, de préférence, être supérieure ou égale à 8%. Lorsque la résistance à la corrosion n'est pas nécessaire, la teneur en chrome doit, de préférence, être inférieure ou égale à 5%, et, mieux encore, inférieure ou égale à 2%, et il est préférable que l'acier contienne du bore.
L'invention concerne également un bloc en acier selon l'invention de dimension caractéristique d supérieure ou égale à 20 mm, qui a, en tous point, une structure soit martensitique, soit bainitique, soit martensito-bainitique, revenue, de dureté supérieure à 350 HB.
De préférence, la composition chimique de l'acier constituant le bloc est telle que : 3,8 x C + 1,07 x Mn + 0,7 x Ni + 0,57 x Cr+1,58 x (Mo + W/2) + kB ≥ f (d) kB = 0,8 lorsque l'acier contient entre 0,0005 % et 0,015 % de bore, et kB = 0 si non,
avec : f (d) = 2,05 + 1,04 x log(d) et de préférence : f (d) = - 0,8 + 1,9 x log(d) dans ce cas, le bloc d'acier doit être trempé à l'eau.
L'expression "log(d)" représente le logarithme décimal de la dimension caractéristique d exprimée en mm.
L'invention va maintenant être décrite plus en détail, mais de façon non limitative, notamment à l'aide des exemples qui suivent.
L'acier selon l'invention est un acier à durcissement structural, dont la composition chimique comprend, en poids :
  • plus de 0,03% de carbone pour assurer une résistance suffisante à l'adoucissement au revenu, mais moins de 0,25% pour obtenir une bonne soudabilité caractérisée par une dureté des ZAT de soudage ne dépassant pas 430 HB ;
  • de 0% à 0,2%, et de préférence moins de 0,1%, de silicium ; cet élément habituellement nécessaire à la désoxydation de l'acier au cours de l'élaboration ne doit pas dépasser 0,2% afin d'éviter une réduction excessive de la conductibilité thermique de l'acier ;
  • de 0% à 0,9% de manganèse pour, d'une part, fixer le soufre, et d'autre part, conférer à l'acier une trempabilité suffisante ; la teneur est limitée à 0,9%, et de préférence à 0,7%, et, mieux encore, à 0,5%, pour d'une part contribuer à obtenir une conductibilité thermique la plus grande possible, et d'autre part, et surtout, éviter la formation de bandes ségrégées très défavorables à l'usinabilité ;
  • de 1,5% à 5% de nickel pour, lors du revenu, former avec l'aluminium ou le cuivre des précipitations durcissantes ; compte tenu du niveau de dureté visé après revenu, une addition d'au moins 1,5% de nickel est souhaitable et il n'est pas nécessaire de dépasser 5%, car, au delà, l'effet d'une addition supplémentaire de nickel n'est pas significatif et cet élément est très coûteux ;
  • de 0% à 18% de chrome, et, de préférence, de 8% à 18% lorsque une résistance à la corrosion est nécessaire ; lorsque la résistance à la corrosion n'est pas utile, la teneur en chrome est, de préférence, inférieure à 5%, et, mieux encore, inférieure à 2% ;
  • de 0,05% à 1% de molybdène, notamment pour renforcer la résistance à l'adoucissement au revenu et soutenir, ainsi, le durcissement obtenu par les précipités intermétalliques de nickel, cuivre et aluminium ; les teneurs maximales sont fixées pour ne pas nuire à la conductibilité thermique et ne pas trop augmenter le coût de l'acier ; le molybdène peut être remplacé totalement ou partiellement par du tungstène à raison de 2% de tungstène pour 1% de molybdène, de ce fait, pour ces deux éléments, l'analyse est définie par la valeur Mo + W/2 ;
  • éventuellement de 0,0005% à 0,015% de bore pour augmenter la trempabilité sans détériorer la conductibilité thermique de l'acier; le chrome étant un élément qui augmente sensiblement la trempabilité de l'acier, l'addition de bore est particulièrement souhaitable lorsque la teneur en chrome est inférieure ou égale à 2% ;
  • de 0% à 0,3% de soufre; cet élément améliore l'usinabilité, mais en trop forte teneur il nuit à la qualité des surfaces actives des moules, lesquelles surfaces sont, généralement, soit polies, soit grenées ;
  • au moins un élément pris parmi l'aluminium et le cuivre en des teneurs comprises entre 0,5% et 3% chacune, pour obtenir un effet de durcissement structural par précipitation de composés intermétalliques au cours du revenu, ce qui permet d'obtenir à la fois une grande dureté et une bonne soudabilité ;
  • éventuellement, au moins un élément pris parmi le vanadium, le niobium, le zirconium, le tantale et le titane, en des teneurs comprises chacune entre 0% et 0,3%, et de préférence supérieure à 0,01% chacune, en particulier pour rendre plus fiable l'effet du bore, notamment lorsque l'acier est trempé dans la chaude de forgeage ou de laminage ;
  • éventuellement au moins un élément pris parmi le plomb, le sélénium, le tellure et le bismuth, en des teneurs comprises chacune entre 0,1% et 0,3%, afin d'améliorer l'usinabilité sans trop détériorer l'aptitude au polissage ou au grenage chimique ;
  • de préférence, moins de 0,003 % d'azote pour éviter la formation de gros nitrures d'aluminium défavorables à l'obtention d'une bonne aptitude au polissage ;
le reste étant du fer et des impuretés résultant de l'élaboration.
Il n'est pas toujours possible ou souhaitable de limiter la teneur en azote à moins de 0,003 %, en particulier parce qu'il est coûteux d'enlever l'azote apportée par l'élaboration. Lorsque la teneur en azote ne peut pas être limitée à moins de 0,003 %, il est préférable de fixer l'azote sous forme de fins nitrures de titane ou de zirconium. Pour cela, il est souhaitable que les teneurs en titane, zirconium et azote (élément toujours présent, au moins à titre d'impureté en des teneurs comprises entre quelques ppm et quelques centaines de ppm) soient telles que : 0,00003 ≤ (N)x(Ti + Zr/2) ≤ 0,0016 et que le titane ou le zirconium soient introduits dans l'acier par dissolution progressive d'une phase oxydée de titane ou de zirconium, par exemple en effectuant l'ajout de titane ou de zirconium dans de l'acier non désoxydé, puis en ajoutant un désoxydant fort tel que l'aluminium. Ces conditions permettent d'obtenir une dispersion très fine de nitrures de titane ou de zirconium favorable à la résilience, à l'usinabilité, et à la polissabilité. Lorsque le titane ou le zirconium sont introduits de cette façon préférentielle, le nombre de nitrures de titane ou de zirconium de taille supérieure à 0,1 µm, comptés sur une aire de 1mm2 d'une coupe micrographique d'acier solide, est inférieure à 4 fois la somme de la teneur totale en titane précipité sous forme de nitrures et de la moitié de la teneur totale en zirconium précipité sous forme de nitrures, exprimées en millièmes de %.
La composition chimique de l'acier doit, en outre, satisfaire deux conditions relatives d'une part à la trempabilité et d'autre part à la conductibilité thermique.
Afin d'obtenir des caractéristiques de résistance mécanique et de dureté satisfaisantes, résistance à la traction d'environ 1400 MPa et dureté de l'ordre de 400 HB (c'est à dire au moins supérieure à 350 HB, et de préférence supérieure à 380 HB), les pièces constituant les moules d'injection de matière plastique doivent être usinées dans des blocs d'abord trempés pour leur conférer une structure soit entièrement martensitique, soit entièrement bainitique, soit mixte martensito-bainitique, mais, en tout état de cause, exempte de ferrite et de perlite, puis revenus pour les durcir par précipitation de composés intermétalliques. La trempe peut être faite, par exemple, par refroidissement à l'eau, à l'huile ou à l'air après austénitisation, de préférence, entre 850°C et 1050°C, ou directement dans la chaude de forge ou de laminage. Le revenu s'effectue, en général, entre 500°C et 550°C.
Les blocs sont, par exemple, des tôles laminées ou des larges plats forgés dont l'épaisseur est supérieure à 20 mm et peut aller jusqu'à 800 mm, voire 1000 mm. Dans ces conditions, pour que la structure soit entièrement trempée, y compris à coeur des blocs, la trempabilité de l'acier doit être suffisante. Pour cela, la composition chimique de l'acier doit satisfaire la relation suivante : Tr = 3,8 x C + 1,07 x Mn + 0,7 x Ni + 0,57 x Cr +1,58 x (Mo + W/2)+ kB ≥ Bt kB = 0,8 lorsque l'acier contient entre 0,0005 %et 0,015 % de bore, et kB = 0 si non.
La constante Bt qui représente la trempabilité minimale à obtenir doit au moins être égale à 3,1 et, pour les épaisseurs importantes, au moins égale à 4,1.
Plus précisément, chaque bloc a une dimension caractéristique d qui détermine la vitesse de refroidissement à coeur pour un mode de refroidissement déterminé. Pour obtenir la structure souhaitée, la trempabilité doit être adaptée à la dimension caractéristique d, et pour cela, la composition chimique de l'acier doit être telle que : 3,8 x C + 1,07 x Mn + 0,7 x Ni + 0,57 x Cr +1,58 x (Mo + W/2) + kB ≥ f(d) avec: f (d) = 2,05 + 1,04 x log(d) lorsque le bloc est trempé par refroidissement à l'air,
et : f (d) = - 0,8 + 1,9 x log(d) lorsque le bloc d'acier est trempé à l'eau, ce qui est préférable.
L'expression "log(d)" représente le logarithme décimal de la dimension caractéristique d exprimée en mm. Cette dimension caractéristique est, par exemple, l'épaisseur d'une tôle ou le diamètre d'une barre ronde.
Par ailleurs, les inventeurs ont constaté qu'il était possible de minimiser la conductibilité thermique de l'acier en choisissant convenablement sa composition chimique. Ceci a l'avantage de permettre d'augmenter la productivité des opération d'injection de matière plastique en raccourcissant la phase de refroidissement qui suit la phase d'injection. Pour cela, la composition chimique de l'acier doit être telle que : Kth = 3,8 x C + 9,8 x Si + 3,3 x Mn + 2,4 x Ni +α x Cr + 1,4 x (Mo + W/2) soit le plus petit possible, et, au moins, que Kth soit inférieur à 15, de préférence inférieur à 13, et mieux encore inférieur à 11.
De préférence, la composition doit être telle que : 3,8 x C + 3,3 x Mn + 2,4 x Ni +α x Cr + 1,4 x (Mo + W/2) ≤ 8
Dans ces expressions, α = 1,4 si la teneur en chrome est inférieure à 8%, et α = 0 si la teneur en chrome est supérieure ou égale à 8%. En effet, lorsque la teneur en chrome est supérieure ou égale à 8%, celle ci est ajustée essentiellement en fonction de considérations relatives à la résistance à la corrosion. Dans le cas contraire, cette teneur peut être ajustée pour maximiser la conductivité thermique.
Kth est un indice sans dimension variant dans le même sens que la résistivité thermique de l'acier, c'est à dire inversement proportionnel à la conductivité thermique.
En fait, pour les aciers n'ayant pas besoin de résister à la corrosion (Cr < 8 % ou même Cr ≤ 5 %) la difficulté essentielle consiste à concilier une trempabilité suffisante pour obtenir à coeur de pièces épaisses les caractéristiques mécaniques souhaitées, une faible teneur en manganèse pour limiter, voire éviter, la présence de bandes ségrégées, et une résistivité thermique la plus faible possible ou, ce qui est équivalent, une conductibilité thermique la plus grande possible (pour les aciers devant résister à la corrosion, du fait de la forte teneur en chrome, le problème de la trempabilité ne se pose pas). Les inventeurs ont constaté que pour obtenir cet optimum, il est souhaitable et possible d'ajouter une condition supplémentaire relative au rapport Kth/Tr, en imposant que Kth/Tr soit inférieur ou égal à 3, de préférence inférieur ou égal à 2,8, et mieux encore inférieur ou égal à 2,5.
Une solution particulièrement intéressante correspond à un acier dont la composition chimique comprend, en poids : 0,1% ≤ C ≤ 0,16% 0% ≤ Si ≤ 0,15% 0,6% ≤ Mn ≤ 0,9% 2,8% ≤ Ni ≤ 3,3% 0% ≤ Cr ≤ 0,8% 0,2% ≤ Mo + W/2 ≤ 0,35% 0,9% ≤ Al ≤ 1,5% 0,9% ≤ Cu ≤ 1,5% 0,0005% ≤ B ≤ 0,015% 0% ≤ S ≤ 0,3%
  • éventuellement au moins un élément pris parmi V, Nb, Zr, Ta et Ti, en des teneurs comprises chacune entre 0% et 0,3%,
  • éventuellement au moins un élément pris parmi Pb, Se, Te et Bi, en des teneurs comprises chacune entre 0% et 0,3%,
le reste étant du fer et des impuretés résultant de l'élaboration.
Avec l'analyse moyenne, cet acier permet d'obtenir un coefficient de résistivité thermique Kth = 11,75, une trempabilité Tr = 4,76, un rapport Kth/Tr = 2,5, et une dureté supérieure à 350 HB , quasiment uniforme dans toute la masse de blocs d'épaisseur pouvant atteindre 800 mm trempés à l'air.
A titre de premier exemple, on a fabriqué des pièces de moule pour injection de matière plastique, par usinage de tôles d'épaisseur de 80 à 500 mm repérées A, B, C, D, E, F, F1, G, H, I, J et J1. Les tôles repérées A à F1 étaient conforme à l'invention, et, à titre de comparaison, les tôles repérées G à J1 étaient selon l'art antérieur. Les compositions chimiques, en millièmes de % en poids sont indiquées au tableau 1.
Toutes les tôles ont été laminées à 1100°C avant d'être soumises à un traitement thermique pour obtenir des duretés toutes comprises entre 385 HB et 420 HB.
Les épaisseurs d (en mm), les traitements thermiques, les indices de résistivité thermique Kth, les valeurs de conductibilité thermique Cth (en W/m/°K) et les indices de trempabilité Tr (K et Tr sont des indices sans dimension) sont indiqués au tableau 2.
C Si Mn Ni Cr Mo Al Cu Nb V B
A 115 45 500 3100 150 310 1100 1050 3
B 105 57 750 3040 160 295 1140 1050 30 3
C 115 85 710 3110 140 305 1110 1600 3
D 130 50 300 2750 130 285 1090 1070 3
E 120 130 850 3020 150 305 1110 1075 55 3
F 100 30 200 2500 100 250 1120 1080 3
F1 130 85 850 2800 1200 300 1120 1080 3
G 130 350 1150 3050 200 290 1100 1060
H 125 65 1520 3100 190 320 1130 1020
I 145 85 1090 3200 210 305 1120 1050 3
J 140 490 1600 3100 850 340 1050 1450
J1 130 350 1500 3000 1000 300 1050 1450
Les résultats reportés au tableau 2 montrent que les aciers selon l'invention ont des conductivités thermiques de 10% (E comparé à H) à 60% (F comparé à J) plus fortes que celles des aciers selon l'art antérieur. Ces conductivités thermiques plus fortes permettent d'augmenter significativement la productivité des moules en réduisant la durée des phases de refroidissement au cours des cycles de moulage. On peut également comparer les aciers F1 et I, J et J1 qui permettent tous les quatres de fabriquer des blocs de 900 mm d'épaisseur par refroidissement à l'air. L'acier F1 selon l'invention a une conductibilité thermique supérieure de 30 % à celle des aciers J et J1 conformes à l'art antérieur. De plus, la teneur en manganèse de l'acier F1 est très sensiblement plus faible que celle de ces aciers, ce qui est très favorable à la réduction des ségrégations. L'acier I conforme à l'art antérieur, bien qu'ayant une teneur en silicium faible, a une conductibilité thermique inférieure de plus de 10 % à celle de l'acier F1.
d austénitisation trempe revenu Kth Tr Cth Kth/Tr
A 80 950°C air 525°C-2h 10,6 4,5 43 2,3
B 130 chaude de laminage air 525°C-2h 11,4 4,7 40 2,4
C 500 950°C eau 525°C-3h 11,7 4,7 40 2,5
D 200 950°C eau 525°C-3h 9,2 4,1 45 2,2
E 150 950°C air 525°C-2h 12,4 4,8 39 2,6
F 100 950°C eau 525°C-2h 7,8 3,3 47 2,4
F1 900 ? 950°C air ? 525°C-2h 12,1 5,32 39 2,3
G 80 950°C air 525°C-2h 15,7 4,4 34 3,6
H 400 950°C eau 525°C-3h 14,3 4,9 36 2,9
I 130 950°C air 525°C-2h 13,4 5,3 35 2,5
J 150 950°C air 525°C-2h 19,7 5,4 29 3,6
J1 900 950°C air 525°C-2h 17,9 5,2 30 3,4
A titre de deuxième exemple, on a fabriqué des moules pour injection de matières plastiques, devant résister à la corrosion, avec l'acier M selon l'invention, et N conforme à l'art antérieur. Ces aciers ont été laminés sous forme de tôles d'épaisseur 150 mm, puis soumises à un traitement thermique par trempe air et revenu à 550°C pendant 2 heures. Les analyses chimiques, en millièmes de % en poids, sont indiquées au tableau 3, et les caractéristiques obtenues, au tableau 4.
C Si Mn Ni Cr Mo Al Cu Nb V B
M 40 50 300 3500 16000 600 2200 1550
N 50 450 1100 4100 16000 550 2100 1450
HB Kth Tr Cth
M 415 10,8 13,0 22
N 430 18,8 14,2 18
On constate un écart de conductibilité thermique de 20% en faveur de l'acier selon l'invention ce qui conduit aux mêmes avantages que ceux qui ont été indiqués précédemment.
L'acier selon l'invention est, en général, fabriqué sous forme de tôles laminées ou sous forme de barres ou de larges plats forgés mais il peut, également, être fabriqué sous toute autre forme, et, en particulier, sous forme de fil.
Pour que parties réparées par soudure aient les mêmes propriétés que la masse du moule, aussi bien la conductibilité thermique que les propriétés requises pour la surface de l'empreinte, la réparation par soudure doit, de préférence, être faite avec des fils de soudage de composition voisine de la composition de la masse du moule. Aussi, l'acier selon l'invention est également fabriqué sous forme de fil de soudage.

Claims (18)

  1. Acier, utilisable notamment pour la fabrication de moules pour injection de matières plastiques, caractérisé en ce que sa composition chimique comprend, en poids : 0,03% ≤ C ≤ 0,25% 0% ≤ Si ≤ 0,2% 0% ≤ Mn ≤ 0,9% 1,5% ≤ Ni ≤ 5% 0% ≤ Cr ≤ 18% 0,05% ≤ Mo + W/2 ≤ 1% 0% ≤ S ≤ 0,3%
    au moins un élément pris parmi Al et Cu en des teneurs comprises chacune entre 0,5% et 3%,
    éventuellement 0,0005% ≤ B ≤ 0,015%,
    éventuellement au moins un élément pris parmi V, Nb, Zr, Ta et Ti, en des teneurs comprises chacune entre 0% et 0,3%,
    éventuellement au moins un élément pris parmi Pb, Se, Te et Bi, en des teneurs comprises chacune entre 0% et 0,3%,
    le reste étant du fer et des impuretés résultant de l'élaboration, notamment de l'azote, la composition chimique satisfaisant, en outre, les relations: Kth = 3,8 x C + 9,8 x Si + 3,3 x Mn + 2,4 x Ni +α x Cr + 1,4 x (Mo + W/2) ≤ 15 avec α= 1,4 si Cr < 8%, et α = 0 si Cr ≥ 8%,
    et: Tr = 3,8 x C + 1,07 x Mn + 0,7 x Ni + 0,57 x Cr + 1,58 x (Mo + W/2) + kB ≥ 3,1 avec kB = 0,8 si la teneur en bore est comprise entre 0,0005% et 0,015%, et kB = 0 si non,
    et, si Cr ≤ 5 % : Kth/Tr ≤ 3 Kth est un indice sans dimension variant dans la même sense que la résistivité thermique de l'acier et Tr exprimant la trempabilité.
  2. Acier selon la revendication 1 caractérisé en ce que: Kth = 3,8 x C + 9,8 x Si + 3,3 x Mn + 2,4 x Ni +α x Cr + 1,4 x (Mo + W/2) ≤ 13
  3. Acier selon la revendication 2 caractérisé en ce que: Kth = 3,8 x C + 9,8 x Si + 3,3 x Mn + 2,4 x Ni +α x Cr + 1,4 x (Mo + W/2) ≤ 11
  4. Acier selon la revendication 1 caractérisé en ce que: 3,8 x C + 3,3 x Mn + 2,4 x Ni +α x Cr + 1,4 x (Mo + W/2) ≤ 8 avec α= 1,4 si Cr < 8%, et α = 0 si Cr ≥ 8%,
  5. Acier selon la revendication 1 caractérisé en ce que: Tr = 3,8 x C + 1,07 x Mn + 0,7 x Ni + 0,57 x Cr +1,58 x (Mo + W/2) + kB ≥ 4,1
  6. Acier selon la revendication 1 caractérisé en ce que: Kth/Tr ≤ 2,8
  7. Acier selon la revendication 6 caractérisé en ce que: Kth/Tr ≤ 2,5
  8. Acier selon la revendication 1 caractérisé en ce que sa composition chimique est telle que: Mn ≤ 0,7%
  9. Acier selon la revendication 8 caractérisé en ce que sa composition chimique est telle que: Mn < 0,5%
  10. Acier selon la revendication 1 caractérisé en ce que sa composition chimique est telle que: Si ≤ 0,1%
  11. Acier selon l'une quelconque des revendications 1à 10 caractérisé en ce que: Cr ≤ 5%
  12. Acier selon la revendication 11 caractérisé en ce que: Cr ≤ 2% 0,0005% ≤ B ≤ 0,005%
  13. Acier selon l'une quelconque des revendications 1 à 4 et 8 à 10 caractérisé en ce que: Cr ≥ 8%
  14. Acier selon la revendication 1 caractérisé en ce que la teneur en azote est inférieure à 0,003 %.
  15. Bloc en acier selon l'une quelconque des revendications 1 à 14 caractérisé en ce que il a une dimension caractéristique d supérieure ou égale à 20 mm, et en ce que, en tous points, il a une structure martensitique, bainitique ou martensito-bainitique revenue de dureté supérieure à 350 HB, ladite dimension détermine la vitesse de refroidissement à coeur pour un mode de refroidissement déterminé.
  16. Bloc selon la revendication 15 caractérisé en ce que la composition chimique de l'acier est telle que: 3,8 x C + 1,07 x Mn + 0,7 x Ni + 0,57 x Cr+1,58 x (Mo +W/2) + kB ≥ 2,05 + 1,04 x log(d), où log(d) est le logarithme décimal et d est exprimée en mm.
  17. Bloc selon la revendication 15 caractérisé en ce que la composition chimique de l'acier est telle que: 3,8 x C + 1,07 x Mn + 0,7 x Ni + 0,57 x Cr+1,58 x (Mo +W/2) + kB ≥ - 0,8 + 1,9 x log(d)
  18. Fil de soudage en acier selon l'une quelconque des revendications 1 à 14.
EP97400354A 1996-03-01 1997-02-18 Acier utilisable notamment pour la fabrication de moules pour injection de matière plastique Expired - Lifetime EP0792944B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9602595A FR2745587B1 (fr) 1996-03-01 1996-03-01 Acier utilisable notamment pour la fabrication de moules pour injection de matiere plastique
FR9602595 1996-03-01

Publications (2)

Publication Number Publication Date
EP0792944A1 EP0792944A1 (fr) 1997-09-03
EP0792944B1 true EP0792944B1 (fr) 2002-06-19

Family

ID=9489754

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97400354A Expired - Lifetime EP0792944B1 (fr) 1996-03-01 1997-02-18 Acier utilisable notamment pour la fabrication de moules pour injection de matière plastique

Country Status (13)

Country Link
US (1) US5785924A (fr)
EP (1) EP0792944B1 (fr)
JP (1) JPH1036938A (fr)
KR (1) KR100451474B1 (fr)
CN (1) CN1070241C (fr)
AT (1) ATE219526T1 (fr)
CA (1) CA2197532A1 (fr)
DE (1) DE69713415T2 (fr)
ES (1) ES2176632T3 (fr)
FR (1) FR2745587B1 (fr)
MX (1) MX9701554A (fr)
PT (1) PT792944E (fr)
TW (1) TW367372B (fr)

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW454040B (en) * 1997-12-19 2001-09-11 Exxon Production Research Co Ultra-high strength ausaged steels with excellent cryogenic temperature toughness
US6254698B1 (en) 1997-12-19 2001-07-03 Exxonmobile Upstream Research Company Ultra-high strength ausaged steels with excellent cryogenic temperature toughness and method of making thereof
KR100374980B1 (ko) 1999-02-12 2003-03-06 히다찌긴조꾸가부시끼가이사 우수한 기계가공성을 갖는 다이스용 고장력강
CN1097642C (zh) * 1999-07-30 2003-01-01 日立金属株式会社 焊接性、切削性和热处理性好的工具钢及其制成的金属模
US8808472B2 (en) * 2000-12-11 2014-08-19 Uddeholms Ab Steel alloy, holders and holder details for plastic moulding tools, and tough hardened blanks for holders and holder details
FR2823767B1 (fr) * 2001-04-24 2004-02-06 Pechiney Rhenalu Blocs metalliques de forte epaisseur destines a l'usinage
JP2005525509A (ja) 2001-11-27 2005-08-25 エクソンモービル アップストリーム リサーチ カンパニー 天然ガス車両のためのcng貯蔵及び送出システム
US6852175B2 (en) * 2001-11-27 2005-02-08 Exxonmobil Upstream Research Company High strength marine structures
FR2838137A1 (fr) * 2002-04-03 2003-10-10 Usinor Acier pour la fabrication de moules pour le moulage par injection de matieres plastiques ou pour la fabrication d'outils pour le travail des metaux
FR2838138B1 (fr) * 2002-04-03 2005-04-22 Usinor Acier pour la fabrication de moules d'injection de matiere plastique ou pour la fabrication de pieces pour le travail des metaux
JP4192579B2 (ja) * 2002-11-29 2008-12-10 住友金属工業株式会社 プラスチック成形金型用鋼
CN101270451B (zh) * 2007-03-19 2011-03-30 宝山钢铁股份有限公司 塑料模具钢及其制造方法
CN101311293B (zh) * 2007-05-24 2010-10-13 宝山钢铁股份有限公司 一种大型塑模模块及其制造方法
US8808471B2 (en) 2008-04-11 2014-08-19 Questek Innovations Llc Martensitic stainless steel strengthened by copper-nucleated nitride precipitates
US10351922B2 (en) 2008-04-11 2019-07-16 Questek Innovations Llc Surface hardenable stainless steels
JP5239578B2 (ja) * 2008-07-22 2013-07-17 大同特殊鋼株式会社 温度調節性に優れたプラスチック成形金型用鋼
JP5412851B2 (ja) * 2009-01-29 2014-02-12 大同特殊鋼株式会社 プラスチック成形金型用鋼およびプラスチック成形金型
CN102770566A (zh) * 2010-02-18 2012-11-07 日立金属株式会社 具有出色的钻孔加工性和减少的加工应变的模具用钢及其制备方法
JP5713195B2 (ja) * 2011-07-19 2015-05-07 大同特殊鋼株式会社 プラスチック成形金型用プリハードン鋼
KR101312822B1 (ko) * 2011-11-30 2013-09-27 주식회사 포스코 금형강 및 그의 제조방법
CN102560265A (zh) * 2012-03-06 2012-07-11 常熟市精工模具制造有限公司 1Cr17Ni2Mo玻璃模具
UA111115C2 (uk) 2012-04-02 2016-03-25 Ейкей Стіл Пропертіс, Інк. Рентабельна феритна нержавіюча сталь
CN103774047B (zh) * 2012-10-20 2017-03-01 大同特殊钢株式会社 具有优异的热导性、镜面抛光性和韧性的成型模具用钢
CN102877001A (zh) * 2012-10-29 2013-01-16 北京科技大学 一种低碳免回火全贝氏体组织塑料模具钢及制备方法
CN103266280B (zh) * 2013-06-06 2015-04-29 滁州迪蒙德模具制造有限公司 耐磨模具用钢及其生产方法
CN104562047A (zh) * 2013-10-11 2015-04-29 溧阳市永恒热处理有限公司 一种通过改变材料和热处理工艺提高颗粒机模具使用寿命的方法
CN104911484A (zh) * 2014-03-15 2015-09-16 紫旭盛业(昆山)金属科技有限公司 一种模具钢
CN104073748A (zh) * 2014-07-03 2014-10-01 滁州市艾德模具设备有限公司 一种耐腐蚀模具用钢材及其制备方法
CN114686759A (zh) * 2014-12-11 2022-07-01 山特维克知识产权股份有限公司 铁素体合金
CN104818438A (zh) * 2015-04-21 2015-08-05 苏州劲元油压机械有限公司 一种高强度顺序阀的铸造工艺
CN105543653A (zh) * 2015-12-22 2016-05-04 四川六合锻造股份有限公司 高强高韧高耐腐蚀塑料模具钢及生产方法
CN105463336A (zh) * 2015-12-22 2016-04-06 四川六合锻造股份有限公司 高强度高韧性高耐腐蚀高抛光性能塑料模具钢及生产方法
CN106191684A (zh) * 2016-07-01 2016-12-07 宜兴市凯诚模具有限公司 一种镍钛钨合金玻璃模具
US11091825B2 (en) * 2017-04-19 2021-08-17 Daido Steel Co., Ltd. Prehardened steel material, mold, and mold component
WO2018220412A1 (fr) * 2017-06-01 2018-12-06 Arcelormittal Procede de fabrication de pieces d'acier a haute resistance mecanique et ductilite amelioree, et pieces obtenues par ce procede
CN107246804B (zh) * 2017-07-11 2023-08-11 南京华电节能环保股份有限公司 一种防结焦焦炉烟道废气余热回收装置
CN107414342A (zh) * 2017-07-31 2017-12-01 安徽华众焊业有限公司 一种铜铝药芯焊丝
CN110195186B (zh) * 2019-05-14 2021-02-23 鞍钢股份有限公司 一种特厚热轧高合金热作模具钢及其制备方法
CN110029280B (zh) * 2019-05-21 2021-09-17 安徽协同创新设计研究院有限公司 一种推力杆支架铸钢件及其生产方法
CN112030073B (zh) * 2020-08-26 2022-01-14 东北大学 一种含铋易切削预硬型塑料模具钢及其制备方法
CN114058926A (zh) * 2021-10-11 2022-02-18 铜陵精达新技术开发有限公司 一种发电机导体线材成型模具用材料及其制备方法
CN114250422B (zh) * 2021-12-31 2022-09-30 安徽哈特三维科技有限公司 一种韧性好热导率高的模具钢及其制备方法
CN114293113B (zh) * 2021-12-31 2022-10-18 安徽哈特三维科技有限公司 一种slm用高热导率合金粉末、高热导率模具钢及其slm成型工艺
CN114737111A (zh) * 2022-03-24 2022-07-12 南京钢铁股份有限公司 一种5Ni用钢及其生产方法
CN116103567A (zh) * 2023-01-31 2023-05-12 河钢工业技术服务有限公司 高镜面耐蚀模具钢及3d打印用粉末和制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1196212A (en) * 1968-03-14 1970-06-24 Int Nickel Ltd Nickel-Copper-Aluminium Steels
US3926621A (en) * 1970-10-19 1975-12-16 Daido Steel Co Ltd Cold workable and age-hardenable steel
JP2686075B2 (ja) * 1986-11-04 1997-12-08 日立金属株式会社 プラスチツク成形プリハードン金型用鋼
JPS63125644A (ja) * 1986-11-14 1988-05-28 Hitachi Metals Ltd プラスチック成形プリハ−ドン金型用鋼
JPH03122252A (ja) * 1989-10-04 1991-05-24 Hitachi Metals Ltd 金型用鋼および金型
JPH0570889A (ja) * 1991-09-18 1993-03-23 Daido Steel Co Ltd 強靭性に優れた時効硬化性プラスチツク金型用鋼
JPH0627992A (ja) * 1992-07-13 1994-02-04 Toshiba Corp 音声認識装置
JPH06279922A (ja) * 1993-03-23 1994-10-04 Kobe Steel Ltd 超硬工具チッピング性に優れる析出硬化鋼

Also Published As

Publication number Publication date
KR970065758A (ko) 1997-10-13
JPH1036938A (ja) 1998-02-10
DE69713415D1 (de) 2002-07-25
PT792944E (pt) 2002-09-30
KR100451474B1 (ko) 2004-11-16
ES2176632T3 (es) 2002-12-01
CN1174244A (zh) 1998-02-25
DE69713415T2 (de) 2003-01-09
US5785924A (en) 1998-07-28
TW367372B (en) 1999-08-21
CA2197532A1 (fr) 1997-09-01
EP0792944A1 (fr) 1997-09-03
CN1070241C (zh) 2001-08-29
MX9701554A (es) 1998-04-30
ATE219526T1 (de) 2002-07-15
FR2745587A1 (fr) 1997-09-05
FR2745587B1 (fr) 1998-04-30

Similar Documents

Publication Publication Date Title
EP0792944B1 (fr) Acier utilisable notamment pour la fabrication de moules pour injection de matière plastique
EP0805220B1 (fr) Acier faiblement allié pour la fabrication de moules pour matières plastiques
EP1649069B1 (fr) Procede de fabrication de toles d&#39;acier austenitique fer-carbone-manganese, a haute resistance, excellente tenacite et aptitude a la mise en forme a froid, et toles ainsi produites
EP1563103B1 (fr) Procede pour fabriquer une tole en acier resistant a l&#39;abrasion et tole obtenue
EP1844173B1 (fr) Procede de fabrication de toles d&#39;acier austenitique fer-carbone-manganese et toles ainsi produites
EP1490526B1 (fr) Bloc en acier pour la fabrication de moules d injection de matiere plastique ou pour la fabrication de pieces pour le travail des metaux
EP0709481B1 (fr) Acier faiblement allié pour la fabrication de moules pour matières plastiques ou pour caoutchouc
EP2630269B1 (fr) Tole d&#39;acier laminee a chaud ou a froid, son procede de fabrication et son utilisation dans l&#39;industrie automobile
EP1774052B1 (fr) Acier inoxydable martensitique pour moules et carcasses de moules d&#39;injection
EP2591134B1 (fr) Acier inoxydable austéno-ferritique à usinabilité améliorée
EP0851038B1 (fr) Acier et procédé pour la fabrication d&#39;une piéce en acier mise en forme par déformation plastique à froid
EP0805221B1 (fr) Acier reparable par soudure pour la fabrication de moules pour matières plastiques
EP2279275B1 (fr) Bloc ou tole en acier à hautes caractéristiques pour pièces massives
EP2690187B1 (fr) Alliage, pièce et procédé de fabrication correspondants
EP0845544B1 (fr) Produit sidérurgique en acier ayant une structure bainitique et procédé pour la fabrication du produit sidérurgique
EP2257652B1 (fr) Procede de fabrication de tôles d&#39;acier inoxydable austenitique a hautes caracteristiques mecaniques, et tôles ainsi obtenues
FR2784692A1 (fr) Acier de construction cementable, procede pour son obtention et pieces formees avec cet acier
FR2473065A1 (fr) Bronze a constituants multiples contenant du manganese et de l&#39;aluminium pour outils de faconnage et de mise en forme initiale

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE ES FR GB IT PT SE

17P Request for examination filed

Effective date: 19970919

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20010725

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: USINOR INDUSTEEL (FRANCE)

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE ES FR GB IT PT SE

REF Corresponds to:

Ref document number: 219526

Country of ref document: AT

Date of ref document: 20020715

Kind code of ref document: T

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: PRIMON, GILBERT

Inventor name: CHENOU, FREDERIC

Inventor name: BEGUINOT, JEAN

REF Corresponds to:

Ref document number: 69713415

Country of ref document: DE

Date of ref document: 20020725

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020830

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20020711

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2176632

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030320

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20070206

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20070213

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070214

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070215

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20070219

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20070327

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070521

Year of fee payment: 11

Ref country code: BE

Payment date: 20070416

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070208

Year of fee payment: 11

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20080818

BERE Be: lapsed

Owner name: *USINOR INDUSTEEL (FRANCE)

Effective date: 20080228

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080218

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20081031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080219

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080229

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20080219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080218