EP0737273B1 - Mikropumpe - Google Patents

Mikropumpe Download PDF

Info

Publication number
EP0737273B1
EP0737273B1 EP95902252A EP95902252A EP0737273B1 EP 0737273 B1 EP0737273 B1 EP 0737273B1 EP 95902252 A EP95902252 A EP 95902252A EP 95902252 A EP95902252 A EP 95902252A EP 0737273 B1 EP0737273 B1 EP 0737273B1
Authority
EP
European Patent Office
Prior art keywords
movable wall
micropump
pumping chamber
fluid
micropump according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95902252A
Other languages
English (en)
French (fr)
Other versions
EP0737273A1 (de
Inventor
Harald Van Lintel
Patrick Poscio
Frédéric Neftel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Westonbridge International Ltd
Original Assignee
Westonbridge International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Westonbridge International Ltd filed Critical Westonbridge International Ltd
Publication of EP0737273A1 publication Critical patent/EP0737273A1/de
Application granted granted Critical
Publication of EP0737273B1 publication Critical patent/EP0737273B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/04Pumps having electric drive
    • F04B43/043Micropumps
    • F04B43/046Micropumps with piezoelectric drive

Definitions

  • the present invention relates to a micropump comprising at least one base plate, at least one plate upper and an intermediate insert between the two other plates and made up of one material capable of being machined so as to define a pumping chamber, at least one inlet control member fluid to connect the pumping chamber with at minus one inlet of the micropump, and at least one organ fluid outlet control to connect the pumping with at least one micropump outlet, the pumping chamber comprising a movable wall machined in the intermediate plate which can be moved in two opposite directions when aspirating a fluid from entering the pumping chamber or during expulsion of this fluid from the pumping chamber to the outlet, actuation means being provided for moving said movable wall to cause periodic variation of the volume of the pumping chamber, of the second elements being intended to limit the movement of expulsion fluid from the pumping chamber.
  • the intermediate plate of the micropump described in this document includes a stop limiting movement during the expulsion of the fluid.
  • a piezoelectric chip is fixed on the opposite side of the plate intermediate and intended to move the latter.
  • the suction movement of this intermediate plate is therefore also produced by the piezoelectric chip, but the amplitude of this movement cannot be precisely controlled. Because of this, the volume of subtance pumped with each reciprocating movement of the insert intermediate is not precisely defined and may vary depending on the performance and aging of the tablet piezoelectric.
  • Pumps of this type can be used in particular for in situ drug administration, miniaturization of the pump allowing a patient to wear it on oneself, or even possibly to receive a pump directly implanted in the body. Furthermore, such pumps allow dosing of small amounts of fluid to inject.
  • the silicon wafer is etched to form a cavity, which with one of the glass plates defines the pumping chamber, an inlet or suction valve and at least one outlet or discharge valve putting the pumping chamber in communication respectively with a input channel and an output channel.
  • the part of the plate forming a wall of the pumping chamber can be deformed by a control element constituted by example by a pellet or a piezoelectric crystal. This is equipped with two electrodes which, when they are connected to a source of electrical voltage, cause the deformation of the pellet and, consequently, the deformation of the wafer, which causes variation the volume of the pumping chamber. This movable wall or deformable of the pumping chamber can thus be moved between two positions.
  • the operation of the micropump is as follows. When no electrical voltage is applied to the piezoelectric pellet, inlet and outlet valves are in the closed position. When an electrical voltage is applied there is an increase in pressure in the pumping chamber which causes the opening of the outlet valve. The fluid contained in the pumping is then pumped back to the outlet channel by the displacement of the deformable wall from a first position to a second position. During this phase, the valve inlet is kept closed by the pressure prevailing in the pumping chamber.
  • micropumps are used especially for the administration of drugs. he it is therefore important that the flow rate of the micropump is good determined, so that the drug to be injected is very precisely dosed. Now, the known micropumps present certain imperfections on this point.
  • the flow rate of the micropump depends on the variation volume of the pumping chamber between the two deformable wall positions. This variation of volume depends on several parameters, among which the electrical voltage applied to the piezoelectric chip and the physical characteristics of the piezoelectric chip (thickness, diameter, dielectric constant) and of the deformable wall (material, thickness). So a same voltage applied to micropumps apparently identical may cause different deformations pumping chambers for these micropumps which, therefore, will have different flow rates.
  • the flow rate may evolve over time due to the aging of materials of the piezoelectric pad and glue with which is fixed.
  • the flow rate of the micropump depends on the pressure in the outlet channels and entry.
  • the invention aims to solve the drawbacks mentioned and to obtain a micropump whose flow is very precise and constant, independent of variations in the performance and aging of the motor element and independent of pressures in the inlet pipe or Release.
  • the invention is characterized for this purpose, in that the micropump includes first stop elements limiting the suction movement of the fluid in the chamber pumping, the first and second stop elements being arranged so as to define the range of motion of the movable wall in the two opposite directions.
  • the volume of substance pumped at each reciprocating movement of the movable wall or membrane of pumping is clearly defined and remains constant. It does depend no variations in organ performance motor which is preferably a piezoelectric chip. Aging or other deterioration of this pellet piezoelectric does not influence the flow of substance pumped. It is therefore not necessary to provide a performance compensation circuit based on time in the control of the micropump.
  • the flow rate of the pumped substance is also appreciably independent of the pressure prevailing in the duct entry and exit. It only depends on the machining micropump and pumping frequency.
  • the movable wall comprises a rigid central part surrounded by a border thinner elastic coming from a piece with the rigid central part, the latter projecting with respect to the face of the movable wall which is opposite to the pumping chamber and intended to come into contact with the plate which is arranged opposite it to constitute said first abutment elements limiting the fluid suction movement of the movable wall.
  • the rigid central part of the movable wall ensures precise movement of this wall, comparable to movement of a piston. Pressure differences in the chamber only a small change in volume thanks to the smaller area of the elastic border surrounding the rigid central part.
  • the actuation means comprise a drive member movably mounted on one base or top pads and an intermediate piece disposed between the movable wall and the drive member.
  • the drive member is mounted so movable on the outer face of said upper plate, said intermediate piece passing through the wafer upper by an opening.
  • the driving organ preferably a piezoelectric chip
  • the piezoelectric chip is not directly bonded to the membrane
  • variations in shape and in deformation of the piezoelectric chip have no influence on the shape of the deformable wall, so on the debit.
  • the movable wall is constituted by a membrane having a central part projecting so as to constitute with the plate upper said first stop elements, this part central being surrounded by a piezoelectric element attached to the membrane and having a central bore allowing the passage of the central room.
  • This arrangement allows a simple construction, everything by obtaining a double limitation of the movements of the deformable wall.
  • the first stop elements consist of an adjustable screw crossing the upper plate and one end of which is arranged opposite the movable wall.
  • the volume of substance pumped with each reciprocating movement of the movable wall therefore the flow rate can be adjusted by acting on one of the elements stop formed by the screw.
  • FIG. 1 illustrates a first embodiment of the invention in section along line I-I of FIG. 2.
  • Figure 2 is a horizontal sectional view along the line II-II of figure 1.
  • FIG. 3 represents a second embodiment of the invention in section according to FIG. III-III of the figure 4.
  • Figure 4 is a horizontal sectional view along the line III-III of Figure 3.
  • FIG. 5 represents a third embodiment of the invention in section along the line V-V in FIG. 6.
  • Figure 6 is a horizontal sectional view along the line VI-VI of figure 5.
  • Figure 7 illustrates a variant of the first mode of execution.
  • the micropump is equipped with a valve inlet and outlet valve. It is right to note however that the invention also applies to micropumps comprising several valves arranged between the inlet and the pumping chamber and / or several valves arranged between the pumping chamber and the outlet.
  • the micropump can also be provided with a plurality of inputs and a plurality of outputs.
  • the inlet valves and output may be replaced by any other body fluid inlet or outlet control, such as flow limiters.
  • the micropump according to the first embodiment comprises a basic plate 2, preferably in glass.
  • This base plate 2 is breakthrough of a channel 4 forming the outlet duct of the pump.
  • This conduit can for example be connected to a needle injection (not shown).
  • the base plate 2 is surmounted by a plate intermediate 6 made of silicon or another machinable material by etching using photolithographic techniques. It is attached to the base plate 2 by known bonding techniques, such as the technique known by the English term “anodic bonding” or welding anodic with heating to around 300 ° C and applying a potential difference of around 500V between the pads.
  • An upper plate 8 preferably made of glass, is joined by the same techniques to the intermediate plate 6. It is pierced with an inlet channel 10 which can be connected to a tank not shown in which is the liquid substance to be pumped, for example a drug to be administered with a precise dosage.
  • the micropump can be worn on the body of the patient, or even be implanted.
  • the intermediate silicon wafer 6 can have a crystal orientation ⁇ 100>, in order to lend itself successfully to etching.
  • the inserts 2, 6 and 8 are preferably carefully polished. These plates, 2,6 and 8 are then advantageously made hydrophilic, in particular in the case where the substance used in the micropump is an aqueous solution. To this end, the silicon wafer 6 can be immersed in boiling HNO 3 .
  • the thicknesses of the plates 2, 6 and 8 can be approximately 1mm, 0.3mm and 0.8mm for a surface dimension of the pads around 10 by 20mm.
  • the inlet or suction 10 and outlet ducts or backflow 4 are mainly connected by a first inlet valve 12, a pumping chamber 50 and a second outlet valve 28.
  • the first valve 12 is of the machined non-return type in the silicon wafer 6 and formed by a membrane 14 of generally circular shape carrying an annular rib 16.
  • the latter separates two compartments 18.20 provided on the upper part of the membrane 14 and cooperates, for this purpose, with the lower surface of the plate upper 8.
  • the first compartment 18 is in annular form and in communication with the inlet duct 10.
  • the second compartment 20 occupies a substantially central position. It communicates via an orifice 22 slightly off center with a third compartment 24 located under the membrane 14.
  • the rib 16 is coated with a thin layer of oxide 26 also obtained by photolithography techniques and gives the membrane 14 a prestress or pretension stressing the top of the rib 16 against the plate upper glass 8 which serves as a valve seat.
  • valves or further flow limiters may be used at the place of the valve described.
  • the outlet valve 28 is also machined in the silicon wafer 6 and has a membrane 30 carrying an annular rib 32 coated with an oxide layer 34 giving the membrane 30 a preload stressing the top of the rib 32 against the lower plate 2 which serves as a valve seat. Oxide layers 33 applied on the other side of the membrane 30 reinforce this prestress.
  • the rib 32 defines a fourth behavior 36 communicating with outlet conduit 4 and a fifth compartment 38 outside the substantially shaped rib annular.
  • a sixth compartment 40 is located above of the membrane 30 and is in communication with the outside of the pump through an opening 42. Electrical contacts or electrodes 44,46 are arranged opposite one another on the upper plate 8 and on a projecting part 48 of the membrane 30. These contacts allow an adequate control of the expulsion fluid. It is understood that other types known valves or flow limiters may replace the outlet valve 28.
  • the pumping chamber 50 is substantially shaped circular and connected by two passages 52 and 54 on the one hand to the third compartment 24 of the first valve 12 and on the other hand to the fifth compartment 38 of the second valve 28.
  • the pumping membrane 56 constituting a wall movable or deformable of the pumping chamber 50 is machined in the silicon wafer 6 and has a part rigid central 58 relatively wide compared to the total width of the pumping membrane 56.
  • the diameter of this central part 58 varies between 20 and 90% of the diameter pumping membrane 56, preferably between 50 and 80%.
  • This rigid central part 58 includes a thickness significantly greater than the annular edge 61 of the pumping membrane. To fix ideas, the edge 61 has a thickness between 10 and 100 ⁇ m, while the rigid central part 58 has a thickness which is 10 to 50 ⁇ m less than the total thickness of the plate 6, which gives for example a thickness of 300 ⁇ m.
  • the pumping membrane 56 has on its lower surface facing the base plate 2, elements of stop 60, which are for example three in number. These stop elements 60 protrude from the bottom surface membrane and can consist of a silicon oxide layer. They are intended to come into contact with the upper surface of the base plate 2 to limit the movement of expulsion or repression of the pumping membrane 56. Similarly, the central part rigid 56 thicker is intended to come into contact with the upper plate 8, when the membrane of pumping 56 is actuated, to form elements of stop opposite the stop elements 60 in order to limit the suction movement of the pumping membrane 56. So the movement of the latter is mechanically controlled from the upper and lower side. This provides a very precise quantity of substance pumped at each round trip of the membrane.
  • the central part rigid 56 is comparable to a piston whose movement is well defined. Since the annular edge 61 of the pumping membrane 56 has a relatively surface small compared to the total surface area of the membrane pumping 56, pressure differences in the pressure chamber pumping 50 generate only a small change in volume under the pumping membrane 56.
  • oxide abutment elements 60 avoid a sticking or suction effect of the pumping membrane 56, when the latter moves from its position the lower up.
  • Electrical contacts or electrodes 62,64 are arranged facing each other on the central part rigid 58 and on the lower surface of the upper plate 8. These contacts 62,64 are extended outwards of the pump through an opening 66 and connected to a electrical circuit not shown to control the operation of the pumping membrane 56 and suction fluid. Adequate circuits are for example described in European patent application No. 0.498.863. In the described embodiment, these are more precisely these electrical contacts which form the stop elements limiting the suction movement of the pumping membrane 56.
  • the latter also comprises on both sides of the zones 65 covered with silicon oxide. These areas oxide 65 gives the membrane a certain prestress (not shown) up in Figure 1.
  • An actuating device 70 of the pumping membrane 56 includes a drive member in the form of a pellet piezoelectric 72 provided with connected 74.76 electrodes on a generator 78 intended to supply a voltage alternative.
  • This tablet can be the one sold by the company Philips under the name PXE-52. She is fixed by any suitable means such as gluing or welding, on an elastic blade 80 made of metal, silicon or made of plastic. This blade 80 is mounted via a spacer 82 on the plate upper 8. This spacer 82 may be consisting of a plastic, metallic washer or silicon. It could also be formed by a predetermined thickness of glue or glass of a part with the plate 8.
  • An intermediate piece 84 in the form of a pushpin can be made integral by its flat head 86 by any suitable means, such as gluing or welding, of the elastic blade 82. It acts on the part rigid central unit 58 of the pumping membrane 56 thanks to its vertical rod 88 passing through the upper plate by a hole 89. There may also be a slight clearance between the vertical rod 88 and the pumping membrane 56, when the pump is at rest. This game or a constraint mechanical between rod 88 and pumping membrane 56 can be determined by the curvature during hardening glue.
  • the actuating device 70 comprising a tablet piezoelectric 72 and an elastic blade 80, can also be replaced by a device comprising two or several adjacent piezoelectric plates or combined piezoceramic and metallic discs.
  • the piezoelectric pad 72 is independent of the pumping membrane 56.
  • Hysteresis effects of the piezoelectric disc 72 ("piezocreep") or variations or deterioration of this tablet has not influence on the shape of the pumping membrane 56 considering that the latter is independent of the pellet piezoelectric 72 and set in motion thanks to the intermediate piece 84.
  • This construction makes it possible to obtain a large volume of fluid displaced for a diameter given the pumping membrane, considering that the part rigid central unit 58 acts like a piston.
  • the parts machined from the micropump can be further miniaturized while retaining an actuation device of any size, relatively large. This miniaturization of the machined parts makes it possible to lower the production costs.
  • the micropump according to the present invention therefore allows obtain a very precise dosage with each reciprocating movement, a dosage which is practically independent of the pressure prevailing in the inlet and outlet pipes, and a dosage which is practically independent of performance of the piezoelectric chip and damage and hysteresis phenomena known for this kind of actuating device.
  • the movement of the pumping membrane is precisely controlled as much by the rigid intermediate piece 58 that the stops 60. The flow is therefore defined by the machining characteristics of the pumping membrane 56 and by the frequency of the device actuation.
  • This type of pump allows the use of piezoelectric pads having fairly wide variations in their characteristics. In addition, there is no need to calibrate the pumps for each tablet used.
  • the flow is independent of viscosity. Thanks to the central part rigid and with electrical contacts 62.64, it is possible to detect the end of the fluid suction and to obtain additional information relating to the micropump operation.
  • valves and outlet ducts and inlet, as well as the pumping room can to be very different.
  • the distribution of oxide zones can be adapted to the desired prestresses for the valves and pumping.
  • the actuation device may present a motor member of a type other than a pellet piezoelectric.
  • Intermediate piece 84 could have come from a piece with elastic blade 80 or with the pad piezoelectric. It could also be freely disposed between the elastic blade and the pumping membrane.
  • the abutment elements 60 proper could to lack.
  • the pumping chamber would then have a low height such as the upper surface of the insert base 2 serves as a stop element against which the pumping membrane 56 abuts each reciprocating movement.
  • the control electrodes 44,46 and / or 62,64 could be constituted differently or be deleted in a simplified variant.
  • the pump can also present one or more screws 90 passing through the plate 8 and cooperating at their ends with the central part rigid 58 or with electrical contact 62.
  • These screws 90 thus constitute adjustable stop elements allowing to adjust the amplitude of the suction movement.
  • the contact 64 of figure 1 will then be replaced by the screw 90 in metallic material.
  • Adjustment screws can also be mounted on blade 80. In addition, it would be possible to mount screws adjustment in the flat head 86 of the intermediate piece.
  • the second embodiment illustrated in Figures 3 and 4 differs from the first embodiment only by the constitution of the pumping chamber and device actuation. As a result, elements analogous to two execution modes have the same reference numbers and will no longer be described in detail.
  • This second embodiment also includes a plate base 2 and an upper plate 8 pierced with inlet conduits 10, respectively outlet 4. Between these plates 2 and 8 is interposed the intermediate plate 6 in silicon machined by photolitographic techniques to obtain an inlet and outlet valve 12 28 and a pumping chamber 50.
  • Thin oxide layers 26,33,34 allow to obtain predetermined prestresses in the membrane in silicon.
  • the pumping chamber 50 is substantially shaped circular and connected by two passages 52 and 54 to the valves entry and exit.
  • the pumping membrane 156 in the form of a movable, deformable wall includes a central part rigid 158 thicker to form a stop element intended to cooperate with the lower surface of the wafer upper 8 in order to limit the suction movement of the pumping membrane 156.
  • the latter has on its lower surface a lower stop element central 160.
  • this element limiting movement pumping membrane expulsion consists by a small extra thickness in silicon or by a layer silicon oxide. So the movement of the membrane of pumping 156 is stopped precisely on both sides up and down. This provides a exact amount of substance pumped on each round trip of the pumping membrane.
  • the actuating device 170 is constituted by a piezoelectric chip 172 having a central hole 173.
  • the patch is fixed by welding or gluing to the pumping membrane 156.
  • Electrical contacts 174,176 allow connection of the patch to a generator 78 intended to supply an alternating voltage.
  • Electrodes 162,164 are arranged opposite one of the other on the central part 158 and on the lower surface of the upper plate 8. These electrodes are extended to the outside of the pump by an opening 166 and make it possible to control the aspiration of the fluid and the operation of the pumping membrane 156. This the latter can also be provided with zones with silicon oxides 65 allowing to induce a certain prestress in the silicon membrane.
  • This type of construction with stop elements 160 and 158 exactly limit the movement of the diaphragm pumping 156 in two opposite directions allows also a precise dosage of the amount of substance pumped with each reciprocating movement.
  • the pumping rate depends only on the machining characteristics of the pumping membrane and the frequency of the actuating device. Variations or deterioration in performance of the piezoelectric chip in some limits do not influence the flow rate of the micropump. he there is no need to calibrate the micropump, an assembly precise is enough.
  • the construction of this mode of execution is simpler than that of the first embodiment.
  • the third embodiment represents in FIGS. 5 and 6 also differs from the first and second embodiment mainly by the constitution of the membrane of pumping and actuation device. As a result, elements similar to the three embodiments carry the same reference figures and will no longer be described from in detail.
  • This third embodiment also includes a base plate 2 and upper plate 8 provided of inlet conduits 10, respectively of outlet 4. Between these plates 2 and 8 is interposed the intermediate plate 6 made of silicon machined by photolithographic techniques to obtain an inlet valve 12 and outlet 28 and a pumping chamber 50. Thin layers 26,33,34,65 oxide allow to obtain prestressing predetermined in the silicon membrane.
  • the pumping chamber is also circular in shape and connected by passages 52 and 54 to the valves entry and exit.
  • the pumping membrane 256 in the form of a wall of the pumping chamber, has a thickness substantially uniform and has on its lower surface a lower stop element 260 to limit the eviction movement.
  • this stop element consists of a small silicon area or made of silicon oxide. It is placed under the device actuator comprising a piezoelectric pad 270 fixed by welding or gluing on the upper surface of the pumping membrane 256 and connected by connections 274,276 to a generator 78 intended to supply a voltage alternative.
  • a member with an adjustable upper stop 258 intended for limit the suction movement consists of a annular part 261 inserted and fixed by gluing in a bore of the upper plate 8.
  • This annular part 261 has a threaded bore 263 capable of receive a screw 265 which forms the adjustable stop in height intended to cooperate with the piezoelectric pad 270.
  • the annular part 261 and the screw 265 are of preferably in metallic material.
  • the movement of the pumping membrane 256 is precisely limited up and down.
  • This construction therefore allows to obtain a very precise quantity of pumped substance at every reciprocating movement of the pumping membrane all by authorizing an adjustment of the pumped quantity. Variations or deterioration of the performance of the tablet piezoelectric within certain limits do not influence not the flow rate of the micropump.
  • An electrical contact 264 provided on the metal screw 265 allows, together with the upper connection 276 of the piezoelectric pad, to control the fluid suction movement of the pumping membrane 256.
  • the screw 265 may be made up of a material capable of compensating for variations in shape of the movable wall 256 due to temperature effects, because such variations without compensation can influence the volume of the pumped fluid. Such compensation could also be obtained using the 90 screws described with reference to Figure 7.
  • the modes of execution described are particularly adapted for administering medicaments in the form of micropumps capable of being implanted in the body of a patient.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)

Claims (14)

  1. Mikropumpe mit zumindest einem Basisplättchen (2), zumindest einem oberen Plättchen (8) und einem zwischen die beiden anderen Plättchen (2, 8) eingefügten Zwischenplättchen (6), das aus einem Werkstoff besteht, der so bearbeitet werden kann, dass eine Pumpenkammer (50) definiert wird, zumindest einem Regelorgan (12) für den Fluideintritt, um die Pumpenkammer mit zumindest einem Eingang (10) der Mikropumpe zu verbinden, und zumindest einem Regelorgan (28) für den Fluidaustritt, um die Pumpenkammer (50) mit zumindest einem Ausgang (4) der Mikropumpe zu verbinden, wobei die Pumpenkammer (50) eine bewegliche Wand (56, 156, 256) umfasst, die aus dem Zwischenplättchen (6) herausgearbeitet worden ist und während des Ansaugens eines Fluids vom Eingang (10) in die Pumpenkammer (50) bzw. während des Ausstosses dieses Fluids aus der Pumpenkammer zum Ausgang (4) in zwei entgegengesetzten Richtungen verschoben werden kann, und Betätigungsorgane (70, 170, 270) vorgesehen sind, um die benannte bewegliche Wand (56, 156, 256) zu verschieben und so eine periodische Veränderung des Volumens der Pumpenkammer (50) hervorzurufen, während zweite Anschlagelemente (2, 60; 2, 160; 2, 260) dazu bestimmt sind, die Bewegung für den Fluidausstoss aus der Pumpenkammer (50) zu begrenzen, dadurch gekennzeichnet, dass die Mikropumpe erste Anschlagelemente (58, 62, 64; 158, 162, 164; 258, 270) umfasst, die die Bewegung für das Fluidansaugen in die Pumpenkammer (50) begrenzen, wobei die ersten und zweiten Anschlagelemente so eingerichtet sind, dass sie die Bewegungsamplitude der beweglichen Wand (56, 156, 256) in den beiden entgegengesetzten Richtungen begrenzen.
  2. Mikropumpe gemäss Anspruch 1, dadurch gekennzeichnet, dass die bewegliche Wand (56) eine starre zentrale Partie (58) hat, die von einer zusammen mit dieser starren zentralen Partie (58) aus einem Stück herausgearbeiteten, elastischen Einfassung geringerer Dicke (61) umgeben ist, wobei diese starre zentrale Partie aus der der Pumpenkammer (50) entgegengesetzten Seite der beweglichen Wand (56) hervorspringt, die dazu bestimmt ist, mit dem Plättchen (2, 8) in Berührung zu kommen, das ihr gegenüber angeordnet ist, um so die benannten ersten Anschlagelemente zu bilden, die die Fluidansaugbewegung der beweglichen Wand (56) begrenzen.
  3. Mikropumpe gemäss Anspruch 2, dadurch gekennzeichnet, dass die Weite der benannten starren zentralen Partie (58) zwischen 20 und 90 %, vorzugsweise zwischen 50 und 80 % der Weite der beweglichen Wand (56) schwankt.
  4. Mikropumpe gemäss Anspruch 1, dadurch gekennzeichnet, dass die dem Innenraum der Pumpenkammer (50) zugewandte Seite der beweglichen Wand (56) ein oder mehrere Erhebungen (60, 160, 260) umfasst, die zusammen mit dem ihnen gegenüber angeordneten Plättchen (2) die zweiten Anschlagelemente bilden, die die Fluidausstossbewegung begrenzen.
  5. Mikropumpe gemäss einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Betätigungsorgane (70) ein Antriebsorgan (72), das beweglich entweder auf das Basisplättchen (2) oder auf das obere Plättchen (8) montiert ist, sowie ein Zwischenstück (84), das zwischen der beweglichen Wand (56) und dem Antriebsorgan (72) angeordnet ist, umfassen.
  6. Mikropumpe gemäss Anspruch 5, dadurch gekennzeichnet, dass das Antriebsorgan (72) beweglich auf die Aussenseite des benannten oberen Plättchens (8) montiert ist, wobei das benannte Zwischenstück (84) durch eine Öffnung (89) des oberen Plättchens (8) hindurchtritt.
  7. Mikropumpe gemäss Anspruch 6, dadurch gekennzeichnet, dass das Antriebsorgan ein piezoelektrisches Element (72, 80) ist, das über einen Abstandshalter (82) auf die Aussenseite des oberen Plättchens (8) montiert ist.
  8. Mikropumpe gemäss Anspruch 6 oder 7, dadurch gekennzeichnet, dass das Zwischenstück (84) einen mit dem piezoelektrischen Element (72, 80) fest verbundenen flachen Kopf (86) sowie einen Schaft (88) umfasst, der durch das obere Plättchen (8) hindurchtritt und mit seinem Ende auf die bewegliche Wand (56) einwirkt.
  9. Mikropumpe gemäss Anspruch 1, dadurch gekennzeichnet, dass sie Elektroden (62, 64; 162, 164; 262, 264) umfasst, die einander gegenüberstehend auf der beweglichen Wand (56; 156; 256) und auf dem oberen Plättchen (8) angeordnet und mit einem Stromkreis verbunden sind, der es gestattet, die Funktion der deformierbaren Wand (56; 156; 256) zu steuern.
  10. Mikropumpe gemäss Anspruch 1, dadurch gekennzeichnet, dass die bewegliche Wand (156) aus einer Membran besteht, die eine hervorspringende zentrale Partie (158) aufweist, die zusammen mit dem oberen Plättchen (8) die benannten ersten Anschlagelemente bildet und von einem piezoelektrischen Element (172) umgeben ist, das an der Membran befestigt ist und in der Mitte eine Bohrung (173) aufweist, die den Durchtritt des Mittelstücks (158) gestattet.
  11. Mikropumpe gemäss Anspruch 1, dadurch gekennzeichnet, dass die ersten Anschlagelemente von einer Stellschraube (90, 265) gebildet werden, die das obere Plättchen (8) durchquert und deren eines Ende gegenüber der beweglichen Wand (56, 256) angeordnet ist.
  12. Mikropumpe gemäss Anspruch 11, dadurch gekennzeichnet, dass ein piezoelektrisches Element (270) zwischen das benannte Ende der Schraube (265) und die bewegliche Wand (256) eingefügt und mit letzterer fest verbunden worden ist.
  13. Mikropumpe gemäss Anspruch 11 oder 12, dadurch gekennzeichnet, dass die Schraube oder Schrauben (90, 265) aus einem Material gefertigt sind, das geeignet ist, die durch Temperatureffekte hervorgerufenen Gestaltsänderungen der beweglichen Wand (56, 256) auszugleichen.
  14. Mikropumpe gemäss einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass sie zweite, einander gegenüber angeordnete Elektroden (44, 46) umfasst, wobei eine (44) dieser zweiten Elektroden auf eine bewegliche Wand montiert ist, die stromab von der Pumpenkammer (50) so angeordnet ist, dass der Fluidausstoss der Mikropumpe gesteuert werden kann.
EP95902252A 1993-12-28 1994-12-21 Mikropumpe Expired - Lifetime EP0737273B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH387893 1993-12-28
CH3878/93 1993-12-28
PCT/IB1994/000435 WO1995018307A1 (fr) 1993-12-28 1994-12-21 Micropompe

Publications (2)

Publication Number Publication Date
EP0737273A1 EP0737273A1 (de) 1996-10-16
EP0737273B1 true EP0737273B1 (de) 1998-05-20

Family

ID=4265440

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95902252A Expired - Lifetime EP0737273B1 (de) 1993-12-28 1994-12-21 Mikropumpe

Country Status (8)

Country Link
US (1) US5759015A (de)
EP (1) EP0737273B1 (de)
JP (1) JP3718724B2 (de)
AU (1) AU681470B2 (de)
CA (1) CA2179063C (de)
DE (1) DE69410487T2 (de)
SG (1) SG44800A1 (de)
WO (1) WO1995018307A1 (de)

Families Citing this family (138)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19546570C1 (de) * 1995-12-13 1997-03-27 Inst Mikro Und Informationstec Fluidpumpe
FR2748310A1 (fr) 1996-05-03 1997-11-07 Debiotech Sa Dispositif d'obturation par pincement d'un tube souple
FR2757906A1 (fr) * 1996-12-31 1998-07-03 Westonbridge Int Ltd Micropompe avec piece intermediaire integree
DE19719862A1 (de) * 1997-05-12 1998-11-19 Fraunhofer Ges Forschung Mikromembranpumpe
WO1999009321A1 (fr) * 1997-08-20 1999-02-25 Westonbridge International Limited Micropompe comprenant un organe de controle d'entree permettant son auto-amorcage
US5836750A (en) * 1997-10-09 1998-11-17 Honeywell Inc. Electrostatically actuated mesopump having a plurality of elementary cells
US6106245A (en) * 1997-10-09 2000-08-22 Honeywell Low cost, high pumping rate electrostatically actuated mesopump
US6247908B1 (en) * 1998-03-05 2001-06-19 Seiko Instruments Inc. Micropump
US6908770B1 (en) 1998-07-16 2005-06-21 Board Of Regents, The University Of Texas System Fluid based analysis of multiple analytes by a sensor array
US6148635A (en) * 1998-10-19 2000-11-21 The Board Of Trustees Of The University Of Illinois Active compressor vapor compression cycle integrated heat transfer device
EP0995908A1 (de) * 1998-10-20 2000-04-26 vanden Brande, Pierre Molekularpumpe
JP3620316B2 (ja) * 1998-11-16 2005-02-16 株式会社日立製作所 マイクロポンプとその製造方法
JP4539898B2 (ja) 1999-05-17 2010-09-08 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ マイクロメカニック・ポンプ
WO2001006244A2 (en) 1999-07-16 2001-01-25 Board Of Regents, The University Of Texas System General signaling protocols for chemical receptors in immobilized matrices
JP3814132B2 (ja) * 1999-10-27 2006-08-23 セイコーインスツル株式会社 ポンプ及びその駆動方法
EP1103305A1 (de) * 1999-11-26 2001-05-30 F.Hoffmann-La Roche Ag Makroaktuator-Kopplungssystem als Bestandteil eines Pipettiermoduls
DE60135092D1 (de) 2000-01-31 2008-09-11 Univ Texas Tragbare vorrichtung mit einer sensor-array-anordnung
CA2410306C (en) * 2000-05-25 2009-12-15 Westonbridge International Limited Micromachined fluidic device and method for making same
US7420659B1 (en) * 2000-06-02 2008-09-02 Honeywell Interantional Inc. Flow control system of a cartridge
US6568286B1 (en) 2000-06-02 2003-05-27 Honeywell International Inc. 3D array of integrated cells for the sampling and detection of air bound chemical and biological species
US6837476B2 (en) 2002-06-19 2005-01-04 Honeywell International Inc. Electrostatically actuated valve
US6589229B1 (en) 2000-07-31 2003-07-08 Becton, Dickinson And Company Wearable, self-contained drug infusion device
US7000330B2 (en) * 2002-08-21 2006-02-21 Honeywell International Inc. Method and apparatus for receiving a removable media member
DE10039735C2 (de) * 2000-08-16 2003-04-24 Eppendorf Ag Dosiersystem
US7198250B2 (en) * 2000-09-18 2007-04-03 Par Technologies, Llc Piezoelectric actuator and pump using same
CN1269637C (zh) * 2000-09-18 2006-08-16 帕尔技术有限责任公司 一种压电致动器和使用压电致动器的泵
US20050143789A1 (en) * 2001-01-30 2005-06-30 Whitehurst Todd K. Methods and systems for stimulating a peripheral nerve to treat chronic pain
CA2437558A1 (en) * 2001-01-31 2002-08-08 The Board Of Regents Of The University Of Texas System Method and apparatus for the confinement of materials in a micromachined chemical sensor array
GB0123054D0 (en) 2001-09-25 2001-11-14 Randox Lab Ltd Passive microvalve
US6729856B2 (en) 2001-10-09 2004-05-04 Honeywell International Inc. Electrostatically actuated pump with elastic restoring forces
DE10164474B4 (de) * 2001-12-20 2006-06-14 Mathias Frodl Mikropumpe
US6591625B1 (en) 2002-04-17 2003-07-15 Agilent Technologies, Inc. Cooling of substrate-supported heat-generating components
US8257967B2 (en) 2002-04-26 2012-09-04 Board Of Regents, The University Of Texas System Method and system for the detection of cardiac risk factors
US6827559B2 (en) * 2002-07-01 2004-12-07 Ventaira Pharmaceuticals, Inc. Piezoelectric micropump with diaphragm and valves
EP1403519A1 (de) * 2002-09-27 2004-03-31 Novo Nordisk A/S Membranpumpe mit dehnbarer Pumpenmembran
KR100483079B1 (ko) * 2002-10-23 2005-04-14 재단법인서울대학교산학협력재단 능동형 마이크로 냉각기
CN100344874C (zh) * 2003-01-28 2007-10-24 清华大学 一种流体的传输方法及实现该方法的微型蠕动泵
US20060233649A1 (en) * 2003-04-22 2006-10-19 The Regents Of The University Of California Micromembrane actuator
US7544071B2 (en) * 2003-08-21 2009-06-09 Nutek Private Limited Electrical power distribution apparatus
EP1695082A2 (de) * 2003-12-11 2006-08-30 Board of Regents, The University of Texas System Verfahren und vorrichtung für die analyse von speichel unter verwendung eines sensorarrays
US8105849B2 (en) 2004-02-27 2012-01-31 Board Of Regents, The University Of Texas System Integration of fluids and reagents into self-contained cartridges containing sensor elements
US8101431B2 (en) 2004-02-27 2012-01-24 Board Of Regents, The University Of Texas System Integration of fluids and reagents into self-contained cartridges containing sensor elements and reagent delivery systems
DE102004011726A1 (de) * 2004-03-05 2005-09-22 Ing. Erich Pfeiffer Gmbh Dosiervorrichtung
US7290993B2 (en) * 2004-04-02 2007-11-06 Adaptivenergy Llc Piezoelectric devices and methods and circuits for driving same
US20050225201A1 (en) * 2004-04-02 2005-10-13 Par Technologies, Llc Piezoelectric devices and methods and circuits for driving same
US7287965B2 (en) * 2004-04-02 2007-10-30 Adaptiv Energy Llc Piezoelectric devices and methods and circuits for driving same
US7312554B2 (en) 2004-04-02 2007-12-25 Adaptivenergy, Llc Piezoelectric devices and methods and circuits for driving same
US7484940B2 (en) * 2004-04-28 2009-02-03 Kinetic Ceramics, Inc. Piezoelectric fluid pump
US7104767B2 (en) * 2004-07-19 2006-09-12 Wilson Greatbatch Technologies, Inc. Diaphragm pump for medical applications
US20060134510A1 (en) * 2004-12-21 2006-06-22 Cleopatra Cabuz Air cell air flow control system and method
US7222639B2 (en) * 2004-12-29 2007-05-29 Honeywell International Inc. Electrostatically actuated gas valve
WO2006074037A1 (en) * 2004-12-30 2006-07-13 Par Technologies, Llc Diaphragm pumps with controlled output
US7322803B2 (en) * 2004-12-30 2008-01-29 Adaptivenergy, Llc. Pumps with diaphragms bonded as bellows
US7267043B2 (en) * 2004-12-30 2007-09-11 Adaptivenergy, Llc Actuators with diaphragm and methods of operating same
US7258533B2 (en) * 2004-12-30 2007-08-21 Adaptivenergy, Llc Method and apparatus for scavenging energy during pump operation
US20060147329A1 (en) * 2004-12-30 2006-07-06 Tanner Edward T Active valve and active valving for pump
US7328882B2 (en) * 2005-01-06 2008-02-12 Honeywell International Inc. Microfluidic modulating valve
US7445017B2 (en) * 2005-01-28 2008-11-04 Honeywell International Inc. Mesovalve modulator
US20060194724A1 (en) * 2005-02-25 2006-08-31 Whitehurst Todd K Methods and systems for nerve regeneration
WO2006113344A2 (en) * 2005-04-13 2006-10-26 Par Technologies, Llc Actuators with connected diaphragms
US20060232166A1 (en) * 2005-04-13 2006-10-19 Par Technologies Llc Stacked piezoelectric diaphragm members
JP2008537461A (ja) * 2005-04-13 2008-09-11 アダプティブエナジー・リミテッド・ライアビリティー・カンパニー フレキシブル膜上に導体を備える圧電ダイヤフラムアセンブリ
EP1910824A4 (de) 2005-05-31 2012-11-21 Labnow Inc Verfahren und zusammensetzungen in zusammenhang mit der erstellung und verwendung eines weissen blutbildes
US7320338B2 (en) * 2005-06-03 2008-01-22 Honeywell International Inc. Microvalve package assembly
CA2613078A1 (en) * 2005-06-24 2007-01-04 Board Of Regents, The University Of Texas System Systems and methods including self-contained cartridges with detection systems and fluid delivery systems
US7517201B2 (en) * 2005-07-14 2009-04-14 Honeywell International Inc. Asymmetric dual diaphragm pump
US20070051415A1 (en) * 2005-09-07 2007-03-08 Honeywell International Inc. Microvalve switching array
US20070075286A1 (en) * 2005-10-04 2007-04-05 Par Technologies, Llc Piezoelectric valves drive
US20070129681A1 (en) * 2005-11-01 2007-06-07 Par Technologies, Llc Piezoelectric actuation of piston within dispensing chamber
WO2007061610A1 (en) * 2005-11-18 2007-05-31 Par Technologies, Llc Human powered piezoelectric power generating device
US7624755B2 (en) 2005-12-09 2009-12-01 Honeywell International Inc. Gas valve with overtravel
US20070140875A1 (en) * 2005-12-16 2007-06-21 Green James S Piezoelectric pump
US8043206B2 (en) 2006-01-04 2011-10-25 Allergan, Inc. Self-regulating gastric band with pressure data processing
US7798954B2 (en) * 2006-01-04 2010-09-21 Allergan, Inc. Hydraulic gastric band with collapsible reservoir
US7523762B2 (en) 2006-03-22 2009-04-28 Honeywell International Inc. Modulating gas valves and systems
US8007704B2 (en) * 2006-07-20 2011-08-30 Honeywell International Inc. Insert molded actuator components
US7543604B2 (en) * 2006-09-11 2009-06-09 Honeywell International Inc. Control valve
US8202267B2 (en) * 2006-10-10 2012-06-19 Medsolve Technologies, Inc. Method and apparatus for infusing liquid to a body
US7644731B2 (en) 2006-11-30 2010-01-12 Honeywell International Inc. Gas valve with resilient seat
CN101490419B (zh) * 2006-12-09 2011-02-02 株式会社村田制作所 压电泵
DE102006061506B4 (de) * 2006-12-15 2008-10-30 Ing. Erich Pfeiffer Gmbh Dosiervorrichtung
US20080246367A1 (en) * 2006-12-29 2008-10-09 Adaptivenergy, Llc Tuned laminated piezoelectric elements and methods of tuning same
US20080161754A1 (en) * 2006-12-29 2008-07-03 Medsolve Technologies, Inc. Method and apparatus for infusing liquid to a body
DE102007045637A1 (de) 2007-09-25 2009-04-02 Robert Bosch Gmbh Mikrodosiervorrichtung zum Dosieren von Kleinstmengen eines Mediums
US7934912B2 (en) 2007-09-27 2011-05-03 Curlin Medical Inc Peristaltic pump assembly with cassette and mounting pin arrangement
US8083503B2 (en) 2007-09-27 2011-12-27 Curlin Medical Inc. Peristaltic pump assembly and regulator therefor
US8062008B2 (en) 2007-09-27 2011-11-22 Curlin Medical Inc. Peristaltic pump and removable cassette therefor
WO2009048952A1 (en) * 2007-10-08 2009-04-16 The Regents Of The University Of Michigan Liquid-gap electrostatic hydraulic micro actuators
DE102008003792A1 (de) 2008-01-10 2009-07-16 Robert Bosch Gmbh Verfahren zum Herstellen einer Mikropumpe sowie Mikropumpe
US8708961B2 (en) * 2008-01-28 2014-04-29 Medsolve Technologies, Inc. Apparatus for infusing liquid to a body
AU2009257591A1 (en) * 2008-06-11 2009-12-17 Allergan, Inc. Implantable pump system
EP2343456B1 (de) * 2008-09-29 2018-08-15 Murata Manufacturing Co., Ltd. Piezoelektrische pumpe
WO2010042493A1 (en) 2008-10-06 2010-04-15 Allergan, Inc. Mechanical gastric band with cushions
US20100305397A1 (en) * 2008-10-06 2010-12-02 Allergan Medical Sarl Hydraulic-mechanical gastric band
US20100185049A1 (en) 2008-10-22 2010-07-22 Allergan, Inc. Dome and screw valves for remotely adjustable gastric banding systems
EP2333340A1 (de) * 2009-12-07 2011-06-15 Debiotech S.A. Flexibles Element für Mikropumpe
US20110201874A1 (en) * 2010-02-12 2011-08-18 Allergan, Inc. Remotely adjustable gastric banding system
US8678993B2 (en) * 2010-02-12 2014-03-25 Apollo Endosurgery, Inc. Remotely adjustable gastric banding system
US8758221B2 (en) 2010-02-24 2014-06-24 Apollo Endosurgery, Inc. Source reservoir with potential energy for remotely adjustable gastric banding system
US8764624B2 (en) * 2010-02-25 2014-07-01 Apollo Endosurgery, Inc. Inductively powered remotely adjustable gastric banding system
US20110270025A1 (en) 2010-04-30 2011-11-03 Allergan, Inc. Remotely powered remotely adjustable gastric band system
US9226840B2 (en) 2010-06-03 2016-01-05 Apollo Endosurgery, Inc. Magnetically coupled implantable pump system and method
US8517915B2 (en) 2010-06-10 2013-08-27 Allergan, Inc. Remotely adjustable gastric banding system
US8698373B2 (en) 2010-08-18 2014-04-15 Apollo Endosurgery, Inc. Pare piezo power with energy recovery
US9211207B2 (en) 2010-08-18 2015-12-15 Apollo Endosurgery, Inc. Power regulated implant
US8961393B2 (en) 2010-11-15 2015-02-24 Apollo Endosurgery, Inc. Gastric band devices and drive systems
EP2469089A1 (de) * 2010-12-23 2012-06-27 Debiotech S.A. Elektronisches Steuerungsverfahren und System für eine piezoelektrische Pumpe
US8899264B2 (en) 2011-12-15 2014-12-02 Honeywell International Inc. Gas valve with electronic proof of closure system
US8947242B2 (en) 2011-12-15 2015-02-03 Honeywell International Inc. Gas valve with valve leakage test
US8839815B2 (en) 2011-12-15 2014-09-23 Honeywell International Inc. Gas valve with electronic cycle counter
US9846440B2 (en) 2011-12-15 2017-12-19 Honeywell International Inc. Valve controller configured to estimate fuel comsumption
US9074770B2 (en) 2011-12-15 2015-07-07 Honeywell International Inc. Gas valve with electronic valve proving system
US9835265B2 (en) 2011-12-15 2017-12-05 Honeywell International Inc. Valve with actuator diagnostics
US9851103B2 (en) 2011-12-15 2017-12-26 Honeywell International Inc. Gas valve with overpressure diagnostics
US8905063B2 (en) 2011-12-15 2014-12-09 Honeywell International Inc. Gas valve with fuel rate monitor
US9557059B2 (en) 2011-12-15 2017-01-31 Honeywell International Inc Gas valve with communication link
US9995486B2 (en) 2011-12-15 2018-06-12 Honeywell International Inc. Gas valve with high/low gas pressure detection
US10422531B2 (en) 2012-09-15 2019-09-24 Honeywell International Inc. System and approach for controlling a combustion chamber
US9234661B2 (en) 2012-09-15 2016-01-12 Honeywell International Inc. Burner control system
CN103334907A (zh) * 2013-07-08 2013-10-02 吉林大学 悬臂式压电隔膜泵
EP2868970B1 (de) 2013-10-29 2020-04-22 Honeywell Technologies Sarl Regelungsvorrichtung
US10024439B2 (en) 2013-12-16 2018-07-17 Honeywell International Inc. Valve over-travel mechanism
US10760565B2 (en) * 2014-08-27 2020-09-01 Ge Aviation Systems Llc Airflow generator
US9841122B2 (en) 2014-09-09 2017-12-12 Honeywell International Inc. Gas valve with electronic valve proving system
US9645584B2 (en) 2014-09-17 2017-05-09 Honeywell International Inc. Gas valve with electronic health monitoring
JP6862000B2 (ja) 2015-08-20 2021-04-21 サイティバ・スウェーデン・アクチボラグ Cff/tff使い捨て流路における再循環ループ
US10503181B2 (en) 2016-01-13 2019-12-10 Honeywell International Inc. Pressure regulator
JP6293825B2 (ja) * 2016-07-12 2018-03-14 科際精密股▲ふん▼有限公司 圧電ポンプ及びその操作方法
US10564062B2 (en) 2016-10-19 2020-02-18 Honeywell International Inc. Human-machine interface for gas valve
TWI625462B (zh) * 2017-01-05 2018-06-01 研能科技股份有限公司 微型氣壓動力裝置
US11073281B2 (en) 2017-12-29 2021-07-27 Honeywell International Inc. Closed-loop programming and control of a combustion appliance
US10697815B2 (en) 2018-06-09 2020-06-30 Honeywell International Inc. System and methods for mitigating condensation in a sensor module
TWI680232B (zh) * 2018-08-13 2019-12-21 科際精密股份有限公司 流體驅動裝置
EP3722605A1 (de) * 2019-04-11 2020-10-14 FRAUNHOFER-GESELLSCHAFT zur Förderung der angewandten Forschung e.V. Strömungserzeuger
DE112020007593T5 (de) * 2020-09-09 2023-07-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Eine elektrostatische mikropumpe und ein verfahren zum herstellen einer elektrostatischen mikropumpe
WO2022192292A1 (en) * 2021-03-09 2022-09-15 Aita Bio Inc. Micropump with integrated piezoelectric technologies for providing valve and pump functionality
WO2023141072A1 (en) * 2022-01-19 2023-07-27 Aita Bio Inc. Mems micropump with multi-chamber cavity for a device for delivering insulin
US20230293300A1 (en) * 2022-03-16 2023-09-21 Boston Scientific Scimed, Inc. Fluid control system for an implantable inflatable device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US417035A (en) * 1889-12-10 Apparatus for feeding reagents
US1183486A (en) * 1915-02-08 1916-05-16 John L Pardue Pressure-indicating device.
FR1177065A (fr) * 1956-05-29 1959-04-20 Kontak Mfg Co Ltd Diaphragme et pompe à diaphragme
JPS60159387A (ja) * 1984-01-30 1985-08-20 Sharp Corp ポンプ
CH679555A5 (de) * 1989-04-11 1992-03-13 Westonbridge Int Ltd
EP0435653B1 (de) * 1989-12-27 1994-06-01 Seiko Epson Corporation Mikropumpe
KR910012538A (ko) * 1989-12-27 1991-08-08 야마무라 가쯔미 마이크로 펌프 및 그 제조 방법
ES2075459T3 (es) * 1990-08-31 1995-10-01 Westonbridge Int Ltd Valvula equipada con detector de posicion y microbomba que incorpora dicha valvula.

Also Published As

Publication number Publication date
CA2179063C (en) 2005-02-15
SG44800A1 (en) 1997-12-19
DE69410487T2 (de) 1998-11-05
JPH09507279A (ja) 1997-07-22
AU681470B2 (en) 1997-08-28
EP0737273A1 (de) 1996-10-16
US5759015A (en) 1998-06-02
AU1118095A (en) 1995-07-17
CA2179063A1 (en) 1995-07-06
WO1995018307A1 (fr) 1995-07-06
JP3718724B2 (ja) 2005-11-24
DE69410487D1 (de) 1998-06-25

Similar Documents

Publication Publication Date Title
EP0737273B1 (de) Mikropumpe
EP0739451B1 (de) Mikropumpe
EP0429591B1 (de) Mikropumpe
WO1990012209A1 (fr) Micropompe a debit constant
EP1283957B1 (de) Microbearbeitete fluidische vorrichtung und herstellungsverfahren
JP2824975B2 (ja) 弁及びその弁を組込んだマイクロポンプ
CH682456A5 (fr) Micropompe.
EP2431770B1 (de) Vorrichtung mit verformbarer Membran zur Betätigung mit verkürzter Reaktionszeit
FR2687738A1 (fr) Pompe comportant des soupapes commandees par le fluide transporte.
EP0670740A1 (de) Ventil zur behandlung von hydrocephalus
FR2605382A1 (fr) Valve asservissable electriquement
FR2765634A1 (fr) Element de compensation des variations de longueur d'un objet sous l'effet de la temperature
CA2703870A1 (fr) Miroir deformable a raideur repartie, outil et procede pour realiser un tel miroir
CH694498A5 (fr) Dispositif implantable pour administrer un médicament par perfusion comportant un élément de contact électrique pour un transducteur.
FR2935370A1 (fr) Micropompe
CH680009A5 (en) Micro-pump-for injection of medication dose
FR2650634A1 (fr) Micropompe perfectionnee
CH684209A5 (fr) Clapet intégré et micropompe comprenant un tel clapet.
WO2010139913A1 (fr) Organe de circulation fluidique, et ensemble de circulation fluidique comprenant au moins un tel organe
CH683634A5 (fr) Clapet intégré et micropompe comprenant un tel clapet.
CA2927425A1 (fr) Procede pour generer un ecoulement de fluide
EP2932206B1 (de) Pumpe mit einer anordnung zur messung der temperatur oder der durchflussrate eines fluids
FR2908488A1 (fr) Cale hydroelastique comprenant un actionneur commande electriquement.
FR2668570A1 (fr) Nouveau dispositif de controle, eventuellement de reglage, de debits fluides, en particulier extremement faibles, permettant notamment de fournir des quantites tres precises, en particulier tres reduites, de fluide.
FR2516606A1 (fr) Pompe a diaphragme a commande piezo-electrique, notamment micro-pompe pour implantation dans le corps humain

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19960515

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE ES FR GB IT LI NL

17Q First examination report despatched

Effective date: 19961008

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE ES FR GB IT LI NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980520

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19980520

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 69410487

Country of ref document: DE

Date of ref document: 19980625

ITF It: translation for a ep patent filed

Owner name: CON LOR S.R.L.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19980625

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: DEBIOTECH S.A.

Free format text: WESTONBRIDGE INTERNATIONAL LIMITED#DOLLARD HOUSE, WELLINGTON QUAY#DUBLIN 2 (IE) -TRANSFER TO- DEBIOTECH S.A.#LE PORTIQUE AV. DE SEVELIN 28#1004 LAUSANNE (CH)

Ref country code: CH

Ref legal event code: NV

Representative=s name: MICHELI & CIE INGENIEURS-CONSEILS

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20111227

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20121220

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20121220

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121221

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20131219

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20131220

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69410487

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20131221

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69410487

Country of ref document: DE

Effective date: 20140701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131221

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL