EP0767290B1 - Procédé de fonctionnement d'une centrale d'énergie - Google Patents

Procédé de fonctionnement d'une centrale d'énergie Download PDF

Info

Publication number
EP0767290B1
EP0767290B1 EP96810597A EP96810597A EP0767290B1 EP 0767290 B1 EP0767290 B1 EP 0767290B1 EP 96810597 A EP96810597 A EP 96810597A EP 96810597 A EP96810597 A EP 96810597A EP 0767290 B1 EP0767290 B1 EP 0767290B1
Authority
EP
European Patent Office
Prior art keywords
steam
heat
turbine
stage
combustion chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96810597A
Other languages
German (de)
English (en)
Other versions
EP0767290A1 (fr
Inventor
Hans Ulrich Frutschi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alstom SA
Original Assignee
Alstom SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom SA filed Critical Alstom SA
Publication of EP0767290A1 publication Critical patent/EP0767290A1/fr
Application granted granted Critical
Publication of EP0767290B1 publication Critical patent/EP0767290B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/106Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with water evaporated or preheated at different pressures in exhaust boiler

Definitions

  • the present invention relates to a method of operation a power plant according to the preamble of claim 1.
  • a power plant which consists of a gas turbine group, a downstream heat recovery steam generator and a subsequent steam circuit
  • a maximum efficiency to provide a supercritical steam process in the steam circuit has become known from CH-480 535.
  • a mass flow of the gas turbine cycle medium is branched off and used recuperatively in the gas turbine for the purpose of optimal utilization of waste heat from the gas turbine group in the lower temperature range of the waste heat steam generator.
  • Both the gas turbine and steam processes have sequential combustion. In the case of modern, preferably single-shaft, gas turbines, however, this configuration leads to an undesirable complication in terms of design.
  • the document EP-A1-588 392 discloses a combination system for generating electrical Electricity, which consists of a steam and a gas turbine.
  • this system from a combustion unit, an overheating unit, an economizer, a degassing unit various turbines and a humidification system.
  • the Temperature in the economizer can be regulated in this way by varying the mass flow be that the temperature of the water is a few degrees below the evaporation temperature is set.
  • the big premix burners which perform the function of main burners have the small premix burners that are the pilot burners of this combustion chamber, with respect to those flowing through it Burner air, i.e. the compressed air from the Compressor 1, in a size ratio to each other, that is determined on a case-by-case basis.
  • Burner air i.e. the compressed air from the Compressor 1
  • the pilot burners work as independent premix burners, whereby the air ratio remains almost constant.
  • the Zuoder The main burner is switched off according to certain system-specific Requirements. Because the pilot burners as a whole Load range can be driven with an ideal mixture NOx emissions are very low even at partial load.
  • Vortex centers also turn out to be extremely unstable lean operated main burners in the partial load range a very good burnout with low NOx emissions CO and UHC emissions achieved, i.e. the hot whorls of Pilot burners immediately penetrate the small swirls of the main burners on.
  • the annular combustion chamber 2 consist of a number of individual tubular combustion chambers, which are also inclined, sometimes also helical, are arranged around the rotor axis. This ring combustion chamber 2, regardless of its design, will and can be geometric arranged so that they match the rotor length has virtually no influence.
  • the hot gases 8 from this Annular combustion chamber 2 act on the immediately downstream one first turbine 3, whose caloric relaxing effect on the hot gases is deliberately kept to a minimum, i.e. this Turbine 3 is therefore not more than two rows of blades consist. With such a turbine 3 it will be necessary pressure equalization on the end faces for stabilization of the axial thrust.
  • the partially relaxed in the turbine 3 Hot gases 9, which are directly in the second Combustion chamber 4 flow, have a for the reasons stated quite high temperature, preferably it is company-specific to be designed so that it is still around 1000 ° C.
  • This second combustion chamber 4 essentially has the Shape of a coherent annular axial or quasi-axial Ring cylinder.
  • This combustion chamber 4 can of course also from a number axially, quasi-axially or helically arranged and self-contained Combustion chambers exist.
  • Combustion chamber 4 consisting of a single combustion chamber, so these are annular in the circumferential direction and radially Cylinder several not shown in the figure Dispose of fuel lances.
  • This combustion chamber 4 has none Burner on: The combustion of one in from the turbine 3 upcoming partially released hot gases 9 injected fuel 13 happens here by self-ignition, as far as of course the temperature level permits such an operating mode.
  • combustion chamber 4 with a gaseous Fuel for example natural gas
  • a gaseous Fuel for example natural gas
  • the turbine 3 still be very high, as set out above 1000 ° C, and of course also at part-load operation, which is a causal role in the design of this turbine 2 plays.
  • a combustion chamber designed for self-ignition ensure it is extremely important that the flame front remains locally stable.
  • this Combustion chamber 4 preferably on the inner and outer wall in Scheduled circumferential direction, a number of not shown Elements provided, which preferably in the axial direction are placed upstream of the fuel lances.
  • the task of these elements is to create vortices which is a backflow zone, analogous to that in the already mentioned premix burners. Since this is Combustion chamber 4, due to the axial arrangement and the overall length, is a high-speed combustion chamber at which the average velocity of the working gases is greater 60 m / s, the vortex-generating elements must conform to the flow be formed. On the inflow side these preferably have a tetrahedral shape with inclined flow Areas exist.
  • the vortex producing Elements can either be on the outer surface and / or on the Be placed inside. Of course, the vortex generating Elements also shifted axially to each other his.
  • the liquid Auxiliary fuel injected accordingly, meets the Task to act as a kind of fuse, and enables also auto-ignition in the combustion chamber 4 when the partially relaxed hot gases 9 from the first turbine 3 a Temperature below the desired optimal level of Should be 1000 ° C.
  • This precaution to ensure fuel oil Providing self-ignition proves of course, it is always particularly appropriate when the Gas turbine group is operated with a greatly reduced load.
  • This arrangement also makes a decisive contribution to that the combustion chamber 4 have a minimal axial length can.
  • the constant guarantee of autoignition are accordingly responsible for burning very quickly takes place, and the residence time of the fuel in the range of hot flame front remains minimal.
  • the second between the outflow plane the first turbine 3 and the inflow level of the second turbine 5 running combustion chamber 4 has a minimum length.
  • a gas turbine group can be provided whose Rotor shaft 39 is technically flawless due to its minimized length can be supported on two bearings.
  • the power output the turbomachines are done via a compressor side coupled generator 15, which also serve as a starting motor can. After relaxation in the turbine 5, they still flow through with high calorific potential exhaust gases 11 a heat recovery steam generator 15, in which in heat exchange processes steam is generated in various ways, which then becomes the working medium of the downstream steam circuit.
  • the calorically used exhaust gases then flow as Flue gases 38 outdoors.
  • the feed water 34 which has a temperature of about 60 ° C at a 300 bar, is in A in the heat recovery steam generator 15 initiated and is there to steam of about 540 ° C can be thermally upgraded.
  • the one in the economizer 15a 300 ° C heated feed water is divided into two in point B. Split streams.
  • the one, here larger, partial water flow of 100% in the following tube bundle 15b supercritical high pressure steam 27 thermally processed. Thereby the exhaust gases 11 between points G and H, which symbolize the effective distance of the said tube bundle 15b, the majority of the heat energy is removed.
  • a smaller partial water flow 35 is in the area of point B branched off, and via a throttle element 25 of an evaporation bottle 26 supplied, the pressure level of the saturated steam pressure of Corresponds to 150-200 ° C.
  • the resulting steam is 37 fed to the medium pressure steam turbine 17 at a suitable point. That only served as a heat transfer medium for evaporation still hot residual water 36 is passed through another control device 24 passed into a feed water tank and degasser 22 in which in addition to preheating the condensate Another steam 33 is developed, the low-pressure steam turbine 18 is supplied at a suitable point.
  • Fig. 2 shows the H / T diagram, i.e. the course and the in Fig. 1 already recognized significant points of the feed water preheating and steam generation and steam reheating a supercritical steam turbine process.
  • the following reference symbol list becomes the respective reference symbol circumscribed this figure.
  • the feed water is at A with, for example, 60 ° C 300 bar initiated, and it is supposed to F in steam of 540 ° C be thermally upgraded using gas turbine waste heat. to a first stage of expansion in the high pressure steam turbine, which leads up to 300 ° C, an intermediate overheating of D to E, also at 540 ° C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Claims (6)

  1. Procédé en vue de l'opération d'une centrale électrique, se composant, pour l'essentiel, d'un groupe de turbines à gaz (I), d'un générateur de vapeur à chaleur perdue (15), placé en aval du groupe de turbines à gaz, et d'un circuit de circulation de vapeur (III), placé en aval du générateur de vapeur à chaleur perdue (15), le groupe de turbines à gaz (I) se composant d'au moins une unité de compresseur (1), d'au moins une chambre de combustion (2, 4), d'au moins une turbine (3, 5) et d'au moins un générateur (14), les gaz de rejet en provenance de la dernière turbine (5) s'écoulant à travers le générateur de vapeur à chaleur perdue (15), dans lequel a lieu la production d'au moins une vapeur destinée au fonctionnement d'au moins une turbine à vapeur (16, 17, 18) du circuit de circulation de vapeur, une quantité de liquide augmentée de plus de 100% circulant dans un stade d'échange thermique (15a) fonctionnant dans le domaine de température inférieur du générateur de vapeur à chaleur perdue (15), 100% de la quantité d'eau nominale, qui est en relation avec l'énergie fournie à partir des gaz de rejet (11), étant fixés, la proportion au-delà de 100% de cette quantité de liquide étant dérivée à l'extrémité de ce stade d'échange thermique (15a) et étant évaporée dans au moins un stade sous pression (26), une vapeur qui s'y forme (37) étant alimentée en un endroit approprié à une turbine à vapeur (17), une quantité de liquide encore chaude (36) en provenance du stade de pression (26) étant acheminée à un réservoir d'eau d'alimentation et à un dégazeur (22), et une vapeur qui s'y forme (33) étant acheminée en un endroit approprié à une turbine à vapeur (18) supplémentaire.
  2. Procédé selon la revendication 1, caractérisé en ce que le groupe de turbines à gaz (I.) fonctionne à l'aide d'une combustion séquentielle.
  3. Procédé selon la revendication 1, caractérisé en ce que la quantité de liquide à 100% est traitée pour former une vapeur sur-critique (27) dans un stade d'échange thermique (15b) suivant immédiatement le stade d'échange thermique (15a) dans le domaine de température inférieur, laquelle vapeur alimente une turbine à vapeur supplémentaire (16), en ce que la vapeur (28) détendue dans cette turbine à vapeur (16) est reconduite au générateur de vapeur à chaleur perdue (15), de telle manière qu'elle y soit traitée dans un stade d'échange thermique supplémentaire (15c) pour former une vapeur à surchauffe intermédiaire (29), qui alimente ensuite un stade de pression correspondant d'une turbine à vapeur (7) placée en aval.
  4. Procédé selon la revendication 1, caractérisé en ce que le réservoir d'eau d'alimentation et le dégazeur (22) fonctionnent en tant que stade d'évaporation de vapeur unique du circuit de circulation de vapeur (III.).
  5. Procédé selon la revendication 1, caractérisé en ce que la proportion au-delà de 100% de la quantité de liquide est acheminée dans le domaine de température inférieur, en parallèle et/ou en série, par rapport au stade d'échange thermique (15a), dans un élément d'échange thermique séparé.
  6. Procédé selon la revendication 5, caractérisé en ce que la proportion au-delà de 100% de la quantité de liquide. se différentie du fluide détendu dans le circuit de circulation de vapeur (III.), et en ce que son énergie thermique produite par l'échange thermique est utilisée dans une machine de travail séparée.
EP96810597A 1995-10-02 1996-09-09 Procédé de fonctionnement d'une centrale d'énergie Expired - Lifetime EP0767290B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19536839 1995-10-02
DE19536839A DE19536839A1 (de) 1995-10-02 1995-10-02 Verfahren zum Betrieb einer Kraftwerksanlage

Publications (2)

Publication Number Publication Date
EP0767290A1 EP0767290A1 (fr) 1997-04-09
EP0767290B1 true EP0767290B1 (fr) 2002-05-29

Family

ID=7773918

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96810597A Expired - Lifetime EP0767290B1 (fr) 1995-10-02 1996-09-09 Procédé de fonctionnement d'une centrale d'énergie

Country Status (4)

Country Link
US (1) US5839269A (fr)
EP (1) EP0767290B1 (fr)
JP (1) JP3974208B2 (fr)
DE (2) DE19536839A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102374514A (zh) * 2011-07-18 2012-03-14 成都四通新能源技术有限公司 烟气余热双压发电***

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19604664A1 (de) * 1996-02-09 1997-08-14 Asea Brown Boveri Verfahren zum Betrieb einer Kraftwerksanlage
DE59811106D1 (de) 1998-02-25 2004-05-06 Alstom Technology Ltd Baden Kraftwerksanlage und Verfahren zum Betrieb einer Kraftwerksanlage mit einem CO2-Prozess
US6202782B1 (en) * 1999-05-03 2001-03-20 Takefumi Hatanaka Vehicle driving method and hybrid vehicle propulsion system
GB2382847A (en) 2001-12-06 2003-06-11 Alstom Gas turbine wet compression
GB2382848A (en) 2001-12-06 2003-06-11 Alstom Gas turbine wet compression
WO2003058047A1 (fr) * 2002-01-07 2003-07-17 Alstom Technology Ltd Mode de fonctionnement d'un groupe a turbine a gaz
DE10256193A1 (de) 2002-12-02 2004-06-09 Alstom Technology Ltd Verfahren zur Steuerung der Flüssigkeitseinspritzung in einen Zuströmkanal einer Kraft- oder Arbeitsmaschine
JP4478674B2 (ja) * 2006-12-26 2010-06-09 カワサキプラントシステムズ株式会社 セメント焼成プラント廃熱発電システム
KR101317222B1 (ko) * 2007-03-22 2013-10-15 누터/에릭슨 인코퍼레이티드 고효율 급수 가열기
US8943836B2 (en) * 2009-07-10 2015-02-03 Nrg Energy, Inc. Combined cycle power plant
JP5897302B2 (ja) * 2011-10-28 2016-03-30 川崎重工業株式会社 蒸気タービン発電システム
US9429044B2 (en) * 2012-01-13 2016-08-30 Alstom Technology Ltd Supercritical heat recovery steam generator reheater and supercritical evaporator arrangement
CN104254673A (zh) 2012-03-21 2014-12-31 阿尔斯通技术有限公司 联合循环发电设备
FI20210068A1 (fi) * 2021-11-10 2023-05-11 Loeytty Ari Veli Olavi Menetelmä ja laitteisto energiatehokkuuden parantamiseksi nykyisissä kaasuturbiini kombilaitoksissa

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH480535A (de) * 1968-03-06 1969-10-31 Escher Wyss Ag Wärmekraftanlage für die Ausnützung der in einem Kernreaktor erzeugten Wärme, mit einer kombinierten Gasturbinen- Dampfturbinenanlage
DE3261410D1 (en) * 1981-04-03 1985-01-17 Bbc Brown Boveri & Cie Combined steam and gas turbine power plant
US4501233A (en) * 1982-04-24 1985-02-26 Babcock-Hitachi Kabushiki Kaisha Heat recovery steam generator
CH674561A5 (fr) * 1987-12-21 1990-06-15 Bbc Brown Boveri & Cie
EP0410111B1 (fr) * 1989-07-27 1993-01-20 Siemens Aktiengesellschaft Chaudière de récupération de chaleur pour une centrale à turbine à gaz et à vapeur
EP0515911B1 (fr) * 1991-05-27 1996-03-13 Siemens Aktiengesellschaft Méthode pour opérer une installation à turbines à gaz et à vapeur et une installation correspondante
DE4118062A1 (de) * 1991-06-01 1992-12-03 Asea Brown Boveri Kombinierte gas/dampf-kraftwerksanlage
NL9201256A (nl) * 1992-07-13 1994-02-01 Kema Nv Steg-inrichting voor het opwekken van elektriciteit met bevochtigd aardgas.
EP0582898A1 (fr) * 1992-08-10 1994-02-16 Siemens Aktiengesellschaft Méthode de fonctionnement d'un système à turbines à vapeur et à gaz et système pour la mise en oeuvre de la méthode
DE4237665A1 (de) * 1992-11-07 1994-05-11 Asea Brown Boveri Verfahren zum Betrieb einer Kombianlage
DE4321081A1 (de) * 1993-06-24 1995-01-05 Siemens Ag Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage sowie danach arbeitende GuD-Anlage
DE4409811C1 (de) * 1994-03-22 1995-05-18 Siemens Ag Verfahren zum Betreiben eines Abhitzedampferzeugers sowie danach arbeitender Abhitzedampferzeuger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102374514A (zh) * 2011-07-18 2012-03-14 成都四通新能源技术有限公司 烟气余热双压发电***
CN102374514B (zh) * 2011-07-18 2013-11-27 成都昊特新能源技术股份有限公司 烟气余热双压发电***

Also Published As

Publication number Publication date
US5839269A (en) 1998-11-24
JPH09125910A (ja) 1997-05-13
JP3974208B2 (ja) 2007-09-12
DE59609255D1 (de) 2002-07-04
EP0767290A1 (fr) 1997-04-09
DE19536839A1 (de) 1997-04-30

Similar Documents

Publication Publication Date Title
EP0915232B1 (fr) Procédé de fonctionnement d'une centrale d'énergie
EP0731255B1 (fr) Système de turbine pour centrales d'électricité
EP0795685B1 (fr) Turbine à gaz multi-étagée avec refroidissement par vapeur et réinjection en chambre de combustion
EP0768449B1 (fr) Procédé de fonctionnement d'une centrale d'énergie
EP0808994B1 (fr) Procédé de fonctionnement d'une centrale combinée
EP0620362B1 (fr) Turbine à gaz
EP1432889B1 (fr) Procede et dispositif permettant de demarrer des centrales thermiques a gaz exemptes d'emissions
EP0767290B1 (fr) Procédé de fonctionnement d'une centrale d'énergie
EP0778397B1 (fr) Procédé d'opération d'une centrale combinée avec une chaudière de récuperation et un consommateur de vapeur
EP0750718B1 (fr) Procede permettant de faire fonctionner une installation a turbines a gaz et a vapeur et installation fonctionnant selon ledit procede
DE10041413B4 (de) Verfahren zum Betrieb einer Kraftwerksanlage
EP0591163B2 (fr) Installation combinee a turbines a gaz et a vapeur
EP0789134B1 (fr) Procédé de fonctionnement d'une centrale d'énergie
EP0674099A1 (fr) Méthode pour le refroidissement des éléments d'une installation de turbine à gaz chargés thermiquement
EP0773349B1 (fr) Générateur de vapeur à hélice pour centrales
DE19535228C2 (de) Verfahren zum Betrieb einer Kraftwerksanlage
EP0978635B1 (fr) Procédé pour refroidir les structures thermiquement chargées d'une centrale thermique
EP0709561B1 (fr) Centrale électrique
DE19900026B4 (de) Gasturbine mit Dampfeindüsung
EP0899438B1 (fr) Turbine à gaz avec générateur à récupération de vapeur surchaufée pour injection dans la chambre de combustion et de vapeur saturante pour refroidissement puis injection dans la chambre de combustion
EP1050667A1 (fr) Centrale combinée avec brûleur auxiliaire
DE19961383A1 (de) Verfahren zum Betrieb einer Kraftwerksanlage
EP0887539A2 (fr) Turboréacteur
DE19961385A1 (de) Verfahren zum Betrieb einer Kraftwerksanlage
EP0770770B1 (fr) Procédé de fonctionnement d'un groupe turbo à gaz

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB NL

17P Request for examination filed

Effective date: 19970910

17Q First examination report despatched

Effective date: 20000803

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020529

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59609255

Country of ref document: DE

Date of ref document: 20020704

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020725

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030303

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59609255

Country of ref document: DE

Representative=s name: RUEGER, BARTHELT & ABEL, DE

Effective date: 20120621

Ref country code: DE

Ref legal event code: R082

Ref document number: 59609255

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Effective date: 20120621

Ref country code: DE

Ref legal event code: R081

Ref document number: 59609255

Country of ref document: DE

Owner name: ALSTOM TECHNOLOGY LTD., CH

Free format text: FORMER OWNER: ALSTOM, PARIS, FR

Effective date: 20120621

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20120802 AND 20120808

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: ALSTOM TECHNOLOGY LTD., CH

Effective date: 20121008

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20150917

Year of fee payment: 20

Ref country code: DE

Payment date: 20150922

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20150922

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59609255

Country of ref document: DE

Representative=s name: RUEGER ABEL PATENTANWAELTE PARTGMBB, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 59609255

Country of ref document: DE

Representative=s name: RUEGER, BARTHELT & ABEL, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59609255

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20160908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20160908

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: ALSTOM TECHNOLOGY LTD, CH

Effective date: 20161124