EP0748265A1 - Control and closure device for a metallurgical vessel - Google Patents

Control and closure device for a metallurgical vessel

Info

Publication number
EP0748265A1
EP0748265A1 EP95941627A EP95941627A EP0748265A1 EP 0748265 A1 EP0748265 A1 EP 0748265A1 EP 95941627 A EP95941627 A EP 95941627A EP 95941627 A EP95941627 A EP 95941627A EP 0748265 A1 EP0748265 A1 EP 0748265A1
Authority
EP
European Patent Office
Prior art keywords
rotor
melt
inductor
flow
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP95941627A
Other languages
German (de)
French (fr)
Other versions
EP0748265B1 (en
Inventor
Raimund Brückner
Rick Ardell
Bernhard Schiefer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Didier Werke AG
Original Assignee
Didier Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Didier Werke AG filed Critical Didier Werke AG
Publication of EP0748265A1 publication Critical patent/EP0748265A1/en
Application granted granted Critical
Publication of EP0748265B1 publication Critical patent/EP0748265B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D39/00Equipment for supplying molten metal in rations
    • B22D39/003Equipment for supplying molten metal in rations using electromagnetic field
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/14Closures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/50Pouring-nozzles
    • B22D41/60Pouring-nozzles with heating or cooling means

Definitions

  • the invention relates to a control and closure device for a metallurgical vessel, in which a rotor is rotatably mounted in a stator arranged in a vessel wall, the stator and the rotor having flow openings which can be brought to congruence by rotation, and in the rotor there is a flow channel for the melt .
  • Such a device is described in EP 0 361 052 B1. Heating of the melt in the area of this device is not provided. In borderline cases, the melt can assume a temperature that is too low for undisturbed operation. For example, the melt can freeze between sealing surfaces that exist in the vicinity of the flow openings.
  • DE 44 05 082 A1 describes an electromagnetic flow control device (EMC) with a nozzle in combination with an on / off valve, namely a slide closure. Since the nozzle consists of electrically non-conductive material, the melt in it couples, but the nozzle itself to the electromagnetic one Field of the coil does not appear. In the slide closure, the electromagnetic field for melting should couple to the melt which may have solidified there. Since the slide is located far outside the field of the coil, this is hardly possible, at best very delayed.
  • EMC electromagnetic flow control device
  • the coupling of the melt for the purpose of flow regulation is always associated with an increase in the temperature of the melt.
  • throttling the melt flow is not possible regardless of the heating of the melt.
  • the object of the invention is to propose a control and closure device of the type mentioned in the introduction, in which the throttling or control and the closure of a melt flow from a vessel are integrated with a possibility of heating the melt.
  • the heating should preferably take place independently of the control or closure function.
  • the above object is achieved in a control and closure device of the type mentioned in the introduction in that the rotor is surrounded by an inductor, to the field of which the melt in the flow channel or the rotor can be electromagnetically coupled.
  • the melt flow can be throttled and interrupted by rotating the rotor and the melt can be heated so that it does not freeze or can be melted after any freezing or can be reheated if necessary. If the rotor couples to the electromagnetic field, the melt is heated by heat transfer from the rotor. Throttling and closing take place independently of the heating by turning the rotor.
  • melt couples itself to the electromagnetic field, it is directly heated by it.
  • the closing can be done independently by turning the rotor.
  • a throttling function results from the action of the electromagnetic field. This can be reinforced by a displacement body in the flow channel.
  • the melt flow can also be controlled by rotating the rotor.
  • Figure 1 shows a control and closure device on a metallurgical vessel in section
  • Figure 2 is a view corresponding to Figure 1 of another
  • a stator (1) made of refractory, ceramic material is inserted into a vessel bottom (2) of a metallurgical vessel.
  • the stator (1) has at least one flow opening (3) on the side, which opens into the interior of the vessel.
  • a hollow cylindrical rotor (4) is mounted in the stator (1) so as to be rotatable about a vertical axis (A).
  • the rotor (4) has at least one flow opening (5) corresponding to the flow opening (3), which opens into a coaxial flow channel (6) existing in the rotor (4).
  • the flow openings (3, 5) can be more or less congruent, so that the melt flow from the inside of the vessel into the flow channel (6) can be more or less throttled and interrupted.
  • the rotor (4) is enclosed by an inductor (11) which is formed by a cooled electromagnetic coil.
  • the inductor (11) is built into the vessel bottom (2), which can have a special perforated brick for this purpose.
  • the stator (1) consists of an electrically non-conductive, refractory, ceramic material.
  • the rotor (4) is made of an electrically conductive, refractory, ceramic material, for example a resin-bound, high-alumina material. The rotor (4), but not or only insignificantly the melt flowing through the flow channel (6), thereby couples to the electromagnetic field of the inductor (11).
  • the mode of operation of the exemplary embodiment according to FIG. 1 is as follows:
  • the rotor (4) is rotated about the axis (A) in a manner known per se. Irrespective of this, the melt temperature can be influenced.
  • the inductor (11) is switched on, whereby the rotor (4) is heated.
  • the heat of the rotor (4) is transferred to the melt in the flow channel (6) and in the flow opening (5) by heat conduction and / or heat radiation.
  • the melt temperature can thereby be increased in a desired manner, which among other things also prevents melt from freezing between the sealing surfaces (7). If, in the closed position of the rotor (4), about the melt solidifies between the sealing surfaces (7), it can be melted by switching on the inductor (11).
  • the rotor (4) in contrast to the exemplary embodiment according to FIG. 1, the rotor (4) consists of an electrically non-conductive, refractory, ceramic material, such as zirconium oxide. The rotor (4) does not couple to the electromagnetic field of the inductor (11).
  • a central displacement body (12) is installed in the flow channel (6) of the rotor (4). Otherwise, the structure is the same as that of FIG. 1.
  • the mode of operation of the exemplary embodiment according to FIG. 2 is as follows:
  • the melt flow can be throttled and shut off by turning the rotor (4).
  • the inductor (11) If the inductor (11) is switched on, its electromagnetic field acts directly on the melt in the flow channel (6) and in the flow openings (5, 3). On the one hand, this results in a narrowing of the melt flow cross-section and thus throttling of the melt flow and, on the other hand, in a heating of the melt.
  • the throttling effect is increased by the displacement body (12).
  • the regulation of the melt flow can thus be achieved here by the electromagnetic field of the inductor (11) alone and, if necessary, additionally by turning the rotor (4).
  • the displacement body (12) is not absolutely necessary for this.
  • Heating the melt ensures that it cannot freeze.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Furnace Charging Or Discharging (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Furnace Details (AREA)
  • General Induction Heating (AREA)

Abstract

The invention concerns a control and closure device for a metallurgical vessel, in which device a rotor (4) for choking or blocking the flow of melt is rotatably mounted in a stator (1) disposed in a vessel wall (2). The melt can be heated since the rotor (4) is surrounded by an inductor (11) to whose field the melt in the passage duct (6) or the rotor (4) can be coupled electromagnetically.

Description

Regel- und Verschlußeinrichtung für ein metallurgisches Gefäß Control and closure device for a metallurgical vessel
B e s c h r e i b u n gDescription
Die Erfindung betrifft eine Regel- und Verschlußeinrichtung für ein metallurgisches Gefäß, bei der in einem in einer Gefäßwandung angeordneten Stator ein Rotor drehbar gelagert ist, wobei der Stator und der Rotor durch Drehen zur Deckung bringbare Durchflußöffnungen aufweisen und im Rotor ein Durchlaufkanal für die Schmelze besteht.The invention relates to a control and closure device for a metallurgical vessel, in which a rotor is rotatably mounted in a stator arranged in a vessel wall, the stator and the rotor having flow openings which can be brought to congruence by rotation, and in the rotor there is a flow channel for the melt .
Eine derartige Einrichtung ist in der EP 0 361 052 B1 beschrieben. Eine Beheizung der Schmelze im Bereich dieser Einrichtung ist nicht vorgesehen. In Grenzfällen kann die Schmelze zonal eine für den ungestörten Betrieb zu niedrige Temperatur annehmen. Beispielsweise kann die Schmelze zwischen Dichtflächen einfrieren, die in der Umgebung der Durchflußöffnungen bestehen.Such a device is described in EP 0 361 052 B1. Heating of the melt in the area of this device is not provided. In borderline cases, the melt can assume a temperature that is too low for undisturbed operation. For example, the melt can freeze between sealing surfaces that exist in the vicinity of the flow openings.
Die DE 44 05 082 A1 beschreibt eine elektromagnetische Durchflußregelvorrichtung (EMV) mit einer Düse in Kombination mit einem Ein/Aus-Ventil, nämlich einem Schieberverschluß. Da die Düse aus elektrisch nichtleitendem Material besteht, koppelt zwar die Schmelze in ihr, jedoch die Düse selbst an das elektromagnetische Feld der Spule nicht an. In dem Schieberverschluß soll das elektromagnetische Feld zum Aufschmelzen an die gegebenenfalls dort erstarrte Schmelze ankoppeln. Da der Schieber weit außerhalb des Feldes der Spule liegt, ist dies kaum, bestenfalls sehr zeitverzögert zu erreichen.DE 44 05 082 A1 describes an electromagnetic flow control device (EMC) with a nozzle in combination with an on / off valve, namely a slide closure. Since the nozzle consists of electrically non-conductive material, the melt in it couples, but the nozzle itself to the electromagnetic one Field of the coil does not appear. In the slide closure, the electromagnetic field for melting should couple to the melt which may have solidified there. Since the slide is located far outside the field of the coil, this is hardly possible, at best very delayed.
Das Ankoppeln der Schmelze zum Zwecke einer Durchflußregulierung ist immer mit einer Temperaturerhöhung der Schmelze verbunden. Ein Drosseln des Schmelzenflusses ist allerdings nicht unabhängig vom Aufheizen der Schmelze möglich.The coupling of the melt for the purpose of flow regulation is always associated with an increase in the temperature of the melt. However, throttling the melt flow is not possible regardless of the heating of the melt.
Aufgabe der Erfindung ist es, eine Regel- und Verschlußeinrichtung der eingangs genannten Art vorzuschlagen, bei der das Drosseln bzw. Regeln und das Verschließen eines Schmelzenflusses aus einem Gefäß mit einer Aufheizmöglichkeit der Schmelze integriert ist. Das Aufheizen soll vorzugsweise unabhängig von der Regel- bzw. Verschlußfunktion erfolgen.The object of the invention is to propose a control and closure device of the type mentioned in the introduction, in which the throttling or control and the closure of a melt flow from a vessel are integrated with a possibility of heating the melt. The heating should preferably take place independently of the control or closure function.
Erfindungsgemäß ist obige Aufgabe bei einer Regel- und Verschlußeinrichtung der eingangs genannten Art dadurch gelöst, daß der Rotor von einem Induktor umgeben ist, an dessen Feld die Schmelze im Durchlaufkanal oder der Rotor elektromagnetisch ankoppelbar ist.According to the invention, the above object is achieved in a control and closure device of the type mentioned in the introduction in that the rotor is surrounded by an inductor, to the field of which the melt in the flow channel or the rotor can be electromagnetically coupled.
Mit dieser Einrichtung ist der Schmelzenfluß durch Drehen des Rotors drosselbar und unterbrechbar und die Schmelze erwärmbar, so daß sie nicht einfriert oder nach einem etwaigen Einfrieren aufschmelzbar ist oder im Bedarfsfall nacherwärmbar ist. Koppelt der Rotor an das elektromagnetische Feld an, dann wird die Schmelze durch Wärmeübertragung vom Rotor erwärmt. Das Drosseln und Verschließen erfolgt unabhängig vom Erwärmen durch Drehen des Rotors.With this device, the melt flow can be throttled and interrupted by rotating the rotor and the melt can be heated so that it does not freeze or can be melted after any freezing or can be reheated if necessary. If the rotor couples to the electromagnetic field, the melt is heated by heat transfer from the rotor. Throttling and closing take place independently of the heating by turning the rotor.
Koppelt die Schmelze selbst an das elektromagnetische Feld an, dann wird sie von diesem direkt erwärmt. Das Verschließen kann hiervon unabhängig durch Drehen des Rotors erfolgen. Eine Drosselfunktion ergibt sich durch die Einwirkung des elektromagnetischen Feldes. Diese kann durch einen Verdrängungskörper im Durchlaufkanal verstärkt werden. Zusätzlich kann der Schmelzenfluß auch durch Drehen des Rotors gesteuert werden.If the melt couples itself to the electromagnetic field, it is directly heated by it. The closing can be done independently by turning the rotor. A throttling function results from the action of the electromagnetic field. This can be reinforced by a displacement body in the flow channel. In addition, the melt flow can also be controlled by rotating the rotor.
Weitere vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen und der folgenden Beschreibung von Ausführungsbeispielen. In der Zeichnung zeigen:Further advantageous refinements of the invention result from the subclaims and the following description of exemplary embodiments. The drawing shows:
Figur 1 eine Regel- und Verschlußeinrichtung an einem metallurgischen Gefäß im Schnitt undFigure 1 shows a control and closure device on a metallurgical vessel in section and
Figur 2 eine Figur 1 entsprechende Ansicht eines weiterenFigure 2 is a view corresponding to Figure 1 of another
Ausführungsbeispiels. Embodiment.
Ein Stator (1 ) aus feuerfestem, keramischem Material ist in einen Gefäßboden (2) eines metallurgischen Gefäßes eingesetzt. Der Stator (1 ) weist seitlich wenigstens eine Durchflußöffnung (3) auf, die in das Gefäßinnere mündet. In dem Stator (1) ist ein hohlzylindrischer Rotor (4) um eine vertikale Achse (A) drehbar gelagert. Der Rotor (4) weist wenigstens eine mit der Durchflußöffnung (3) korrespondierende Durchflußöffnung (5) auf, die in einen im Rotor (4) bestehenden, koaxialen Durchlaufkanal (6) mündet.A stator (1) made of refractory, ceramic material is inserted into a vessel bottom (2) of a metallurgical vessel. The stator (1) has at least one flow opening (3) on the side, which opens into the interior of the vessel. A hollow cylindrical rotor (4) is mounted in the stator (1) so as to be rotatable about a vertical axis (A). The rotor (4) has at least one flow opening (5) corresponding to the flow opening (3), which opens into a coaxial flow channel (6) existing in the rotor (4).
Zwischen dem Stator (1 ) und dem Rotor (4) bestehen in der Umgebung der Durchflußöffnungen (3, 5) zylindrische Dichtflächen (7). Unterhalb der Dichtflächen (7) besteht ein Spielraum (8), der in einen Ringspalt (9) mündet, in welchen über eine Leitung (10) Inertgas eingeblasen werden kann.There are cylindrical sealing surfaces (7) between the stator (1) and the rotor (4) in the vicinity of the flow openings (3, 5). Below the sealing surfaces (7) there is a clearance (8) which opens into an annular gap (9) into which inert gas can be blown in via a line (10).
Durch Drehen des Rotors (4) im Stator (1) lassen sich die Durchflußöffnungen (3, 5) mehr oder weniger zur Deckung bringen, wodurch der Schmelzenfluß vom Gefäßinneren in den Durchlaufkanal (6) mehr oder weniger gedrosselt und unterbrochen werden kann.By rotating the rotor (4) in the stator (1), the flow openings (3, 5) can be more or less congruent, so that the melt flow from the inside of the vessel into the flow channel (6) can be more or less throttled and interrupted.
Der Rotor (4) ist von einem Induktor (11 ) umschlossen, der von einer gekühlten elektromagnetischen Spule gebildet ist. Bei den Ausführungsbeispielen ist der Induktor (11 ) in den Gefäßboden (2) eingebaut, der hierfür einen besonderen Lochstein aufweisen kann. Es ist jedoch auch möglich, den Induktor (11 ) im Stator (1) anzuordnen. Der Stator (1) besteht bei beiden Ausführungsbeispielen aus einem elektrisch nichtleitenden, feuerfesten, keramischen Material. Beim Ausführungsbeispiel nach Figur 1 ist der Rotor (4) aus einem elektrisch leitenden, feuerfesten, keramischen Material, beispielsweise einem harzgebundenen, hochtonerdehaltigen Material, hergestellt. Der Rotor (4), nicht jedoch oder nur unwesentlich die den Durchlaufkanal (6) durchströmende Schmelze, koppelt dadurch an das elektromagnetische Feld des Induktors (11 ) an.The rotor (4) is enclosed by an inductor (11) which is formed by a cooled electromagnetic coil. In the exemplary embodiments, the inductor (11) is built into the vessel bottom (2), which can have a special perforated brick for this purpose. However, it is also possible to arrange the inductor (11) in the stator (1). In both exemplary embodiments, the stator (1) consists of an electrically non-conductive, refractory, ceramic material. In the exemplary embodiment according to FIG. 1, the rotor (4) is made of an electrically conductive, refractory, ceramic material, for example a resin-bound, high-alumina material. The rotor (4), but not or only insignificantly the melt flowing through the flow channel (6), thereby couples to the electromagnetic field of the inductor (11).
Die Funktionsweise des Ausführungsbeispiels nach Figur 1 ist folgende:The mode of operation of the exemplary embodiment according to FIG. 1 is as follows:
Zum Drosseln und Absperren des Schmelzenflusses wird der Rotor (4) in an sich bekannter Weise um die Achse (A) gedreht. Unabhängig davon kann auf die Schmelzentemperatur eingewirkt werden. Es wird hierzu der Induktor (11 ) eingeschaltet, wodurch der Rotor (4) erhitzt wird. Die Wärme des Rotors (4) überträgt sich durch Wärmeleitung und/oder Wärmestrahlung auf die Schmelze im Durchlaufkanal (6) und in der Durchflußöffnung (5). Die Schmelzentemperatur läßt sich dadurch in einer gewünschten Weise erhöhen, wodurch unter anderem auch vermieden ist, daß Schmelze zwischen den Dichtflächen (7) einfriert. Ist in der Schließstellung des Rotors (4) etwa Schmelze zwischen den Dichtflächen (7) erstarrt, dann läßt sie sich durch Einschalten des Induktors (11 ) aufschmelzen.To throttle and shut off the melt flow, the rotor (4) is rotated about the axis (A) in a manner known per se. Irrespective of this, the melt temperature can be influenced. For this purpose, the inductor (11) is switched on, whereby the rotor (4) is heated. The heat of the rotor (4) is transferred to the melt in the flow channel (6) and in the flow opening (5) by heat conduction and / or heat radiation. The melt temperature can thereby be increased in a desired manner, which among other things also prevents melt from freezing between the sealing surfaces (7). If, in the closed position of the rotor (4), about the melt solidifies between the sealing surfaces (7), it can be melted by switching on the inductor (11).
Beim Ausführungsbeispiel nach Figur 2 besteht der Rotor (4) im Gegensatz zum Ausführungsbeispiel nach Figur 1 aus einem elektrisch nichtleitenden, feuerfesten, keramischen Material, wie Zirkonoxid. Der Rotor (4) koppelt also nicht an das elektromagnetische Feld des Induktors (11 ) an.In the exemplary embodiment according to FIG. 2, in contrast to the exemplary embodiment according to FIG. 1, the rotor (4) consists of an electrically non-conductive, refractory, ceramic material, such as zirconium oxide. The rotor (4) does not couple to the electromagnetic field of the inductor (11).
In den Durchlaufkanal(6) des Rotors (4) ist bei der Ausführung nach Figur 2 ein zentraler Verdrängungskörper (12) eingebaut. Im übrigen gleicht der Aufbau dem der Figur 1. Die Funktionsweise des Ausführungsbeispiels nach Figur 2 ist folgende:In the embodiment according to FIG. 2, a central displacement body (12) is installed in the flow channel (6) of the rotor (4). Otherwise, the structure is the same as that of FIG. 1. The mode of operation of the exemplary embodiment according to FIG. 2 is as follows:
Der Schmelzenfluß läßt sich durch Drehen des Rotors (4) drosseln und absperren.The melt flow can be throttled and shut off by turning the rotor (4).
Wird der Induktor (11) eingeschaltet, dann wirkt sein elektromagnetisches Feld direkt auf die Schmelze im Durchlaufkanal (6) und in den Durchflußöffnungen (5, 3). Dies hat einerseits eine Verengung des Schmelzenflußquerschnittes und damit Drosselung des Schmelzenstromes und andererseits eine Erhitzung der Schmelze zur Folge. Die Drosselwirkung ist durch den Verdrängungskörper (12) verstärkt. Die Regelung des Schmelzenflusses kann hier also durch das elektromagnetische Feld des Induktors (11 ) allein und im Bedarfsfall zusätzlich durch Drehen des Rotors (4) erreicht werden. Der Verdrängungskörper (12) ist hierfür nicht unbedingt notwendig.If the inductor (11) is switched on, its electromagnetic field acts directly on the melt in the flow channel (6) and in the flow openings (5, 3). On the one hand, this results in a narrowing of the melt flow cross-section and thus throttling of the melt flow and, on the other hand, in a heating of the melt. The throttling effect is increased by the displacement body (12). The regulation of the melt flow can thus be achieved here by the electromagnetic field of the inductor (11) alone and, if necessary, additionally by turning the rotor (4). The displacement body (12) is not absolutely necessary for this.
Durch die Erwärmung der Schmelze ist gewährleistet, daß diese nicht einfrieren kann.Heating the melt ensures that it cannot freeze.
Im Gegensatz zum Ausführungsbeispiel nach Figur 1 , besteht beim Ausführungsbeispiel nach Figur 2 eine Abhängigkeit zwischen der Drosselwirkung und der Erwärmung der Schmelze von dem ankoppelnden elektromagnetischen Feld. In contrast to the exemplary embodiment according to FIG. 1, in the exemplary embodiment according to FIG. 2 there is a dependency between the throttling effect and the heating of the melt on the coupling electromagnetic field.

Claims

P a t e n t a n s p r ü c h e : Patent claims:
1. Regel- und Verschlußeinrichtung für ein metallurgisches Gefäß, bei der in einem in einer Gefäßwandung angeordneten Stator ein Rotor drehbar gelagert ist, wobei der Stator und der Rotor durch Drehen zur Deckung bringbare Durchflußöffnungen aufweisen und im Rotor ein Durchlaufkanal für die Schmelze besteht, dadurch gekennzeichnet, daß der Rotor (4) von einem Induktor (11) umgeben ist, an dessen elektromagnetisches Feld die Schmelze im Durchlaufkanal (6) oder der Rotor (4) elektromagnetisch ankoppelbar ist.1. Control and closure device for a metallurgical vessel, in which a rotor is rotatably mounted in a stator arranged in a vessel wall, the stator and the rotor having flow openings which can be brought to congruence by rotation, and in the rotor there is a through-channel for the melt, thereby characterized in that the rotor (4) is surrounded by an inductor (11), to the electromagnetic field of which the melt in the flow channel (6) or the rotor (4) can be coupled electromagnetically.
2. Einrichtung nach Anspruch 1 , dadurch gekennzeichnet, daß der Induktor (11 ) in der Gefäßwandung (2) oder im Stator (1 ) angeordnet ist.2. Device according to claim 1, characterized in that the inductor (11) in the vessel wall (2) or in the stator (1) is arranged.
3. Einrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Rotor (4) aus einem elektrisch leitfähigen, feuerfesten, keramischen Material, wie harzgebundenem, hochtonerdehaltigen Material, besteht, so daß der Rotor (4), nicht jedoch die Schmelze an das elektromagnetische Feld des Induktors (11 ) ankoppelt, wobei der Rotor (4) Wärme auf die Schmelze überträgt. 3. Device according to claim 1 or 2, characterized in that the rotor (4) consists of an electrically conductive, refractory, ceramic material, such as resin-bound, high-alumina material, so that the rotor (4), but not the melt to the Coupled electromagnetic field of the inductor (11), wherein the rotor (4) transfers heat to the melt.
4. Einrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß im Durchlaufkanal (6) ein zentraler Verdrängungskörper (12) angeordnet ist, der die Durchflußregelung der dem elektromagnetischen Feld des Induktors (11) ausgesetzten Schmelze unterstützt, wobei das Verschließen durch Drehen des Rotors (4) im Stator (1) erfolgt. 4. Device according to claim 1 or 2, characterized in that a central displacement body (12) is arranged in the flow channel (6), which supports the flow control of the melt exposed to the electromagnetic field of the inductor (11), the closure by rotating the rotor (4) in the stator (1).
EP95941627A 1995-01-02 1995-11-25 Control and closure device for a metallurgical vessel Expired - Lifetime EP0748265B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19500012 1995-01-02
DE19500012A DE19500012A1 (en) 1995-01-02 1995-01-02 Control and closure device for a metallurgical vessel
PCT/EP1995/004649 WO1996020801A1 (en) 1995-01-02 1995-11-25 Control and closure device for a metallurgical vessel

Publications (2)

Publication Number Publication Date
EP0748265A1 true EP0748265A1 (en) 1996-12-18
EP0748265B1 EP0748265B1 (en) 1998-06-03

Family

ID=7750924

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95941627A Expired - Lifetime EP0748265B1 (en) 1995-01-02 1995-11-25 Control and closure device for a metallurgical vessel

Country Status (10)

Country Link
US (1) US5690854A (en)
EP (1) EP0748265B1 (en)
JP (1) JPH09510921A (en)
CN (1) CN1054560C (en)
BR (1) BR9506609A (en)
CA (1) CA2182606A1 (en)
DE (2) DE19500012A1 (en)
ES (1) ES2119506T3 (en)
WO (1) WO1996020801A1 (en)
ZA (1) ZA9612B (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001516282A (en) 1996-08-03 2001-09-25 デイデイエル―ヴエルケ アクチエンゲゼルシヤフト Method, apparatus and refractory nozzle for injecting and / or casting liquid metal
DE19651534C2 (en) * 1996-08-03 1999-01-14 Didier Werke Ag Method, device and refractory pouring spout for pouring and / or pouring liquid metals
DE19651531C2 (en) * 1996-12-11 1999-01-14 Didier Werke Ag Process for regulating the temperature and for uniformizing the temperature profile of a molten, metallic strand
DE19651535C1 (en) * 1996-12-11 1998-04-30 Didier Werke Ag Inductor for a melt container
US6168053B1 (en) * 1999-06-21 2001-01-02 Consarc Corporation Positioning apparatus and method for precision pouring of a liquid from a vessel
DE10058681B4 (en) * 2000-11-25 2006-02-23 Inductotherm Coating Equipment S.A. Metallurgical vessel for receiving a melt, method for changing an induction heater of a metallurgical vessel and plug for closing a connection channel
CN100371109C (en) * 2006-02-21 2008-02-27 赫冀成 Ladle with steel heating and tapping set and its tapping method
GB0613337D0 (en) * 2006-07-05 2006-08-16 Mills Stephen D Rotating control nozzle (metercast)
DE102008037259A1 (en) * 2008-08-08 2010-02-25 Doncasters Precision Castings-Bochum Gmbh Electromagnetic plug
CN102901353A (en) * 2012-11-05 2013-01-30 黄幼华 Intermediate-frequency coreless inductive discharge valve
US10387969B1 (en) 2014-03-12 2019-08-20 Intuit Inc. Computer implemented methods systems and articles of manufacture for suggestion-based interview engine for tax return preparation application
US11861734B1 (en) 2014-08-18 2024-01-02 Intuit Inc. Methods systems and articles of manufacture for efficiently calculating a tax return in a tax return preparation application
US10235722B1 (en) 2014-11-26 2019-03-19 Intuit Inc. Systems and methods for analyzing and determining estimated taxes
US11222384B1 (en) 2014-11-26 2022-01-11 Intuit Inc. System and method for automated data estimation for tax preparation
US10235721B1 (en) 2014-11-26 2019-03-19 Intuit Inc. System and method for automated data gathering for tax preparation
US10140666B1 (en) 2015-03-30 2018-11-27 Intuit Inc. System and method for targeted data gathering for tax preparation

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU493296A1 (en) * 1974-03-22 1975-11-28 Ждановский металлургический институт Dosing device
CH665369A5 (en) * 1984-03-07 1988-05-13 Concast Standard Ag METHOD FOR CONTROLLING THE FLOW OF A METAL MELT IN CONTINUOUS CASTING, AND A DEVICE FOR IMPLEMENTING THE METHOD.
JPS63268559A (en) * 1987-04-24 1988-11-07 Daido Steel Co Ltd Sliding gate
DE3809072A1 (en) * 1988-03-18 1989-09-28 Didier Werke Ag TURN AND / OR SLIDE LOCK AND ITS LOCKING PARTS
CH676811A5 (en) * 1988-09-29 1991-03-15 Stopinc Ag
DE4136066A1 (en) * 1991-11-01 1993-05-06 Didier-Werke Ag, 6200 Wiesbaden, De Outlet improved arrangement for metallurgical vessel - comprises sleeve and surrounding cooled induction coil of truncated conical form, with oil axially adjustable to vary gap to freeze or melt metal
US5350159A (en) * 1993-02-18 1994-09-27 Westinghouse Electric Corporation On/off valve apparatus for use in conjunction with electromagnetic flow control device controlling the flow of liquid metal through an orifice

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9620801A1 *

Also Published As

Publication number Publication date
US5690854A (en) 1997-11-25
ES2119506T3 (en) 1998-10-01
BR9506609A (en) 1997-09-09
DE19500012A1 (en) 1996-07-04
EP0748265B1 (en) 1998-06-03
WO1996020801A1 (en) 1996-07-11
ZA9612B (en) 1996-07-10
JPH09510921A (en) 1997-11-04
CA2182606A1 (en) 1996-07-11
CN1139397A (en) 1997-01-01
DE59502411D1 (en) 1998-07-09
CN1054560C (en) 2000-07-19

Similar Documents

Publication Publication Date Title
EP0748265B1 (en) Control and closure device for a metallurgical vessel
EP0308597B1 (en) Rotary sliding gate for a metallugical vessel just as rotor and or stator for such a rotary gate
EP0379647A2 (en) Refractory nozzle and induction coil therefor
DE69005208T2 (en) Electromagnetic valve to control the flow of liquid in a line.
DE19623104C2 (en) Sanitary fitting designed as a single lever mixer
EP0332867B1 (en) Turning and/or sliding lock and its locking parts
DE4405082A1 (en) On-off valve device for use in connection with an electromagnetic flow control device which controls the flow of a liquid metal through an outlet opening
EP0328776B1 (en) Closing and controlling device for casting fluid metal melts
DE4136066A1 (en) Outlet improved arrangement for metallurgical vessel - comprises sleeve and surrounding cooled induction coil of truncated conical form, with oil axially adjustable to vary gap to freeze or melt metal
DE4232006A1 (en) Device for opening and closing a bottom pouring opening in a vacuum induction melting and casting furnace
DE3809071C2 (en)
EP2516086A1 (en) Sliding closure for a metallurgical container
EP0915746A1 (en) Method, device and fireproof nozzle for the injection and/or casting of liquid metals.
DE4108153A1 (en) Refractory molded part and its use
EP0436813B1 (en) Shut-off and/or control device
EP0959997A2 (en) Method, device and closure member for casting on liquid casts
DE3525141A1 (en) Steam conversion valve
WO1989005700A1 (en) Process and outlet sleeve for introducing gas into the outlet of a molten bath, in particular of a receptacle containing molten steel
DE2242087A1 (en) SLIDE VALVE
EP0488433B1 (en) Regulating needle for a duct transporting dust-containing hot gases
EP1332813A2 (en) Refractory nozzle for a metallurgical vessel
DE8508613U1 (en) Electrically heated domestic water heater
DE19540641C2 (en) Method for operating an induction device when non-metallic melts flow out
DE4132910C1 (en)
DE10246701B4 (en) Injection molding device and nozzle with a gap seal between nozzle components

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES FR GB IT

17P Request for examination filed

Effective date: 19970113

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19971024

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO ROMA S.P.A.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES FR GB IT

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19980603

REF Corresponds to:

Ref document number: 59502411

Country of ref document: DE

Date of ref document: 19980709

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2119506

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20011102

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20011119

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20011123

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20011126

Year of fee payment: 7

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020126

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021130

BERE Be: lapsed

Owner name: *DIDIER-WERKE A.G.

Effective date: 20021130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030603

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030731

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20031213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051125