EP0753604B1 - Anode zur elektrolytischen Gewinnung von Metallen - Google Patents

Anode zur elektrolytischen Gewinnung von Metallen Download PDF

Info

Publication number
EP0753604B1
EP0753604B1 EP96111010A EP96111010A EP0753604B1 EP 0753604 B1 EP0753604 B1 EP 0753604B1 EP 96111010 A EP96111010 A EP 96111010A EP 96111010 A EP96111010 A EP 96111010A EP 0753604 B1 EP0753604 B1 EP 0753604B1
Authority
EP
European Patent Office
Prior art keywords
anode
electrolyte
copper
metal
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96111010A
Other languages
English (en)
French (fr)
Other versions
EP0753604A1 (de
Inventor
Nikola Dr. Anastasijevic
Gerhard Adolf Jedlicka
Karl Lohrberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MG Technologies AG
Original Assignee
Metallgesellschaft AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metallgesellschaft AG filed Critical Metallgesellschaft AG
Publication of EP0753604A1 publication Critical patent/EP0753604A1/de
Application granted granted Critical
Publication of EP0753604B1 publication Critical patent/EP0753604B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/02Electrodes; Connections thereof

Definitions

  • the invention relates to an anode for electrolysis Extraction of a metal from a ionogenic metal containing electrolytes, with the application of a DC electrical voltage between the anode and one or two at a distance of 10 to 100 mm from the anode in the electrolyte arranged flat cathode or cathodes the metal on the Cathode is deposited and the anode is an in essential horizontal power supply Carrier rail located outside the electrolyte and with the mounting rail two grid-like, at least half in Electrolytes are essentially parallel Metal surfaces (anode grid) are electrically connected.
  • the anode is particularly intended for the extraction of copper.
  • An anode of this type is known from DE-C-37 31 510. Current densities in the range of 600 to 1200 A / m 2 are used for copper extraction. Perforated or lattice-like anodes are also known from U.S. Patents 3,915,834 and 4,113,586. The breakthroughs in the anode surface are said to reduce disturbances due to gas development and to even out the current distribution in the electrolyte.
  • FR-A-2560223 describes anodes with grid-shaped anode surfaces and current conductor rods with a Cu core and a Ti jacket. Parallel anode grids, which are spaced apart by spring elements, are described in GB-A-2001102.
  • the invention has for its object an anode for high and to create the highest current densities so that with it equipped electrolysis high metal separation performance can provide. At the same time, malfunctions are said to occur in the anode avoided as much as possible by gas evolution. According to the invention this succeeds with the anode with the Claim 1 combination of features.
  • Power is supplied to the anode from the outside via the Copper conductors and from there via one or more copper rods as well as their titanium jacket on the anode grid. Thereby can carry high currents of several 1000 A to the anode grid be directed.
  • the partitions For a mechanically stable anode structure provide the partitions that fill the space between the anode grids divide, the partitions also ensure the guidance of the rising gas bubbles.
  • the area of the two anode grids, which is intended for immersion in the electrolyte have a height of at least 1 m.
  • the area of the associated cathodes can be made correspondingly large, which improves the separation performance.
  • the titanium sheath surrounding the bars protects against the corrosion attack of the electrolyte.
  • the copper rod pressed into the titanium sheath during manufacture of the sheathing To do this, it is recommended to use elevated temperatures in the range of 400 to 700 ° C apply.
  • the simultaneous production of the Copper rods with the associated titanium sheath can in itself known way e.g. by composite extrusion or other Way.
  • the electrolysis container (1) of FIG. 1 has an inlet (2) for the electrolyte and a drain (3). Partially immersed in the electrolyte bath (4) are in the container (1) successively arranged cathodes (K) and anodes (A). Each Cathode and each anode is with a horizontal one Carrier rail (6) equipped, cf. also Fig. 2, by the an external DC voltage source (not shown) Current is conducted to the electrode.
  • the mounting rail (6) of the Anode according to the invention has a copper conductor (6a) inside on, which is shown in Fig. 4. To protect against corrosion the mounting rail (6) is surrounded by a cover made of titanium sheet, which is not shown in detail.
  • each anode (A) two parallel metal grids, here as anode grids (7) and (8). It can be Act expanded metal mesh, but it is also possible to Lattice structure through a dense arrangement of holes in one Manufacture metal surface.
  • the anode grid (7) and (8) consist of titanium, which is used for activation in itself known manner with mixed oxides based on Ru and / or Ir is coated. With the inside of the anode grid (7) and (8) are titanium sheets (10), (11), (12) and (13) through Spot welding connected. These are titanium sheets (10) to (13) again with the titanium jacket (15) (see FIGS. 3 and 5) welded, which surrounds the copper rods (16).
  • the distance between the two anode grids (7) and (8) is usually 20 to 80 mm.
  • the edge area (7a) and (8a) of the Anode grid is angled, cf. Fig. 3, and the two Anode grids are connected there, what the arrangement gives additional stability.
  • the titanium sheets (10) to (13) are, as Fig. 3 shows, somewhat curved and act like elastic Springs holding the anode grid (7) and (8) with light pressure tell apart.
  • Partitions (25) and (26) are e.g. also made of titanium sheet.
  • the walls (25) and (26) are with the Titanium jacket of the copper rod (16) welded and also with the bent edge regions (7a) and (8a) of the anode grid (7) and (8) electrically connected. This makes them work Partitions (25) and (26) mechanically stabilizing, conduct Strcm from the copper rod (16) to the edge areas (7a) and (8a) the anode grid and also act as a guide for the rising gas bubbles.
  • 1 is the better one Clarity because of the partition (25) only with an anode (A) shown.
  • each anode leaves no gas bubbles significant disability rise and that Leave the electrolysis bath (4). This is especially true at high Current densities are of great importance because of the increased gas formation disturbs the movement of the ions in the electrolyte and the Can locally reduce ion concentration.
  • FIG. 4 shows an enlarged view of how the copper conductor (6a) the mounting rail (6) with a copper rod (16) Screwing is connected.
  • the screw (20) with its thread in a threaded blind hole (21) at the upper end of the copper rod (16).
  • the surfaces pressed against each other (22) on the copper conductor (6a) and on the front end of the copper rod (16) are serrated or otherwise roughened to the ohmic To keep the resistance at the current transition low.
  • the titanium sheath (15) surrounding the copper rod (16) omitted for clarity.
  • the cross-sectional area of the Copper rods don't necessarily have to be circular, it is e.g. a rectangular or oval shape possible.
  • For the titanium sheath (15) usually have wall thicknesses in the range of 0.2 up to 1 mm in question.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)

Description

Die Erfindung betrifft eine Anode für die Elektrolyse zur Gewinnung eines Metalls aus einem das Metall ionogen enthaltenden Elektrolyten, wobei unter Anlegen einer elektrischen Gleichspannung zwischen der Anode und einer oder zwei im Abstand von 10 bis 100 mm von der Anode im Elektrolyten angeordneten flächigen Kathode oder Kathoden das Metall an der Kathode abgeschieden wird und wobei die Anode eine im wesentlichen horizontale, der Stromzuführung dienende, außerhalb des Elektrolyten befindliche Tragschiene aufweist und mit der Tragschiene zwei gitterartige, mindestens zur Hälfte im Elektrolyten befindliche, im wesentlichen parallele Metallflächen (Anodengitter) elektrisch leitend verbunden sind. Die Anode ist insbesondere zum Gewinnen von Kupfer vorgesehen.
Eine Anode dieser Art ist aus DE-C-37 31 510 bekannt. Hierbei werden bei der Kupfergewinnung Stromdichten im Bereich von 600 bis 1200 A/m2 angewandt. Gelochte oder gitterartige Anoden sind ferner aus den US-Patenten 3 915 834 und 4 113 586 bekannt. Die Durchbrechungen in der Anodenfläche sollen Störungen durch Gasentwicklung vermindern und die Stromverteilung im Elektrolyten vergleichmäßigen. FR-A-2560223 beschreibt Anoden mit gitterförmigen Anodenflächen und Stromleiterstangen mit Cu-Kern und Ti-Mantel. Parallele Anodengitter, die durch Federelemente im Abstand gehalten werden, sind in GB-A-2001102 beschrieben.
Der Erfindung liegt die Aufgabe zugrunde, eine Anode für hohe und höchste Stromdichten zu schaffen, so daß die damit ausgerüstete Elektrolyse hohe Metallabscheideleistungen erbringen kann. Gleichzeitig sollen in der Anode Störungen durch Gasentwicklung möglichst vermieden werden. Erfindungsgemäß gelingt dies mit der Anode mit der im Patentanspruch 1 genannten Merkmalskombination.
Die Stromzuführung zur Anode erfolgt von außen über den Kupferleiter und von dort über einen oder mehrere Kupferstäbe sowie durch deren Titan-Mantel auf die Anodengitter. Dadurch können hohe Ströme von mehreren 1000 A zu den Anodengittern geleitet werden. Für einen mechanisch stabilen Anodenaufbau sorgen die Trennwände, die den Raum zwischen den Anodengittern teilen, auch sorgen die Trennwände für die Führung der aufsteigenden Gasblasen. Die Fläche der beiden Anodengitter, die für das Eintauchen in den Elektrolyten vorgesehen ist, kann eine Höhe von mindestens 1 m aufweisen. Die Fläche der zugehörigen Kathoden kann entsprechend groß ausgebildet werden, was die Abscheideleistung verbessert.
Während des Betriebs der Elektrolyse befinden sich die Kupferstäbe der Anoden im Elektrolyten, bei dem es sich z.B. um Kupfersulfat handelt. Der die Stäbe umgebende Titan-Mantel schützt gegen den Korrosionsangriff des Elektrolyten. Um den notwendigen guten Stromübergang zwischen dem Kupferstab und dem ihn umgebenden Titan-Mantel zu erreichen, wird der Kupferstab beim Herstellen der Ummantelung in den Titan-Mantel eingepreßt. Hierzu empfiehlt es sich, erhöhte Temperaturen im Bereich von 400 bis 700°C anzuwenden. Die gleichzeitige Herstellung des Kupferstabs mit zugehöriger Titan-Ummantelung kann in an sich bekannter Weise z.B. durch Verbundstrangpressen oder auf andere Weise erfolgen.
Ausgestaltungsmöglichkeiten der Anode werden mit Hilfe der Zeichnung erläutert. Es zeigt:
Fig. 1
eine Metallgewinnungs-Elektrolyse im Längsschnitt in schematischer Darstellung,
Fig. 2
eine Anode im Längsschnitt, geschnitten nach der Linie II-II in Fig. 3,
Fig. 3
einen Querschnitt durch die Anode der Fig. 2, geschnitten nach der Linie III-III,
Fig. 4
die Verbindung zwischen der Tragschiene und einem Kupferstab im Längsschnitt und
Fig. 5
einen Querschnitt durch einen Kupferstab mit Titan-Mantel.
Der Elektrolysebehälter (1) der Fig. 1 weist einen Zulauf (2) für den Elektrolyten und einen Ablauf (3) auf. Teilweise eingetaucht in das Elektrolytbad (4) sind im Behälter (1) aufeinanderfolgend Kathoden (K) und Anoden (A) angeordnet. Jede Kathode und jede Anode ist mit einer horizontal verlaufenden Tragschiene (6) ausgestattet, vgl. auch Fig. 2, durch die von einer äußeren Gleichspannungsquelle (nicht dargestellt) der Strom zur Elektrode geleitet wird. Die Tragschiene (6) der erfindungsgemäßen Anode weist im Innern einen Kupferleiter (6a) auf, der in Fig. 4 dargestellt ist. Zum Schutz vor Korrosion ist die Tragschiene (6) von einer Hülle aus Titanblech umgeben, die nicht im einzelnen dargestellt ist.
Wie aus Fig. 1 bis 3 hervorgeht, gehören zu jeder Anode (A) zwei parallele Metallgitter, die hier als Anodengitter (7) und (8) bezeichnet werden. Es kann sich hierbei um Streckmetallgitter handeln, doch ist es auch möglich, die Gitterstruktur durch eine dichte Anordnung von Löchern in einer Metallfläche herzustellen. Die Anodengitter (7) und (8) bestehen aus Titan, welches zur Aktivierung in an sich bekannter Weise mit Mischoxiden auf Ru- und/oder Ir-Basis beschichtet ist. Mit der Innenseite der Anodengitter (7) und (8) sind Titanbleche (10), (11), (12) und (13) durch Punktschweißen verbunden. Diese Titanbleche (10) bis (13) sind wiederum mit dem Titan-Mantel (15) (vgl. Fig. 3 und 5) verschweißt, der die Kupferstäbe (16) umgibt.
Der Abstand der beiden Anodengitter (7) und (8) beträgt üblicherweise 20 bis 80 mm. Der Randbereich (7a) und (8a) der Anodengitter ist abgewinkelt, vgl. Fig. 3, und die beiden Anodengitter sind dort miteinander verbunden, was der Anordnung zusätzliche Stabilität verleiht. Die Titanbleche (10) bis (13) sind, wie Fig. 3 zeigt, etwas gebogen und wirken wie elastische Federn, welche die Anodengitter (7) und (8) mit leichtem Druck auseinanderhalten.
Wie aus Fig. 3 ersichtlich, sind zwischen den Anodengittern (7) und (8) zwei vertikale, parallel zu den Gittern verlaufende Trennwände (25) und (26) angeordnet, welche den Raum zwischen den Anodengittern teilen. Diese Trennwände bestehen z.B. ebenfalls aus Titanblech. Die Wände (25) und (26) sind mit dem Titan-Mantel des Kupferstabs (16) verschweißt und auch mit den umgebogenen Randbereichen (7a) und (8a) der Anodengitter (7) und (8) elektrisch leitend verbunden. Dadurch wirken die Trennwände (25) und (26) mechanisch stabilisierend, leiten Strcm vom Kupferstab (16) bis in die Randbereiche (7a) und (8a) der Anodengitter und wirken ferner als Führung für die aufsteigenden Gasblasen. In Fig. 1 ist der besseren Übersichtlichkeit wegen die Trennwand (25) nur bei einer Anode (A) eingezeichnet.
Die Gitterstruktur jeder Anode läßt entstehende Gasblasen ohne nennenswerte Behinderung aufwärts steigen und das Elektrolysebad (4) verlassen. Dies ist besonders bei hohen Stromdichten von großer Bedeutung, da die verstärkte Gasbildung die Bewegung der Ionen im Elektrolyten stört und die Ionenkonzentration örtlich verringern kann.
In Fig. 4 ist vergrößert dargestellt, wie der Kupferleiter (6a) der Tragschiene (6) mit einem Kupferstab (16) durch Verschrauben verbunden ist. Hierbei greift die Schraube (20) mit ihrem Gewinde in ein Gewinde-Sackloch (21) am oberen Ende des Kupferstabs (16) ein. Die gegeneinander gepreßten Flächen (22) am Kupferleiter (6a) und am Stirnende des Kupferstabs (16) sind gezähnt oder in anderer Weise angerauht, um den ohmschen Widerstand beim Stromübergang niedrig zu halten. In Fig. 4 wurde der Titan-Mantel (15), der den Kupferstab (16) umgibt, der besseren Übersichtlichkeit wegen weggelassen. Der Durchmesser der Kupferstäbe (16), vgl. auch Fig. 5, liegt zumeist im Bereich von 10 bis 40 mm. Die Querschnittfläche der Kupferstäbe muß nicht unbedingt kreisförmig sein, es ist auch z.B. eine rechteckige oder ovale Form möglich. Für den Titan-Mantel (15) kommen üblicherweise Wandstärken im Bereich von 0,2 bis 1 mm in Frage.

Claims (3)

  1. Anode für die Elektrolyse zur Gewinnung eines Metalls aus einem das Metall ionogen enthaltenden Elektrolyten, wobei unter Anlegen einer elektrischen Gleichspannung zwischen der Anode und einer oder zwei im Abstand von 10 bis 100 mm von der Anode im Elektrolyten angeordneten flächigen Kathode oder Kathoden das Metall an der Kathode abgeschieden wird, wobei die Anode eine im wesentlichen horizontale, der Stromzuführung dienende, außerhalb des Elektrolyten befindliche Tragschiene aufweist und mit der Tragschiene zwei gitterartige, mindestens zur Hälfte im Elektrolyten befindliche, im wesentlichen parallele Metallflächen (Anodengitter) elektrisch leitend verbunden sind, wobei die Tragschiene einen Kupferleiter aufweist und mit dem Kupferleiter mindestens ein vertikaler Kupferstab verbunden ist, wobei zwischen dem Kupferleiter und dem Kupferstab ein direkter Stromübergang besteht, der Kupferstab von einem Mantel (15) aus Titan umhüllt ist und der Kupferstab im Mantel eingepreßt sitzt, wobei die beiden Anodengitter (7, 8) mit dem Titan-Mantel des Kupferstabs durch Federelemente (10, 11, 12, 13) aus Titanblech elektrisch leitend verbunden sind und der Raum zwischen den beiden Anodengittern durch mindestens zwei vertikale Metallbleche (25, 26) geteilt ist, wobei jedes Metallblech mit dem Titan-Mantel und jeweils einem Randbereich (7a, 8a) der Anodengitter verbunden ist.
  2. Anode nach Anspruch 1, dadurch gekennzeichnet, daß die Fläche der beiden Anodengitter, die für das Eintauchen in den Elektrolyten vorgesehen ist, eine Höhe von mindestens 1 m aufweist.
  3. Anode nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Kupferleiter der Tragschiene mit dem vertikalen Kupferstab verschraubt ist.
EP96111010A 1995-07-12 1996-07-09 Anode zur elektrolytischen Gewinnung von Metallen Expired - Lifetime EP0753604B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19525360A DE19525360A1 (de) 1995-07-12 1995-07-12 Anode zur elektrolytischen Gewinnung von Metallen
DE19525360 1995-07-12

Publications (2)

Publication Number Publication Date
EP0753604A1 EP0753604A1 (de) 1997-01-15
EP0753604B1 true EP0753604B1 (de) 2000-06-14

Family

ID=7766624

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96111010A Expired - Lifetime EP0753604B1 (de) 1995-07-12 1996-07-09 Anode zur elektrolytischen Gewinnung von Metallen

Country Status (5)

Country Link
US (1) US5679240A (de)
EP (1) EP0753604B1 (de)
AU (1) AU704628B2 (de)
DE (2) DE19525360A1 (de)
PE (1) PE11797A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100296374B1 (ko) * 1998-12-17 2001-10-26 장인순 방사성폐기물드럼내오염토양을동전기적방법으로제염하는방법과장치
KR20010073752A (ko) * 2000-01-20 2001-08-03 마대열 전기이온도금용 부스바의 제조방법
DE102004008813B3 (de) * 2004-02-20 2005-12-01 Outokumpu Oyj Verfahren und Anlage zum elektrochemischen Abscheiden von Kupfer
US8038855B2 (en) 2009-04-29 2011-10-18 Freeport-Mcmoran Corporation Anode structure for copper electrowinning
US9150974B2 (en) 2011-02-16 2015-10-06 Freeport Minerals Corporation Anode assembly, system including the assembly, and method of using same
US20120231574A1 (en) * 2011-03-12 2012-09-13 Jiaxiong Wang Continuous Electroplating Apparatus with Assembled Modular Sections for Fabrications of Thin Film Solar Cells
ITUB20152450A1 (it) * 2015-07-24 2017-01-24 Industrie De Nora Spa Apparato elettrodico per elettrodeposizione di metalli non ferrosi
ES2580552B1 (es) * 2016-04-29 2017-05-31 Industrie De Nora S.P.A. Ánodo seguro para celda electroquímica.

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4134806A (en) * 1973-01-29 1979-01-16 Diamond Shamrock Technologies, S.A. Metal anodes with reduced anodic surface and high current density and their use in electrowinning processes with low cathodic current density
IT1114623B (it) * 1977-07-01 1986-01-27 Oronzio De Nora Impianti Cella elettrolitica monopolare a diaframma
US4391695A (en) * 1981-02-03 1983-07-05 Conradty Gmbh Metallelektroden Kg Coated metal anode or the electrolytic recovery of metals
DE3209138A1 (de) * 1982-03-12 1983-09-15 Conradty GmbH & Co Metallelektroden KG, 8505 Röthenbach Beschichtete ventilmetallanode zur elektrolytischen gewinnung von metallen oder metalloxiden
DE3406797C2 (de) * 1984-02-24 1985-12-19 Conradty GmbH & Co Metallelektroden KG, 8505 Röthenbach Beschichtete Ventilmetallanode zur elektrolytischen Gewinnung von Metallen oder Metalloxiden
DE3421480A1 (de) * 1984-06-08 1985-12-12 Conradty GmbH & Co Metallelektroden KG, 8505 Röthenbach Beschichtete ventilmetall-elektrode zur elektrolytischen galvanisierung

Also Published As

Publication number Publication date
EP0753604A1 (de) 1997-01-15
AU704628B2 (en) 1999-04-29
MX9602725A (es) 1997-09-30
DE19525360A1 (de) 1997-01-16
US5679240A (en) 1997-10-21
DE59605429D1 (de) 2000-07-20
PE11797A1 (es) 1997-04-19
AU5944896A (en) 1997-01-23

Similar Documents

Publication Publication Date Title
EP0268738B1 (de) Elektrolysezelle zur elektrolytischen Abscheidung von Metallen
DE2262173C3 (de)
DE2336609C3 (de) Elektrolytische Zelle für die Herstellung von Alkalimetallschloraten aus Alkalimetallschloridlösungen
EP0753604B1 (de) Anode zur elektrolytischen Gewinnung von Metallen
DE2031525A1 (de) Anode fur Elektrolysezellen
EP0036677A1 (de) Elektrolysezelle
DE2645121C3 (de) Elektrolysezelle
DE2046479B2 (de) Anodenanordnung in einer elektrolysezelle
DE2448187A1 (de) Elektrolysezelle
DE2150814C3 (de) Elektrolysezelle mit einer Kathode aus fließendem Quecksilber
DE1592012A1 (de) Verbesserungen an Elektrolyse-Diaphragmazellen
DE2828892A1 (de) Monopolare diaphragma-elektrolysezelle
DE2923818A1 (de) Elektrodenabteil
DE1417193A1 (de) Elektrolysezelle
DE3406797C2 (de) Beschichtete Ventilmetallanode zur elektrolytischen Gewinnung von Metallen oder Metalloxiden
DE1467075B2 (de) Anode zur elektrolytischen Herstellung von Chlor
DE2125941C3 (de) Bipolare Einheit und damit aufgebaute elektrolytische Zelle
EP0135687B1 (de) Gasentwickelnde Metallelektrode
DE3808495C2 (de)
DE2818939A1 (de) Flexible elektrodenanordnung
DE3625506C2 (de)
EP0017188B1 (de) Anode für die Alkalichlorid-Elektrolyse und Verfahren zur Herstellung von Chlor
DE3406777C2 (de) Beschichtete Ventilmetallanode zur elektrolytischen Gewinnung von Metallen oder Metalloxiden
DE2412132B2 (de) Bipolare Elektrolysezelle
EP0478718B1 (de) Elektrodenanordnung für elektrolytische zwecke

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE FI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LOHRBERG, KARL

Inventor name: JEDLICKA, GERHARD ADOLF

Inventor name: ANASTASIJEVIC, NIKOLA, DR.

17P Request for examination filed

Effective date: 19970715

17Q First examination report despatched

Effective date: 19980220

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: METALLGESELLSCHAFT AKTIENGESELLSCHAFT

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FI

REF Corresponds to:

Ref document number: 59605429

Country of ref document: DE

Date of ref document: 20000720

EN Fr: translation not filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: MG TECHNOLOGIES AG

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20060614

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060616

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20060630

Year of fee payment: 11

BERE Be: lapsed

Owner name: *METALLGESELLSCHAFT A.G.

Effective date: 20070731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070709

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070731