EP0410111B1 - Chaudière de récupération de chaleur pour une centrale à turbine à gaz et à vapeur - Google Patents

Chaudière de récupération de chaleur pour une centrale à turbine à gaz et à vapeur Download PDF

Info

Publication number
EP0410111B1
EP0410111B1 EP19900110081 EP90110081A EP0410111B1 EP 0410111 B1 EP0410111 B1 EP 0410111B1 EP 19900110081 EP19900110081 EP 19900110081 EP 90110081 A EP90110081 A EP 90110081A EP 0410111 B1 EP0410111 B1 EP 0410111B1
Authority
EP
European Patent Office
Prior art keywords
heating surfaces
pressure
steam
low
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19900110081
Other languages
German (de)
English (en)
Other versions
EP0410111A1 (fr
Inventor
Hermann Brückner
Lothar Stadie
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0410111A1 publication Critical patent/EP0410111A1/fr
Application granted granted Critical
Publication of EP0410111B1 publication Critical patent/EP0410111B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/106Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with water evaporated or preheated at different pressures in exhaust boiler

Definitions

  • the invention relates to a heat recovery steam generator for a gas and steam turbine power plant with high-pressure superheater heating surfaces, reheater heating surfaces, high-pressure evaporator heating surfaces, low-pressure superheater heating surfaces, low-pressure evaporator heating surfaces and economiser heating surfaces.
  • Gas and steam turbine power plants usually contain a heat recovery steam generator installed in the exhaust pipe behind the gas turbine.
  • heat recovery steam generators the sensible heat of the exhaust gases leaving the gas turbine is used to generate steam.
  • a steam turbine power plant is operated with the generated steam.
  • the hot exhaust gases from the gas turbine give off their heat to the various heating surfaces installed in the heat recovery steam generator.
  • these heating surfaces are often subdivided into feed water preheater heating surfaces, economiser heating surfaces, low-pressure evaporator heating surfaces, low-pressure superheater heating surfaces, high-pressure evaporator heating surfaces, intermediate superheater heating surfaces and high-pressure superheater heating surfaces required operating temperature more towards the hotter or more towards the cooler end of the heat recovery steam generator.
  • water-steam separation vessels usually in the form of steam drums or so-called bottles
  • water-steam mixture flowing out of the evaporator heating surfaces is separated into water and steam in these.
  • the steam reaches the downstream superheater heating surfaces from the upper end of the respective water-steam separation vessel.
  • the water is drawn off from the lower end of the respective water-steam separating vessel by means of a circulating pump and again conveyed back into the respective evaporator heating surfaces.
  • the economiser outlet temperature has previously been set to a very low design value and the economiser heating surfaces have been installed near the cool end of the heat recovery steam generator, i.e. behind the low-pressure evaporator heating surfaces in the direction of flow of the gas turbine exhaust gases .
  • the resulting reduction in the maximum amount of live steam that could be generated was accepted.
  • the invention is therefore based on the object of showing a way in which the economiser heating surfaces can be regulated to an optimal operating temperature in the nominal load operation and how evaporation of the economiser heating surfaces can nevertheless be avoided in part-load operation.
  • the economiser heating surfaces are arranged according to the invention in the flow direction of the gas turbine exhaust gases in front of the low-pressure evaporator heating surfaces and on the output side both on the high-pressure evaporator heating surfaces and via a compensating line with a reducing valve to a medium-pressure water-steam separating vessel upstream of the reheater heating surfaces are connected, it is achieved that the economizer's outlet temperature is raised to a level at nominal load which enables the subsequent evaporator heating surfaces to generate more steam.
  • the economiser heating surfaces and the low-pressure superheater heating surfaces can be installed in the same temperature range of the heat recovery steam generator. This measure raises the outlet temperature of the feed water at the outlet of the economiser heating surfaces to a value which later enables the high-pressure evaporator heating surfaces to produce steam in maximum quantities.
  • the medium-pressure water-steam separation vessel can be connected on the water side via an outlet line with a reducing valve to a low-pressure water-steam separation vessel upstream of the low-pressure superheater heating surfaces.
  • This measure ensures that excess water can be drained into the low-pressure water-steam separating vessel in the medium-pressure system by opening the reducing valve in the drain line and in turn ensures increased steam generation there.
  • the figure is a schematic representation of the arrangement and circuit of the individual heating surfaces in the heat recovery steam generator of a gas and steam turbine power plant.
  • the schematic representation of the figure shows the structure of the gas and steam turbine power plant 1 according to the invention consisting of a gas turbine power plant part 2 and a steam turbine power plant part 4.
  • the gas turbine power plant part 2 comprises a gas turbine 6, an air compressor driven by the gas turbine 8 and generator 10 and a combustion chamber 12 arranged between the air compressor and the gas turbine with a separate fuel feed 14 and an exhaust gas line 16 for the exhaust gases of the gas turbine 6.
  • This exhaust gas line 16 is connected to the waste heat steam generator 18 of the steam turbine power plant part 4.
  • the steam turbine power plant part 4 comprises the heat recovery steam generator 18, a three-casing steam turbine 20 connected on the steam side to the heat recovery steam generator with a high-pressure part 22, a medium-pressure part 24 and a low-pressure part 26 and a generator 30 seated on the same shaft 28.
  • the steam turbine 20 On the low-pressure part 26, the steam turbine 20 has a capacitor connected, which is connected via a condensate line 34 and a condensate pump 36 to a feed water tank 38.
  • the following heating surfaces are arranged one after the other from the hot to the cold side: at the hot end, reheater heating surfaces 40 and high-pressure superheater heating surfaces 42 are arranged at the same temperature level, followed by high-pressure evaporator heating surfaces 44 and these in turn economizer heating surfaces 46 and low-pressure superheaters -Heating surfaces 48, both of which are also arranged at the same temperature level. These in turn are followed by low-pressure evaporator heating surfaces 50 and these, in turn, feed water preheating heating surfaces 52.
  • the high-pressure and low-pressure evaporator heating surfaces are connected on the inlet and outlet sides to a water / steam separating vessel - in the exemplary embodiment a steam drum 54, 56 each.
  • a circulation pump 58, 60 ensures that the feed water is conveyed from the respective steam drum into the associated evaporator heating surface and back into the same steam drum.
  • the feed water tank 38 is connected to the feed water preheating heating surfaces 52 via a feed water circulation pump 62 with a downstream control valve 63, these feed water preheating heating surfaces on the output side, in turn, into the feed water tank 38 via a further control valve 65.
  • the feed water tank 38 is connected to the economizer heating surfaces 46 via a feed water line 66 equipped with a feed water pump 64 with a downstream control valve 67. On the output side, these are connected to the water-steam separation vessel 54 of the high-pressure evaporator heating surfaces 44 via a control valve 68.
  • the economizer heating surfaces 46 are connected on the output side via an adjustable reducing valve 70 to a further water-steam separating vessel 72, which is connected upstream of the reheater heating surfaces 40 on the steam side, and on the water side via a further adjustable reducing valve 74 to a second water-steam separating vessel 76 is connected.
  • the latter is connected on the steam side to the input of the low-pressure superheater heating surfaces 48.
  • the water-steam separation vessel 76 is connected to the feed water tank 38 via a further adjustable reducing valve 78.
  • the feed water preheating heating surfaces 52 are also connected on the output side via a control valve 80 to the water-steam separating vessel of the low-pressure evaporator heating surfaces 50 which is designed as a steam drum 56.
  • This steam drum 56 of the low-pressure evaporator heating surfaces 50 is connected to the low-pressure superheater heating surfaces 48 on the steam side, and these in turn are connected on the output side to the low-pressure part 26 of the steam turbine 20.
  • the water-steam separating vessel of the high-pressure evaporator heating surfaces 44 which is designed as a steam drum 54, is connected on the steam side to the high-pressure superheater heating surfaces 42 and this in turn is connected on the outlet side to the high-pressure part 22 of the steam turbine 20.
  • the high-pressure part 22 of the steam turbine 20 is connected on the output side at A to the input of the reheater heating surfaces 40, and these in turn are connected on the output side to the input of the medium-pressure part 24 of the steam turbine.
  • the medium-pressure part of the steam turbine like the low-pressure superheater heating surfaces 48, is connected to the inlet of the low-pressure part 26 of the steam turbine.
  • the feed water in the feed water tank 38 is pumped by the feed water circulation pump 62 into the feed water preheating heating surfaces 52, where it is heated, and from there back into the feed water tank.
  • feed water is also pressed into the economizer heating surfaces 46, heated there and further conveyed via the feed water line 66 and the control valve 68 into the water-steam separating vessel of the high-pressure evaporator heating surfaces 44 designed as a high-pressure drum 54.
  • a circulation pump 58 is connected to this high-pressure drum 54, which pumps the feed water into the high-pressure evaporator heating surfaces 44 and back into the high-pressure drum 54.
  • the feed water heats up so strongly that part of the feed water reaches the high pressure drum 54 as steam, is separated there from the rest of the feed water and flows via the high pressure steam line 82 into the high pressure superheater heating surfaces 42 and from there into the high pressure part 22 of the steam turbine.
  • the exhaust steam from the high-pressure steam turbine 22 flows at A into the reheater heating surfaces 40 at the hot end of the waste heat steam generator 18, and is in these
  • the reheater heating surfaces are heated to approximately the same temperature as the high-pressure steam in the high-pressure superheater heating surfaces 42 and are thus dried as medium-pressure steam at the inlet of the medium-pressure part 24 of the steam turbine 20 and from the medium-pressure part of the steam turbine into the low-pressure part 26 of the steam turbine and from there again in the Condenser 32.
  • the condensate from the condenser is conveyed into the feed water tank 38 via the condensate pump 36.
  • the flow through the feed water preheating heating surfaces 52 can now be increased in the waste heat steam generator 18 according to the invention by opening the control valves 63 and 80, so that increasingly hot feed water is pressed into the steam drum 56 and into the low pressure evaporator heating surfaces 50.
  • their temperature can be kept at a value which will certainly prevent them from evaporating.
  • the remaining heat of the exhaust gases of the gas turbine at the cold end of the heat recovery steam generator 18 is used as far as possible. This also increases the supply of feed water from the feed water preheating heating surfaces 52.
  • evaporation of the economizer heating surfaces 46 can be avoided by opening the control valve 67 behind the feed water pump 64 and the reducing valve 70 installed between the outlet of the economizer heating surfaces 46 and the water-steam separation vessel 72.
  • further hot feed water can be fed from the economiser heating surfaces via the reducing valve 70 into the water-steam separating vessel 72 at the entrance to the reheater heating surfaces 40, so that the amount of reheated steam can also be increased.
  • the feed water which has not yet evaporated and which is separated in this water-steam separation vessel 72 passes via the overflow line 73 and the reducing valve 74 into the water-steam separation vessel 76 which is connected upstream of the low-pressure superheater heating surfaces 48.
  • the evaporated part of this feed water is dried in the low-pressure superheater heating surfaces 48 at the somewhat low pressure level, thus increasing the amount of low-pressure steam.
  • the excess feed water collecting at the bottom of the water-steam separation vessel 76 is fed into the condensate line 34 via the drain line 77 and the further adjustable reducing valve 78 and preheats the feed water.
  • the inventive arrangement of the economizer heating surfaces 46 in the temperature range of the low-pressure superheater heating surfaces 48 increases the temperature at the outlet of the economizer heating surfaces 46, so that warmer water is fed into the high-pressure evaporator heating surfaces 44 and their water-steam separating vessel 54 during nominal load operation . This increases the amount of high pressure steam generated. This shifting of the economizer heating surfaces 46 into a higher temperature range is only possible, however, because the further measures according to the invention effectively prevent the same from evaporating out in partial load operation.
  • this circuit not only prevents evaporation of the economizer heating surfaces 46 and feedwater preheating heating surfaces 52 when the power plant output is reduced, but also, because of the increased outlet temperature at the economizer outlet, increased high-pressure steam and medium-pressure steam during nominal load operation can be generated and overall the efficiency of the gas and steam turbine power plant 1 is increased even at nominal load.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Claims (7)

  1. Générateur de vapeur à récupération de chaleur perdue pour une centrale électrique à turbine à gaz et à turbine à vapeur, comprenant des surfaces de chauffe d'un surchauffeur haute pression, des surfaces de chauffe d'un surchauffeur intermédiaire, des surfaces de chauffe d'un évaporateur haute pression, des surfaces de chauffe d'un surchauffeur basse pression, des surfaces de chauffe d'un évaporateur basse pression et des surfaces de chauffe d'un économiseur, caractérisé en ce que les surfaces de chauffe (46) de l'économiseur sont disposées, dans le sens du courant des gaz sortant de la turbine à gaz, en amont des surfaces de chauffe (50) de l'évaporateur basse pression et sont raccordées, du côté de la sortie, tant aux surfaces de chauffe (44) de l'évaporateur haute pression que, par un conduit de compensation à vanne de détente (70), à un récipient de séparation de l'eau et de la vapeur moyenne pression monté en amont, du côté de la vapeur, des surfaces de chauffe (40) du surchauffeur intermédiaire.
  2. Générateur de vapeur à récupération de la chaleur perdue suivant la revendication 1, caractérisé en ce que les surfaces de chauffe (46) de l'économiseur et les surfaces de chauffe (48) du surchauffeur basse pression sont disposées, dans le générateur de vapeur (8) à récupération de la chaleur perdue, dans la partie ayant la même température des gaz.
  3. Générateur de vapeur à récupération de la chaleur perdue suivant la revendication 1, caractérisé en ce que les surfaces de chauffe (46) de l'économiseur sont disposées, dans le sens d'écoulement des gaz sortant de la turbine à gaz, encore en amont des surfaces de chauffe du surchauffeur basse pression.
  4. Générateur de vapeur à récupération de la chaleur perdue suivant l'une ou plusieurs des revendications 1 à 3, caractérisé en ce que le récipient de séparation (72) d'eau et de vapeur moyenne pression est raccordé, du côté de l'eau, par un conduit d'évacuation (73) à vanne de détente (74) à un récipient de séparation (76) de la vapeur et de l'eau basse pression monté en amont, du côté de la vapeur, des surfaces de chauffe (48) du surchauffeur basse pression.
  5. Générateur de vapeur à récupération de la chaleur perdue suivant l'une ou plusieurs des revendications 1 à 4, caractérisé en ce qu'un récipient de séparation (76) d'eau et de vapeur basse pression est raccordé, du côté de l'eau, par un conduit d'évacuation (77) à vanne de détente (78) à la cuve d'eau d'alimentation (38).
  6. Générateur de vapeur à récupération de la chaleur perdue suivant l'une ou plusieurs des revendications 1 à 5, caractérisé en ce que les surfaces de chauffe (46) de l'économiseur sont disposées, dans le sens de l'écoulement des gaz sortant de la turbine à gaz, en aval des surfaces de chauffe (44) de l'évaporateur haute pression.
  7. Générateur de vapeur à récupération de la chaleur perdue suivant l'une ou plusieurs des revendications 1 à 6, caractérisé en ce que les dernières, considérées dans le sens du courant des gaz sortant de la turbine à gaz, des surfaces de chauffe du générateur de vapeur (18) à récupération de la chaleur perdue sont des surfaces de chauffe (52) d'un dispositif de préchauffage du produit condensé.
EP19900110081 1989-07-27 1990-05-28 Chaudière de récupération de chaleur pour une centrale à turbine à gaz et à vapeur Expired - Lifetime EP0410111B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP89113897 1989-07-27
EP89113897 1989-07-27

Publications (2)

Publication Number Publication Date
EP0410111A1 EP0410111A1 (fr) 1991-01-30
EP0410111B1 true EP0410111B1 (fr) 1993-01-20

Family

ID=8201690

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19900110081 Expired - Lifetime EP0410111B1 (fr) 1989-07-27 1990-05-28 Chaudière de récupération de chaleur pour une centrale à turbine à gaz et à vapeur

Country Status (3)

Country Link
EP (1) EP0410111B1 (fr)
DD (1) DD296733A5 (fr)
DE (1) DE59000787D1 (fr)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59205640D1 (de) * 1991-05-27 1996-04-18 Siemens Ag Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage und entsprechende Anlage
DE59205446D1 (de) * 1991-07-17 1996-04-04 Siemens Ag Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage und Anlage zur Durchführung des Verfahrens
DE59203883D1 (de) * 1991-07-17 1995-11-09 Siemens Ag Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage und Anlage zur Durchführung des Verfahrens.
DE4126037A1 (de) * 1991-08-06 1993-02-11 Siemens Ag Gas- und dampfturbinenkraftwerk mit einem solar beheizten dampferzeuger
SE469606B (sv) * 1991-12-20 1993-08-02 Abb Carbon Ab Foerfarande vid start och laaglastdrift av genomstroemningspanna och anordning foer genomfoerande av foerfarandet
DE4409811C1 (de) * 1994-03-22 1995-05-18 Siemens Ag Verfahren zum Betreiben eines Abhitzedampferzeugers sowie danach arbeitender Abhitzedampferzeuger
DE19527537C1 (de) * 1995-07-27 1996-09-26 Siemens Ag Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage sowie danach arbeitende Anlage
DE19536839A1 (de) * 1995-10-02 1997-04-30 Abb Management Ag Verfahren zum Betrieb einer Kraftwerksanlage
EP0993581B1 (fr) 1997-06-30 2002-03-06 Siemens Aktiengesellschaft Generateur de vapeur par recuperation de chaleur perdue
EP2801759A1 (fr) * 2013-05-06 2014-11-12 Siemens Aktiengesellschaft Dérivation de vapeur dans un générateur de vapeur à récupération de chaleur
WO2016162272A1 (fr) * 2015-04-10 2016-10-13 Siemens Aktiengesellschaft Installation de turbine et procédé pour faire fonctionner une installation de turbine
DE102017223705A1 (de) * 2017-12-22 2019-06-27 E.On Energy Projects Gmbh Kraftwerk

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1021862B (de) * 1955-07-09 1958-01-02 Babcock & Wilcox Dampfkessel Abhitzeverwertung mittels Abhitzedampferzeugern
US3769795A (en) * 1972-03-22 1973-11-06 Turbo Power And Marines Syst I Multipressure steam system for unfired combined cycle powerplant
CH621186A5 (en) * 1979-04-06 1981-01-15 Sulzer Ag Steam-generator installation heated by waste gas
JPH0718525B2 (ja) * 1987-05-06 1995-03-06 株式会社日立製作所 排ガスボイラ
DE3804605A1 (de) * 1988-02-12 1989-08-24 Siemens Ag Verfahren und anlage zur abhitzedampferzeugung

Also Published As

Publication number Publication date
DD296733A5 (de) 1991-12-12
DE59000787D1 (de) 1993-03-04
EP0410111A1 (fr) 1991-01-30

Similar Documents

Publication Publication Date Title
EP0526816B1 (fr) Centrale à turbines à gaz et à vapeur avec un générateur de vapeur solaire
EP0778397B1 (fr) Procédé d'opération d'une centrale combinée avec une chaudière de récuperation et un consommateur de vapeur
EP0591163B1 (fr) Installation combinee a turbines a gaz et a vapeur
EP0436536B1 (fr) Procede et installation de generation de vapeur au moyen de chaleur perdue
EP0523467B1 (fr) Procédé pour opérer une installation à turbines à gaz et à vapeur et installation pour la mise en oeuvre du procédé
EP1327057B1 (fr) Dispositif et procede de rechauffage d'un combustible dans des systemes mixtes a turbines a gaz et a vapeur
DE3213837C2 (de) Abgasdampferzeuger mit Entgaser, insbesondere für kombinierte Gasturbinen-Dampfkraftanlagen
DE19645322B4 (de) Kombinierte Kraftwerksanlage mit einem Zwangsdurchlaufdampferzeuger als Gasturbinen-Kühlluftkühler
DE102009036064B4 (de) rfahren zum Betreiben eines mit einer Dampftemperatur von über 650°C operierenden Zwangdurchlaufdampferzeugers sowie Zwangdurchlaufdampferzeuger
CH621187A5 (fr)
EP0410111B1 (fr) Chaudière de récupération de chaleur pour une centrale à turbine à gaz et à vapeur
DE2311066A1 (de) Dampferzeuger fuer ungefeuerte kraftanlage
EP0515911B1 (fr) Méthode pour opérer une installation à turbines à gaz et à vapeur et une installation correspondante
EP1390606B2 (fr) Dispositif de refroidissement du fluide de refroidissement d'une turbine a gaz et ensemble turbine a gaz et turbine a vapeur comportant un tel dispositif
EP2399071B1 (fr) Dégazeur d'eau d'alimentation d'une centrale héliothermique
EP0523466B1 (fr) Procédé de fonctionnement d'une installation à turbines à gaz et à vapeur et installation pour la mise en oeuvre du procédé
EP3420202B1 (fr) Recirculation de condensat
EP1801363A1 (fr) Centrale électrique
DE4126036A1 (de) Gas- und dampfturbinenkraftwerk mit einem solar beheizten dampferzeuger
EP3017152B1 (fr) Centrale à cycle combiné gaz-vapeur munie d'un générateur de vapeur à récupération de chaleur et un pre-chauffage du carburant
EP0840837B1 (fr) Procede d'exploitation d'une installation de turbines a gaz et a vapeur et installation exploitee selon ce procede
EP1425079B1 (fr) Procede et dispositif de degazage thermique de la substance active d'un processus a deux phases
EP0180093B1 (fr) Centrale thermique
DE69717165T2 (de) Verfahren zum betrieb eines zwanglaufdampferzeugers und dampferzeuger zur ausführung des verfahrens
DE1811008A1 (de) Einrichtung zur Verbesserung des thermischen Wirkungsgrades einer Dampfturbinenanlage bei Teillast

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE DK ES NL SE

17P Request for examination filed

Effective date: 19901220

17Q First examination report despatched

Effective date: 19920612

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE DK ES NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19930120

Ref country code: NL

Effective date: 19930120

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19930120

Ref country code: DK

Effective date: 19930120

REF Corresponds to:

Ref document number: 59000787

Country of ref document: DE

Date of ref document: 19930304

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960719

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980203