EP0685298B1 - Procedure of and device for fabricating aspheric lens surfaces - Google Patents

Procedure of and device for fabricating aspheric lens surfaces Download PDF

Info

Publication number
EP0685298B1
EP0685298B1 EP94117272A EP94117272A EP0685298B1 EP 0685298 B1 EP0685298 B1 EP 0685298B1 EP 94117272 A EP94117272 A EP 94117272A EP 94117272 A EP94117272 A EP 94117272A EP 0685298 B1 EP0685298 B1 EP 0685298B1
Authority
EP
European Patent Office
Prior art keywords
axis
feeding
workpiece
tool
cup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94117272A
Other languages
German (de)
French (fr)
Other versions
EP0685298B2 (en
EP0685298A1 (en
Inventor
Gunter Dipl.-Ing. Schneider
Helwig Dipl.-Ing. Buchenauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schneider GmbH and Co KG
Original Assignee
Schneider GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6515074&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0685298(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Schneider GmbH and Co KG filed Critical Schneider GmbH and Co KG
Publication of EP0685298A1 publication Critical patent/EP0685298A1/en
Application granted granted Critical
Publication of EP0685298B1 publication Critical patent/EP0685298B1/en
Publication of EP0685298B2 publication Critical patent/EP0685298B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B13/00Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor

Definitions

  • the invention relates to a method and a device for producing aspherical lens surfaces according to the preambles of claim 1 and claim 6.
  • Such a method and such a device are known from EP-A-0 453 094.
  • Another manufacturing process for spherical lenses processes the mostly preformed glass compacts with a diamond cup wheel by means of ball grinding.
  • the feed takes place either with the tool spindle or with the workpiece spindle to which the diamond cup wheel is at a defined angle.
  • the spherical radius on the lens is determined by this setting angle, so that different spherical shapes can be produced within one limit with one and the same tool.
  • its abrasive coating changes its shape due to wear during the grinding process by adapting to the changing ball radii. If changing ball radii are to be machined with the same pot tool, the grinding diameter to be generated cannot be determined in advance. Due to different radii and tool wear, unpredictable engagement zones are created on the tool, which lead to unwanted macro shape changes on the workpiece surface.
  • Optical lenses with aspherical surfaces offer a number of advantages.
  • the imaging performance compared to spherical lenses is significantly increased. Image errors are better corrected, and the number of lenses can be reduced in optical systems by using aspherical lenses. So far, these advantages could only be exploited to a very limited extent.
  • the manufacturing outlay and the associated high unit costs conventionally restricted the use of aspherical, translucent components to special and special applications. Up to now, one-off and small series productions were not possible, or only to a limited extent, due to cost reasons.
  • DE-A-2 441 976 describes a suction holder for lens blanks which are to be given an aspherical surface.
  • the negative contour recessed in the middle is formed on the top of a rigid glass block. This is drilled centrally and clamped on a plate chuck, which is rotatably driven via a hollow shaft with a pump connection.
  • the sucked-in blank can be turned after processing its top and processed on a similarly shaped second glass block on its underside.
  • the method requires thin, bendable blanks and has the disadvantages mentioned above.
  • EP-A2-0 453 094 describes a method and an apparatus for grinding toric lenses.
  • a rotating diamond pot tool is guided with a preselected head angle in a pivoting movement over a linearly supplied lens blank, the pivoting radius of the tool being able to be changed during a pivoting movement.
  • the pot tool is arranged on a pivotable cross slide which is mounted on a base slide which can be pivoted about a horizontal axis and can be extended and retracted in the radial direction. In order to keep the head angle and thus the vertical curvature of the lens constant along the changing circular path, this becomes Readjust the tool according to its position using the cross slide.
  • the pivoting angle of the basic carriage is detected by a sensor during its movement. After a swivel movement has ended, the lens blank is adjusted by means of a feed drive. This process is repeated until a desired lens thickness is reached.
  • the object of the invention is to significantly improve and accelerate the cost-effective manufacture of aspherical lenses while overcoming the disadvantages of the prior art. Furthermore, a short duration of processing with high precision should be achieved without the need for post-processing. An important goal is to minimize the effects of tool wear on the lens shape.
  • the invention provides according to the characterizing part of claim 1 that the pot tool eug with a contact point that can be selected via the lead angle, is moved towards the workpiece rotating about the first feed axis and is guided from the edge of
  • the pot tool brought up to the workpiece by means of the feed axes only comes into contact with the corresponding preselected contact point on the workpiece, ie the peripheral edge of the pot tool only touches the workpiece at a relatively narrow point of contact.
  • the lead angle is 0 °, from the starting position at the beginning of the machining.
  • the lead angle can be modified beforehand in order to optimize the grinding process in such a way that a specifically desired grinding area diameter is set on the pot tool and / or the material is removed in the most favorable manner. This is particularly important for targeted aspherical machining with the pot tool.
  • a method described in EP-A2-0 304 106 uses a flat control surface which, with a selectable axis offset, lies tangentially on the rotating workpiece and, together with a tool, can be pivoted on a circular path about a common axis of rotation.
  • the extent of the axis offset determines the asphericity during machining, which takes place in the dewatered state of the lens blank on a lathe.
  • every setting must be specified and not changeable during the cutting process, so that precise individual adjustments are not possible.
  • the machining parameters for determining the machining contour are entered into a microprocessor computer, e.g. Via a keyboard under screen control or via an interface, whereupon the tool path data are calculated in the control unit.
  • This control can therefore be used as an open system to meet high requirements with regard to computing power, storage capacity, processing speed and process representation on the basis of derivative software.
  • the machining contour can be defined according to claim 4 on the basis of the lens geometry for the workpiece in micro steps and the associated parameters for the current movement control of the pot tool and holder can be programmed.
  • the machining is largely automated and at the same time refined, so that larger deviations are excluded and the fine machining is achieved with the greatest possible accuracy and speed.
  • a further development according to claim 5 is that the surface of the lens blank is brought to a spherical shape by pre-processing, which is as close as possible to the specified aspherical machining contour. This greatly facilitates the subsequent aspherical processing.
  • a device for producing aspherical surfaces on lens blanks in particular for carrying out the aforementioned method, is characterized in that the pot tool can be brought up to the workpiece rotating by means of a rotary drive about the first feed axis with a contact point which can be selected via the lead angle and by means of the Control unit can be guided by interpolation control of the feed axes and the swivel axis from the edge of the workpiece to its center and beyond along the machining contour, with each axis being assigned a measuring system whose measured values and samples of the machined surface can be fed into the control unit and in a microprocessor computer Comparison of the actual surface profile with the machining contour for correcting the tool path can be evaluated.
  • the invention provides, according to claim 7, that for the rotation of the workpiece there is an additional drive for the central axis with respect to the workpiece holder, in particular in close proximity to the second feed drive, which is favorable for the structural arrangement is.
  • the workpiece spindle can optionally rotate continuously, in a conventional manner counter to the direction of rotation of the pot tool, or it can be converted into a controlled rotary axis by switching axes. This enables rotational asymmetrical surface processing with very little effort.
  • the device according to claim 9 is preferably designed such that the pot tool is arranged at a fixed distance from the transverse axis and can be pivoted by means of a linear feed drive. According to claim 10, this can be arranged parallel to the feed direction of the first drive, which offers structural advantages, for example a simplified frame and slide design.
  • a workpiece W is shown, which is machined in the form of a lens blank L by a pot tool T with an inclined axis A along a machining contour K.
  • a peripheral part U starts at the edge of the workpiece W and touches it at point P, the outer axis line A 'enclosing a constant lead angle ⁇ to the tangent F.
  • the workpiece W is driven in rotation and rotates in the opposite direction to the pot tool T, which is guided from the edge of the workpiece W beyond its center.
  • the lead angle ⁇ which can also be seen between the outer axis line A 'and the normal N to the tangent F (FIG. 1), remains the same throughout.
  • the tangent angle ⁇ to the surface O becomes smaller and smaller.
  • the contact point P is always behind the puncture point of the outer axis line A ', and the contact line or ring surface of the peripheral part U ensures a uniform and gentle material removal.
  • the inclination of the pot tool T and the lead angle ⁇ can be optimally set for the respective grinding or polishing task. If a preprocessing with a spherical surface O is to be carried out, a constant inclination of the pot tool T to the axis Z of the valuable spindle S is predefined with a setting angle (FIG. 2).
  • the structural design is illustrated in Fig. 3.
  • the CNC machine tool designated as a whole by 10, has a frame 12 with a table 14 on which a horizontal frame 16 is arranged.
  • a slide 18 with a housing 20 is slidably arranged thereon.
  • a head 22 is connected to the housing 20, which contains a deflecting gear 24 and holds a rotatably driven tool spindle V.
  • a carriage 28 with a rotary drive 30 for a rotary spindle S is arranged on a vertical frame 26 and carries a holder H for the workpiece W.
  • the carriage 18 is movable in the direction of an axis X by means of a second feed drive I.
  • a first feed drive II is provided for the slide 28, which enables movement in the direction of an axis Z.
  • the head 22 is pivotable about a transverse axis B, for which a third feed drive III is used, which is arranged parallel to the axis X. It can be seen that only by the interaction of two linear drives in the direction of the axes X and Z and by a pivoting movement about the transverse axis B, the pot tool T with its peripheral part U can be controlled on the holder H with respect to the workpiece (omitted in FIG. 3).
  • FIG. 4 shows a modified embodiment which corresponds in general to the construction of the CNC machine tool 10 from FIG. 3.
  • a further feed drive IV which is arranged centrally with respect to the axis Z and which, after switching over from the rotary drive of the workpiece spindle S, enables control thereof by means of an additional rotary axis C.
  • FIG. 5 A general flow chart of the work flow is shown in FIG. 5.
  • the machining type is first selected depending on whether an aspherical or spherical machining contour K (FIG. 1) is specified. This is followed by the selection of the type of geometry, which can be convex, concave or flat.
  • the associated geometry parameters such as radius of curvature, outside diameter, center thickness of the lens etc. and the tool or machining parameters such as the effective diameter of the peripheral part U, its lip radius, lead angle b, feed speed and speed of the pot tool are then entered. From this, the tool path is calculated in the control unit, whereupon the lens is machined along the machining contour K. Following this grinding and / or polishing operation, the surface O is scanned, which is used to obtain correction data which can be used to correct the tool path for subsequent processing.
  • the basic structure of a suitable device is shown schematically in FIG. 6.
  • the CNC machine tool 10 has an operating panel 40, preferably with a screen, and an input / output part 50, which can be designed as a keyboard. Both units are connected to a microprocessor computer R, to which measuring systems M1 to M4 are assigned. The latter are connected to a control unit E, which directly influences the feed drives I to III.
  • a changeover device or switch 60 serves to selectively control only the rotary drive 30 for the workpiece spindle S or the fourth feed drive IV for the axis C.
  • the machine 10 is expediently of modular construction and equipped with (not shown) highly dynamic servo motors.
  • Interpolators not shown, ensure that the tool guide in the finest steps - i.e. the machining contour K quasi-continuously - can be controlled and thus guarantees the production of usable aspherical surfaces. Compensatory movements can be taken into account as well as any polishing allowances that can be provided with an extremely aspherical contour to compensate for non-linear material removal.
  • the universal lens processing with aspherical but also spherical surfaces can advantageously be carried out.
  • the arrangement is particularly suitable for small series or one-off production.
  • the additional C-axis for the workpiece spindle S also allows free-form surface machining using the same principle.
  • a servo drive and a rotation measuring system are provided for the controlled rotary axis, so that after axis switching, off-center surface machining can be carried out if necessary. If these are not required, the switch 60 switches to a pure rotary drive 30 for the workpiece spindle S.
  • a CNC machine tool with a rotatingly adjustable pot tool T is preferably used according to the invention for grinding and / or polishing a workpiece W in a holder H.
  • the pot tool T is guided along a machining contour K specified via a control unit E in such a way that an optional lead angle ⁇ of, for example, 0 ° is maintained between the longitudinal axis A of the pot tool T and the tangent F in its contact point P on the workpiece W.
  • At least one feed drive (for example I) is pivoted with respect to another (for example II) about a transverse axis B, preferably under interpolation control of a further drive III to guide the pot tool T from the edge of the workpiece W to its center and above it along a meridian line.
  • An additional feed drive IV enables control of the workpiece holder H about a central axis C.
  • Each axis X, Z, B, C is assigned a measuring system M1, M2, M3, M4, the measured values and scanning values of the machined surface can be fed into the control unit E and can be evaluated in a microprocessor computer R by comparing the actual surface profile with the machining contour K for recalculating the tool path.
  • the surface of the lens blank L can be pre-machined to a spherical shape that is as close as possible to the specified machining contour K.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Lenses (AREA)

Abstract

The workpiece in its holder (H) is ground and/or polished by a tool (T) guided along a machining contour predetermined by the control unit. One rectilinear drive (I) is pivoted w.r.t. another (II) about a transverse axis (B), pref. by interpolative control of a third drive (III) to guide the tool from the edge to the centre of the workpiece and along a meridional line. An additional drive permits rotation of the holder about a central axis. The path of the tool is corrected by comparison of measurements at sample points with the predetermined contour. <IMAGE>

Description

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Herstellen asphärischer Linsenoberflächen gemäß den Oberbegriffen von Anspruch 1 bzw. Anspruch 6. Ein solches Verfahren und eine solche Vorrichtung sind aus der EP-A-0 453 094 bekannt.The invention relates to a method and a device for producing aspherical lens surfaces according to the preambles of claim 1 and claim 6. Such a method and such a device are known from EP-A-0 453 094.

Zunächst wird auf die Herstellung optischer Linsen mit sphärischen Oberflächen Bezug genommen, die bei Glas-Rohlingen konventionell im Flächen-Schleifverfahren mit anschließendem Polierprozeß erfolgt. Durch Flächenkontakt zwischen einem Polierwerkzeug und dem Werkstück erfolgt die Politur. Nachteilig ist aber, daß für verschiedene Kugelradien unterschiedliche Werkzeuge vorhanden sein müssen, von deren Zustand außerdem die Genauigkeit der fertigen Linse abhängt.First, reference is made to the production of optical lenses with spherical surfaces, which is conventionally carried out on glass blanks in the surface grinding process followed by a polishing process. The surface is polished by contact between a polishing tool and the workpiece. However, it is disadvantageous that different tools must be available for different ball radii, the condition of which also depends on the accuracy of the finished lens.

Ein anderes Herstellverfahren für sphärische Linsen bearbeitet die meist schon vorgeformten Glaspreßlinge mit einer Diamant-Topfscheibe durch Kugelschleifen. Der Vorschub erfolgt entweder mit der Werkzeugspindel oder mit der Werkstückspindel, zu der die Diamant-Topfscheibe unter einem definierten Winkel steht. Der Kugelradius an der Linse wird durch diesen Einstellwinkel bestimmt, so daß innerhalb gewisser Grenzen verschiedene Kugelformen mit ein und demselben Werkzeug herstellbar sind. Sein Schleifbelag verändert aber verschleißbedingt während des Schleifprozesses die Gestalt durch Anpassung an die sich ändernden Kugelradien. Wenn mit dem gleichen Topfwerkzeug wechselnde Kugelradien bearbeitet werden sollen, kann daher der zu erzeugende Schleifdurchmesser nicht im voraus festgelegt werden. Bedingt durch unterschiedliche Radien und durch Werkzeugabnutzung entstehen nicht vorhersehbare Eingriffszonen am Werkzeug, die zu ungewollten Makrogestalt-Änderungen an der Werkstück-Oberfläche führen. Solche Bearbeitungsfehler müssen durch nachfolgende Feinschleifprozesse beseitigt werden. Bei kleineren Serien mit häufig wechselnden Kugelradien ist der Anteil der Werkzeugkosten an den Gesamtkosten sowie der Fertigungsaufwand beim Schleifen sehr groß. Darüber hinaus wird häufig in zwei Stufen mit kleiner werdender Diamantkörnung geschliffen, so daß sich insgesamt die Bearbeitungszeit beim Schleifen beträchtlich verlängert.Another manufacturing process for spherical lenses processes the mostly preformed glass compacts with a diamond cup wheel by means of ball grinding. The feed takes place either with the tool spindle or with the workpiece spindle to which the diamond cup wheel is at a defined angle. The spherical radius on the lens is determined by this setting angle, so that different spherical shapes can be produced within one limit with one and the same tool. However, its abrasive coating changes its shape due to wear during the grinding process by adapting to the changing ball radii. If changing ball radii are to be machined with the same pot tool, the grinding diameter to be generated cannot be determined in advance. Due to different radii and tool wear, unpredictable engagement zones are created on the tool, which lead to unwanted macro shape changes on the workpiece surface. Such processing errors must be eliminated by subsequent fine grinding processes. For smaller series with frequently changing ball radii, the share of tool costs in the total costs and the manufacturing effort for grinding is very large. In addition, grinding is often carried out in two stages with decreasing diamond grit, so that the overall machining time during grinding is considerably extended.

Optische Linsen mit asphärischen Oberflächen bieten eine Reihe von Vorteilen. So ist die Abbildungsleistung gegenüber sphärischen Linsen deutlich erhöht. Bildfehler werden besser korrigiert, und in optischen Systemen kann durch den Einsatz asphärischer Linsen die Linsenanzahl verringert werden. Diese Vorteile ließen sich bisher nur in sehr geringem Umfang ausnutzen. Der fertigungstechnische Aufwand und die damit verbundenen hohen Stückkosten beschränkten herkömmlich die Verwendung asphärischer, lichtdurchlässiger Bauelemente auf Spezial- und Sonderanwendungen. Einzel- und Kleinserienfertigungen waren bislang aus Kostengründen nicht oder nur bedingt realisierbar.Optical lenses with aspherical surfaces offer a number of advantages. The imaging performance compared to spherical lenses is significantly increased. Image errors are better corrected, and the number of lenses can be reduced in optical systems by using aspherical lenses. So far, these advantages could only be exploited to a very limited extent. The manufacturing outlay and the associated high unit costs conventionally restricted the use of aspherical, translucent components to special and special applications. Up to now, one-off and small series productions were not possible, or only to a limited extent, due to cost reasons.

Beispielsweise beschreibt die DE-A-2 441 976 einen Saughalter für Linsenrohlinge, die eine asphärische Oberfläche erhalten sollen. Deren in der Mitte eingesenkte Negativkontur ist auf der Oberseite eines steifen Glasblocks ausgebildet. Dieser ist zentrisch durchbohrt und auf einem Tellerfutter eingespannt, das über eine Hohlwelle mit Pumpenanschluß drehbar angetrieben wird. Der angesaugte Rohling kann nach Bearbeitung seiner Oberseite gewendet und auf einem ähnlich geformten zweiten Glasblock an seiner Unterseite bearbeitet werden. Das Verfahren setzt dünne, biegbare Rohlinge voraus und weist die obengenannten Nachteile auf.For example, DE-A-2 441 976 describes a suction holder for lens blanks which are to be given an aspherical surface. The negative contour recessed in the middle is formed on the top of a rigid glass block. This is drilled centrally and clamped on a plate chuck, which is rotatably driven via a hollow shaft with a pump connection. The sucked-in blank can be turned after processing its top and processed on a similarly shaped second glass block on its underside. The method requires thin, bendable blanks and has the disadvantages mentioned above.

EP-A2-0 453 094 beschreibt ein Verfahren und eine Vorrichtung zum Schleifen von torischen Linsen. Ein rotierendes Diamant-Topfwerkzeug wird mit einem vorgewählten Kopfwinkel in einer Schwenkbewegung über einen linear zugeführten Linsenrohling geführt, wobei der Schwenkradius des Werkzeugs während einer Schwenkbewegung verändert werden kann. Das Topfwerkzeug ist auf einem schwenkbar gelagerten Kreuzschlitten angeordnet, der auf einem um eine horizontale Achse schwenkbaren und in radialer Richtung ein- und ausfahrbaren Basisschlitten montiert ist. Um den Kopfwinkel und damit die Vertikalkrümmung der Linse entlang der sich verändernden Kreisbahn konstant zu halten, wird das Werkzeug mit Hilfe des Kreuzschlittens entsprechend seiner Position nachjustiert. Zur Berechnung der erforderlichen Ausrichtung bzw. Nachjustierung beider Schlitten entlang ihrer Bahn mit Hilfe eines Mikroprozessors, wird der Schwenkwinkel des Basisschlittens während seiner Bewegung von einem Sensor erfaßt. Nach Beendigung einer Schwenkbewegung wird der Linsenrohling mittels eines Vorschubantriebs nachgestellt. Dieser Vorgang wird wiederholt, bis eine gewünschte Linsendicke erreicht ist.EP-A2-0 453 094 describes a method and an apparatus for grinding toric lenses. A rotating diamond pot tool is guided with a preselected head angle in a pivoting movement over a linearly supplied lens blank, the pivoting radius of the tool being able to be changed during a pivoting movement. The pot tool is arranged on a pivotable cross slide which is mounted on a base slide which can be pivoted about a horizontal axis and can be extended and retracted in the radial direction. In order to keep the head angle and thus the vertical curvature of the lens constant along the changing circular path, this becomes Readjust the tool according to its position using the cross slide. To calculate the required alignment or readjustment of both carriages along their path using a microprocessor, the pivoting angle of the basic carriage is detected by a sensor during its movement. After a swivel movement has ended, the lens blank is adjusted by means of a feed drive. This process is repeated until a desired lens thickness is reached.

Das Schleifen asphärischer Glaslinsen mit hoher Präzision erfordert einen nachfolgenden Polierprozeß, der wegen der nicht-kugelförmigen Gestalt der Linsenoberfläche allerdings nicht einfach im Flächenkontakt erfolgen kann. Vielmehr sind flexible und sehr kleine Polierwerkzeuge notwendig, um eine möglichst genaue Abbildung der Asphäre zu erreichen. Herkömmlich besteht dabei der Nachteil, daß aufgrund des mechanischen Aufbaues und der Nachgiebigkeit des Werkzeugs Bewegungen, die der Asphären-Geometrie exakt entsprechen, nicht ohne weiteres ausgeführt werden können. Die Gestaltabweichung vergrößert sich mit zunehmender Polierzeit und wachsendem Verschleiß.The grinding of aspherical glass lenses with high precision requires a subsequent polishing process, which, however, cannot easily be done in surface contact because of the non-spherical shape of the lens surface. Rather, flexible and very small polishing tools are necessary in order to achieve the most accurate representation of the asphere. Conventionally, there is the disadvantage that, due to the mechanical structure and the flexibility of the tool, movements which correspond exactly to the aspherical geometry cannot be carried out easily. The shape deviation increases with increasing polishing time and wear.

Der Erfindung liegt die Aufgabe zugrunde, unter Überwindung der Nachteile des Standes der Technik die kostengünstige Herstellung asphärischer Linsen wesentlich zu verbessern und zu beschleunigen. Ferner soll eine geringe Dauer der Bearbeitung bei hoher Präzision erreicht werden, ohne daß eine Nachbearbeitung erforderlich würde. Ein wichtiges Ziel besteht darin, Auswirkungen des Werkzeugverschleißes auf die Linsengestalt weitestgehend herabzusetzen.The object of the invention is to significantly improve and accelerate the cost-effective manufacture of aspherical lenses while overcoming the disadvantages of the prior art. Furthermore, a short duration of processing with high precision should be achieved without the need for post-processing. An important goal is to minimize the effects of tool wear on the lens shape.

Die Erfindung ist in den unabhängigen Ansprüchen 1 und 6 angegeben. Ausgestaltungen sind Gegenstand der Unteransprüche 2 bis 5 sowie 7 bis 10.The invention is set out in independent claims 1 and 6. Refinements are the subject of dependent claims 2 to 5 and 7 to 10.

Bei einem Verfahren zum Herstellen von asphärischen Oberflächen an Linsenrohlingen, namentlich aus Glas, unter Verwendung einer CNC-Werkzeugmaschine mit einer Steuereinheit und mit einem um eine Achse rotierenden zustellbaren Topfwerkzeug zum Schleifen und/oder Polieren des Linsenrohlings in einer Halterung, die entlang einer ersten Vorschubachse in eine Bearbeitungsposition bewegbar ist, wobei das Topfwerkzeug um eine Schwenkachse senkrecht zur ersten Vorschubachse schwenkbar und entlang einer zweiten Vorschubachse senkrecht zur Schwenkachse und zur ersten Vorschubachse linear verstellbar ist, und wobei das Topfwerkzeug am Linsenrohling entlang einer über die Steuereinheit vorgegebenen Bearbeitungskontur derart geführt wird, daß zwischen der Längsachse des Topfwerkzeugs und der Tangente in seinem Berührungspunkt am Werkstück ein wählbarer Vorhaltewinkel (Kopfwinkel) konstant eingehalten wird, sieht die Erfindung laut kennzeichnendem Teil von Anspruch 1 vor, daß das Topfwerkzeug mit einer über den Vorhaltewinkel wählbaren Anlagestelle an das um die erste Vorschubachse rotierende Werkstück heranbewegt und mittels der Steuereinheit durch Interpolationssteuerung der Vorschubachsen und sowie der Schwenkachse vom Rand des Werkstücks zu seiner Mitte und darüber hinaus entlang der Bearbeitungskontur geführt wird, wobei während oder nach der Bearbeitung des Werkstücks Abtastwerte seiner Oberfläche gewonnen und bei Folgebearbeitung durch geänderte Bahnführung des Topfwerkzeugs in der Steuereinheit berücksichtigt werden.In a method for producing aspherical surfaces on lens blanks, namely made of glass, using a CNC machine tool with a control unit and with an adjustable pot tool rotating about an axis for grinding and / or polishing the lens blank in a holder, which runs along a first feed axis is movable into a machining position, the pot tool being pivotable about a pivot axis perpendicular to the first feed axis and linearly adjustable along a second feed axis perpendicular to the pivot axis and the first feed axis, and wherein the pot tool is guided on the lens blank along a machining contour specified via the control unit, that between the longitudinal axis of the pot tool and the tangent in its point of contact on the workpiece a selectable lead angle (head angle) is kept constant, the invention provides according to the characterizing part of claim 1 that the pot tool eug with a contact point that can be selected via the lead angle, is moved towards the workpiece rotating about the first feed axis and is guided from the edge of the workpiece to its center and beyond along the machining contour by means of the control unit by interpolation control of the feed axes and also the swivel axis, during or after the Machining of the workpiece Samples of its surface are obtained and taken into account in subsequent processing by changing the path of the pot tool in the control unit.

Das mittels der Vorschubachsen an das Werkstück herangeführte Topfwerkzeug kommt aufgrund seiner vorgewählten Neigung nur mit der entsprechend vorgewählten Anlagestelle an dem Werkstück zur Anlage, d.h. der Umfangsrand des Topfwerkzeugs berührt das Werkstück lediglich in einem relativ schmalen Berührungspunkt.Due to its preselected inclination, the pot tool brought up to the workpiece by means of the feed axes only comes into contact with the corresponding preselected contact point on the workpiece, ie the peripheral edge of the pot tool only touches the workpiece at a relatively narrow point of contact.

Laut Anspruch 2 beträgt der Vorhaltewinkel 0°, und zwar ab Ausgangsstellung bei Beginn der Bearbeitung. Zuvor kann der Vorhaltewinkel, um die Schleifbearbeitung zu optimieren, so abgeändert werden, daß ein speziell gewünschter Schleifbereichs-Durchmesser am Topfwerkzeug eingestellt wird und/oder der Materialabtrag in günstigster Weise erfolgt. Das ist insbesondere für die zielgerichtete Asphärenbearbeitung mit dem Topfwerkzeug von großer Bedeutung.According to claim 2, the lead angle is 0 °, from the starting position at the beginning of the machining. The lead angle can be modified beforehand in order to optimize the grinding process in such a way that a specifically desired grinding area diameter is set on the pot tool and / or the material is removed in the most favorable manner. This is particularly important for targeted aspherical machining with the pot tool.

Speziell für weiche Kontaktlinsen mit sphärischer Rückseite bedient sich zwar ein in EP-A2-0 304 106 dargelegtes Verfahren einer ebenen Steuerfläche, die mit wählbarer Achsversetzung tangential am rotierenden Werkstück anliegt und zusammen mit einem Werkzeug auf einer Kreisbahn um eine gemeinsame Drehachse verschwenkbar ist. Das Ausmaß der Achsversetzung bestimmt die Asphärizität während der Bearbeitung, die im entwässerten Zustand des Linsenrohlings auf einer Drehbank vor sich geht. Es ist jedoch jede Einstellung vorzugeben und während des Schneidvorgangs nicht veränderlich, so daß genaue individuelle Anpassungen nicht möglich sind.Especially for soft contact lenses with a spherical back, a method described in EP-A2-0 304 106 uses a flat control surface which, with a selectable axis offset, lies tangentially on the rotating workpiece and, together with a tool, can be pivoted on a circular path about a common axis of rotation. The extent of the axis offset determines the asphericity during machining, which takes place in the dewatered state of the lens blank on a lathe. However, every setting must be specified and not changeable during the cutting process, so that precise individual adjustments are not possible.

Überaus vorteilhaft ist es, wenn die Bearbeitungsparameter zur Bestimmung der Bearbeitungskontur nach Anspruch 3 in einen Mikroprozessor-Rechner eingegeben werden, z.B. über eine Tastatur unter Bildschirm-Kontrolle oder über eine Schnittstelle, worauf in der Steuereinheit die Werkzeugbahn-Daten berechnet werden. Diese Steuerung läßt sich mithin als offenes System einsetzen, um auf der Basis von Derivativ-Software hohen Anforderungen bezüglich Rechenleistung, Speicherkapazität, Bearbeitungsgeschwindigkeit und Prozeßdarstellung gerecht zu werden. Dazu kann man gemäß Anspruch 4 die Bearbeitungskontur anhand der Linsen-Geometrie für das Werkstück in Mikroschritten definieren und die zugehörigen Parameter für die Momentan-Bewegungssteuerung von Topfwerkzeug und Halterung programmieren. Dadurch wird die Bearbeitung weitestgehend automatisiert und zugleich verfeinert, so daß man gröbere Abweichungen ausschließt und die Feinbearbeitung mit größtmöglicher Genauigkeit und Schnelligkeit erzielt.It is extremely advantageous if the machining parameters for determining the machining contour are entered into a microprocessor computer, e.g. Via a keyboard under screen control or via an interface, whereupon the tool path data are calculated in the control unit. This control can therefore be used as an open system to meet high requirements with regard to computing power, storage capacity, processing speed and process representation on the basis of derivative software. For this purpose, the machining contour can be defined according to claim 4 on the basis of the lens geometry for the workpiece in micro steps and the associated parameters for the current movement control of the pot tool and holder can be programmed. As a result, the machining is largely automated and at the same time refined, so that larger deviations are excluded and the fine machining is achieved with the greatest possible accuracy and speed.

Eine Weiterbildung besteht nach Anspruch 5 darin, daß man die Oberfläche des Linsenrohlings durch Vorbearbeitung auf eine sphärische Gestalt bringt, die der vorgegebenen asphärischen Bearbeitungskontur weitestgehend angenähert ist. Das erleichtert die nachfolgende Asphärenbearbeitung außerordentlich.A further development according to claim 5 is that the surface of the lens blank is brought to a spherical shape by pre-processing, which is as close as possible to the specified aspherical machining contour. This greatly facilitates the subsequent aspherical processing.

Gemäß dem unabhängigen Anspruch 6 ist eine Vorrichtung zum Herstellen von asphärischen Oberflächen an Linsenrohlingen, insbesondere zur Durchführung des vorgenannten Verfahrens dadurch gekennzeichnet, daß das Topfwerkzeug an das mittels eines Drehantriebs um die erste Vorschubachse rotierende Werkstück mit einer über den Vorhaltewinkel wählbaren Anlagestelle heranführbar und mittels der Steuereinheit durch Interpolationssteuerung der Vorschubachsen sowie der Schwenkachse vom Rand des Werkstücks zu seiner Mitte und darüber hinaus entlang der Bearbeitungskontur führbar ist, wobei jeder Achse ein Meßsystem zugeordnet ist, deren Meßwerte sowie Abtastwerte der bearbeiteten Oberfläche in die Steuereinheit einspeisbar und in einem Mikroprozessor-Rechner durch Vergleich des Oberflächen-Istverlaufs mit der Bearbeitungskontur zur Korrektur der Werkzeugbahn auswertbar sind.According to independent claim 6, a device for producing aspherical surfaces on lens blanks, in particular for carrying out the aforementioned method, is characterized in that the pot tool can be brought up to the workpiece rotating by means of a rotary drive about the first feed axis with a contact point which can be selected via the lead angle and by means of the Control unit can be guided by interpolation control of the feed axes and the swivel axis from the edge of the workpiece to its center and beyond along the machining contour, with each axis being assigned a measuring system whose measured values and samples of the machined surface can be fed into the control unit and in a microprocessor computer Comparison of the actual surface profile with the machining contour for correcting the tool path can be evaluated.

Dieser einfache und kompakte Aufbau einer Schleifmaschine ist übersichtlich, sehr genau steuerbar und wirtschaftlich, zumal herkömmliche Linearantriebe Verwendung finden können. Durch das integrierte Meß- und Korrektursystem gewährleistet er eine präzise und kostengünstige Durchführung des erfindungsgemäßen Verfahrens und ermöglicht ferner die rationelle Herstellung sowohl von äußerst präzisen asphärischen Linsenoberflächen als auch von sogenannten Freiform-Oberflächen, selbst in der Kleinserien- oder Einzelfertigung.This simple and compact structure of a grinding machine is clear, very precisely controllable and economical, especially since conventional linear drives are used can find. Thanks to the integrated measuring and correction system, it ensures a precise and cost-effective implementation of the method according to the invention and also enables the rational production of both extremely precise aspherical lens surfaces and so-called free-form surfaces, even in small series or one-off production.

Wesentliche Vorteile der Erfindung beruhen darauf, daß man konturgenaue rotationssymmetrische Linsenoberflächen unabhängig von zentraler Vorausplanung und Rechnung mit Topfwerkzeugen herstellen kann, die unterschiedliche Diamantkörnungen besitzen können, aber keine Abrichtvorgänge erfordern, welche die Linsengeometrie beeinflussen würden.Significant advantages of the invention are based on the fact that contour-accurate, rotationally symmetrical lens surfaces can be produced independently of central planning and calculation with pot tools, which can have different diamond grits, but do not require any dressing processes which would influence the lens geometry.

Zum Erzeugen von Freiform-Oberflächen sieht die Erfindung laut Anspruch 7 vor, daß für die Rotation des Werkstücks ein zusätzlicher Antrieb für die in Bezug auf die Werkstückhalterung mittige Achse vorhanden ist, insbesondere in räumlicher Nähe zu dem zweiten Vorschubantrieb, was für die bauliche Anordnung günstig ist. Die Werkstückspindel kann wahlweise kontinuierlich umlaufen, in herkömmlicher Art gegenläufig zum Drehsinn des Topfwerkzeuges, oder sie kann gemäß Anspruch 8 durch Achsumschaltung in eine gesteuerte Rundachse verwandelt werden. Dies ermöglicht mit sehr geringem Aufwand eine rotative unsymmetrische Oberflächenbearbeitung.To produce free-form surfaces, the invention provides, according to claim 7, that for the rotation of the workpiece there is an additional drive for the central axis with respect to the workpiece holder, in particular in close proximity to the second feed drive, which is favorable for the structural arrangement is. The workpiece spindle can optionally rotate continuously, in a conventional manner counter to the direction of rotation of the pot tool, or it can be converted into a controlled rotary axis by switching axes. This enables rotational asymmetrical surface processing with very little effort.

Bevorzugt ist die Vorrichtung nach Anspruch 9 so ausgebildet, daß das Topfwerkzeug in festem Abstand zu der Querachse angeordnet und mittels eines linearen Vorschubantriebs verschwenkbar ist. Dieser kann laut Anspruch 10 parallel zu der Vorschubrichtung des ersten Antriebs angeordnet sein, was bauliche Vorteile bietet, z.B. eine vereinfachte Rahmen- und Schlittengestaltung.The device according to claim 9 is preferably designed such that the pot tool is arranged at a fixed distance from the transverse axis and can be pivoted by means of a linear feed drive. According to claim 10, this can be arranged parallel to the feed direction of the first drive, which offers structural advantages, for example a simplified frame and slide design.

Weitere Einzelheiten und Vorteile der Erfindung ergeben sich aus dem Wortlaut der Ansprüche sowie aus der folgenden Beschreibung von Ausführungsbeispielen anhand der Zeichnungen. Darin zeigen:

Fig. 1
eine schematische Seitenansicht einer Bearbeitungsgeometrie mit unterschiedlich geneigtem Topfwerkzeug,
Fig. 1a
eine vergrößerte Seitenansicht der Werkzeugstellung bei Arbeitsbeginn,
Fig. 1b
eine vergrößerte Seitenansicht der Werkzeugstellung bei Arbeitsende,
Fig. 2
eine schematische Seitenansicht eines Topfwerkzeuges bei sphärischer Linsenbearbeitung,
Fig. 3
eine schematisierte Schrägansicht einer CNC-Werkzeugmaschine mit drei Achsen,
Fig. 4
eine schmematisierte Schrägansicht einer CNC-Werkzeugmaschine mit vier Achsen,
Fig. 5
ein Flußdiagramm eines Arbeitsablaufs und
Fig. 6
ein Grundschema einer CNC-Werkzeugmaschnine.
Further details and advantages of the invention emerge from the wording of the claims and from the following description of exemplary embodiments with reference to the drawings. In it show:
Fig. 1
1 shows a schematic side view of a machining geometry with a differently inclined pot tool,
Fig. 1a
an enlarged side view of the tool position at the start of work,
Fig. 1b
an enlarged side view of the tool position at the end of work,
Fig. 2
1 shows a schematic side view of a pot tool with spherical lens processing,
Fig. 3
a schematic oblique view of a CNC machine tool with three axes,
Fig. 4
a schematized oblique view of a CNC machine tool with four axes,
Fig. 5
a flow chart of a workflow and
Fig. 6
a basic scheme of a CNC machine tool.

In den schematisierten Darstellungen der Fig. 1, 1a, 1b, 2 ist ein Werkstück W dargestellt, das in Form eines Linsenrohlings L von einem Topfwerkzeug T mit geneigter Achse A entlang einer Bearbeitungkontur K bearbeitet wird. Ein Umfangsteil U setzt am Rand des Werkstücks W an und berührt es im Punkt P, wobei die Außenachslinie A' einen konstanten Vorhaltewinkel β zur Tangente F einschließt. Das Werkstück W ist rotierend angetrieben und läuft entgegengesetzt zum Topfwerkzeug T um, das vom Rand des Werkstücks W über dessen Mitte hinaus geführt wird. Dabei bleibt der Vorhaltewinkel β, der auch zwischen der Außenachslinie A' und der Normalen N auf die Tangente F erkennbar ist (Fig. 1), durchgehend gleich. Er kann zu Arbeitsbeginn 0° betragen, bedarfsweise aber auch anders eingestellt werden. Man erkennt, daß im Verlaufe der Bearbeitung der Tangentenwinkel τ zur Oberfläche O immer kleiner wird. Der Berührungspunkt P liegt stets hinter dem Durchstichpunkt der Außenachslinie A', und die Berührungslinie bzw. - ringfläche des Umfangsteils U gewährleistet einen gleichmäßigen und schonenden Materialabtrag. Abhängig vom wirksamen Durchmesser D des Umfangsteils U kann die Neigung des Topfwerkzeugs T und der Vorhaltewinkel β für die jeweilige Schleif- bzw. Polieraufgabe optimal eingestellt werden. Ist eine Vorbearbeitung mit sphärischer Oberfläche O durchzuführen, so wird mit einem Einstellwinkel (Fig. 2) eine gleichbleibende Neigung des Topfwerkzeugs T zur Achse Z der Wertstückspindel S vorgegeben.1, 1a, 1b, 2, a workpiece W is shown, which is machined in the form of a lens blank L by a pot tool T with an inclined axis A along a machining contour K. A peripheral part U starts at the edge of the workpiece W and touches it at point P, the outer axis line A 'enclosing a constant lead angle β to the tangent F. The workpiece W is driven in rotation and rotates in the opposite direction to the pot tool T, which is guided from the edge of the workpiece W beyond its center. The lead angle β, which can also be seen between the outer axis line A 'and the normal N to the tangent F (FIG. 1), remains the same throughout. It can be 0 ° at the start of work, but can also be set differently if necessary. It can be seen that in the course of processing the tangent angle τ to the surface O becomes smaller and smaller. The contact point P is always behind the puncture point of the outer axis line A ', and the contact line or ring surface of the peripheral part U ensures a uniform and gentle material removal. Depending on the effective diameter D of the peripheral part U, the inclination of the pot tool T and the lead angle β can be optimally set for the respective grinding or polishing task. If a preprocessing with a spherical surface O is to be carried out, a constant inclination of the pot tool T to the axis Z of the valuable spindle S is predefined with a setting angle (FIG. 2).

Der konstruktive Aufbau ist in Fig. 3 veranschaulicht. Die insgesamt mit 10 bezeichnete CNC-Werkzeugmaschine hat ein Gestell 12 mit einem Tisch 14, auf dem ein Horizontalrahmen 16 angeordnet ist. Darauf ist ein Schlitten 18 mit einem Gehäuse 20 verschieblich angeordnet. Mit dem Gehäuse 20 ist ein Kopf 22 verbunden, der ein Umlenkgetriebe 24 enthält und eine drehbar angetriebene Werkzeugspindel V haltert. An einem Vertikalrahmen 26 ist ein Schlitten 28 mit einem Drehantrieb 30 für eine Rotationsspindel S angeordnet, die eine Halterung H für das Werkstück W trägt.The structural design is illustrated in Fig. 3. The CNC machine tool, designated as a whole by 10, has a frame 12 with a table 14 on which a horizontal frame 16 is arranged. A slide 18 with a housing 20 is slidably arranged thereon. A head 22 is connected to the housing 20, which contains a deflecting gear 24 and holds a rotatably driven tool spindle V. A carriage 28 with a rotary drive 30 for a rotary spindle S is arranged on a vertical frame 26 and carries a holder H for the workpiece W.

Der Schlitten 18 ist mittels eines zweiten Vorschubantriebs I in Richtung einer Achse X beweglich. Für den Schlitten 28 ist ein erster Vorschubantrieb II vorgesehen, der eine Bewegung in Richtung einer Achse Z ermöglicht. Der Kopf 22 ist um eine Querachse B schwenkbar, wozu ein dritter Vorschubantrieb III dient, der parallel zur Achse X angeordnet ist. Man erkennt, daß nur durch Zusammenwirken zweier Linearantriebe in Richtung der Achsen X und Z sowie durch eine Schwenkbewegung um die Querachse B das Topfwerkzeug T mit seinem Umfangsteil U gegenüber dem (in Fig. 3 weggelassenen) Werkstück auf der Halterung H steuerbar ist.The carriage 18 is movable in the direction of an axis X by means of a second feed drive I. A first feed drive II is provided for the slide 28, which enables movement in the direction of an axis Z. The head 22 is pivotable about a transverse axis B, for which a third feed drive III is used, which is arranged parallel to the axis X. It can be seen that only by the interaction of two linear drives in the direction of the axes X and Z and by a pivoting movement about the transverse axis B, the pot tool T with its peripheral part U can be controlled on the holder H with respect to the workpiece (omitted in FIG. 3).

Fig. 4 zeigt eine abgewandelte Ausführungsform, die im allgemeinen Aufbau der CNC-Werkzeugmaschine 10 von Fig. 3 entspricht. Zusätzlich ist jedoch ein weiterer Vorschubantrieb IV vorhanden, der in bezug auf die Achse Z mittig angeordnet ist und nach Umschaltung vom Drehantrieb der Werkstückspindel S deren Steuerung mittels einer zusätzlichen Rundachse C ermöglicht.FIG. 4 shows a modified embodiment which corresponds in general to the construction of the CNC machine tool 10 from FIG. 3. In addition, however, there is a further feed drive IV which is arranged centrally with respect to the axis Z and which, after switching over from the rotary drive of the workpiece spindle S, enables control thereof by means of an additional rotary axis C.

Ein allgemeines Flußdiagramm des Arbeitsablaufes ist aus Fig. 5 ersichtlich. Man wählt zunächst die Bearbeitungsart je nachdem, ob eine asphärische oder sphärische Bearbeitungskontur K (Fig. 1) vorgegeben wird. Sodann folgt die Anwahl der Geometrieart, die konvex, konkav oder plan sein kann. Die zugehörigen Geometrie-Parameter wie Krümmungsradius, Außendurchmesser, Mittendicke der Linse usw. und die Werkzeug- bzw. Bearbeitungs-Parameter wie wirksamer Durchmesser des Umfangsteils U, sein Lippenradius, Vorhaltewinkel b, Vorschubgeschwindigkeit und Drehzahl des Topfwerkzeugs werden anschließend eingegeben. Daraus wird in der Steuereinheit die Werkzeugbahn berechnet, worauf die Bearbeitung der Linse entlang der Bearbeitungskontur K erfolgt. Im Anschluß an diesen Arbeitsgang des Schleifens und/oder Polierens wird die Oberfläche O abgetastet, was zur Gewinnung von Korrekturdaten benutzt wird, die zu einer Berichtigung der Werkzeugbahn für eine Folgebearbeitung benutzt werden können.A general flow chart of the work flow is shown in FIG. 5. The machining type is first selected depending on whether an aspherical or spherical machining contour K (FIG. 1) is specified. This is followed by the selection of the type of geometry, which can be convex, concave or flat. The associated geometry parameters such as radius of curvature, outside diameter, center thickness of the lens etc. and the tool or machining parameters such as the effective diameter of the peripheral part U, its lip radius, lead angle b, feed speed and speed of the pot tool are then entered. From this, the tool path is calculated in the control unit, whereupon the lens is machined along the machining contour K. Following this grinding and / or polishing operation, the surface O is scanned, which is used to obtain correction data which can be used to correct the tool path for subsequent processing.

Die Grundstruktur einer geeigneten Vorrichtung ist in Fig. 6 schematisch dargestellt. Die CNC-Werkzeugmaschine 10 hat eine Bedientafel 40, vorzugsweise mit Bildschirm, sowie einen Eingabe-/Ausgabeteil 50, der als Tastatur ausgebildet sein kann. Beide Einheiten stehen mit einem Mikroprozessor-Rechner R in Verbindung, dem Meßsysteme M1 bis M4 zugeordnet sind. Letzere sind mit einer Steuereinheit E verbunden, welche die Vorschubantriebe I bis III direkt beeinflußt. Ein Umschalt-Einrichtung oder Weiche 60 dient dazu, wahlweise nur den Drehantrieb 30 für die Werkstückspindel S oder den vierten Vorschubantrieb IV für die Achse C zu steuern.The basic structure of a suitable device is shown schematically in FIG. 6. The CNC machine tool 10 has an operating panel 40, preferably with a screen, and an input / output part 50, which can be designed as a keyboard. Both units are connected to a microprocessor computer R, to which measuring systems M1 to M4 are assigned. The latter are connected to a control unit E, which directly influences the feed drives I to III. A changeover device or switch 60 serves to selectively control only the rotary drive 30 for the workpiece spindle S or the fourth feed drive IV for the axis C.

Zweckmäßig ist die Maschine 10 modular aufgebaut und mit (nicht gezeichneten) hochdynamischen Servomotoren ausgestattet. Nicht dargestellte Interpolatoren sorgen dafür, daß die Werkzeugführung nach Vorgabe der Bearbeitungskontur K in feinsten Schritten - d.h. quasikontinuierlich - gesteuert werden kann und so die Herstellung gebrauchsfähiger Asphären-Oberflächen gewährleistet. Dabei können Ausgleichsbewegungen ebenso berücksichtigt werden wie eventuelle Polieraufmaße, die bei extrem asphärischer Kontur vorgesehen werden können, um einen nichtlinearen Materialabtrag zu kompensieren.The machine 10 is expediently of modular construction and equipped with (not shown) highly dynamic servo motors. Interpolators, not shown, ensure that the tool guide in the finest steps - i.e. the machining contour K quasi-continuously - can be controlled and thus guarantees the production of usable aspherical surfaces. Compensatory movements can be taken into account as well as any polishing allowances that can be provided with an extremely aspherical contour to compensate for non-linear material removal.

Man erkennt, daß nach dem erfindungsgemäßen Verfahren und mit der erfindungsgemäßen CNC-Werkzeugmaschine die universelle Linsenbearbeitung mit asphärischen, aber auch sphärischen Oberflächen vorteilhaft durchführbar ist. Die Anordnung eignet sich insbesondere auch für die Kleinserien- oder Einzelfertigung.It can be seen that, according to the method according to the invention and with the CNC machine tool according to the invention, the universal lens processing with aspherical but also spherical surfaces can advantageously be carried out. The arrangement is particularly suitable for small series or one-off production.

Die zusätzliche C-Achse für die Werkstückspindel S gestattet außerdem eine Freiform-Oberflächenbearbeitung nach grundsätzlich gleichem Verfahren. Auch hier ist ein Servoantrieb und ein Rotationsmeßsystem für die gesteuerte Rundachse vorgesehen, so daß nach Achsumschaltung bedarfsweise außermittige Flächenbearbeitungen ausgeführt werden können. Sind diese nicht erforderlich, so geht die Weiche 60 auf reinen Drehantrieb 30 für die Werkstückspindel S über.The additional C-axis for the workpiece spindle S also allows free-form surface machining using the same principle. Here too, a servo drive and a rotation measuring system are provided for the controlled rotary axis, so that after axis switching, off-center surface machining can be carried out if necessary. If these are not required, the switch 60 switches to a pure rotary drive 30 for the workpiece spindle S.

Die Erfindung ist nicht auf die dargestellten Ausführungsbeispiele beschränkt; vielmehr sind zahlreiche Abwandlungen möglich. Man erkennt jedoch, daß bei einem Verfahren zum Herstellen von asphärischen Oberflächen an Linsenrohlingen L namentlich aus Glas erfindungsgemäß bevorzugt eine CNC-Werkzeugmaschine mit einem rotierend zustellbaren Topfwerkzeug T zum Schleifen und/oder Polieren eines Werkstücks W in einer Halterung H benutzt wird. Das Topfwerkzeug T wird entlang einer über eine Steuereinheit E vorgegebenen Bearbeitungskontur K derart geführt, daß zwischen der Längsachse A des Topfwerkzeugs T und der Tangente F in seinem Berührungspunkt P am Werkstück W ein wahlbarer Vorhaltewinkel β von z.B. 0° konstant eingehalten wird. Zumindest ein Vorschubantrieb (z.B. I) wird in bezug auf einen anderen (z.B. II) um eine Querachse B verschwenkt, vorzugsweise unter Interpolationssteuerung eines weiteren Antriebs III, um das Topfwerkzeug T vom Rand des Werkstücks W zu seiner Mitte und darüber hinweg entlang einer Meridianlinie zu führen. Ein zusätzlicher Vorschubantrieb IV ermöglicht die Steuerung der Werkstückhalterung H um eine mittige Achse C. Jeder Achse X, Z, B, C ist ein Meßsystem M1, M2, M3, M4 zugeordnet, deren Meßwerte sowie Abstastwerte der bearbeiteten Oberfläche in die Steuereinheit E einspeisbar und in einem Mikroprozessor-Rechner R durch Vergleich des Oberflächen-Istverlaufs mit der Bearbeitungskontur K zur Nachberechnung der Werkzeugbahn auswertbar sind. Die Oberfläche des Linsenrohlings L ist auf eine sphärische Gestalt vorbearbeitbar, die der vorgegebenen Bearbeitungskontur K weitestgehend angenähert ist.The invention is not restricted to the exemplary embodiments shown; rather, numerous modifications are possible. It can be seen, however, that in a method for producing aspherical surfaces on lens blanks L, in particular made of glass, a CNC machine tool with a rotatingly adjustable pot tool T is preferably used according to the invention for grinding and / or polishing a workpiece W in a holder H. The pot tool T is guided along a machining contour K specified via a control unit E in such a way that an optional lead angle β of, for example, 0 ° is maintained between the longitudinal axis A of the pot tool T and the tangent F in its contact point P on the workpiece W. At least one feed drive (for example I) is pivoted with respect to another (for example II) about a transverse axis B, preferably under interpolation control of a further drive III to guide the pot tool T from the edge of the workpiece W to its center and above it along a meridian line. An additional feed drive IV enables control of the workpiece holder H about a central axis C. Each axis X, Z, B, C is assigned a measuring system M1, M2, M3, M4, the measured values and scanning values of the machined surface can be fed into the control unit E and can be evaluated in a microprocessor computer R by comparing the actual surface profile with the machining contour K for recalculating the tool path. The surface of the lens blank L can be pre-machined to a spherical shape that is as close as possible to the specified machining contour K.

Bezugszeichen-ListeReference symbol list

αα
EinstellwinkelEntering angle
ββ
VorhaltewinkelLead angle
ττ
TangentenwinkelTangent angle
I, II, III, IVI, II, III, IV
VorschubantriebeFeed drives
AA
Achse (von T)Axis (from T)
A'A '
AußenachslinieOuter axis line
BB
QuerachseTransverse axis
CC.
mittige Achsecentral axis
DD
Durchmesser
(von U)
diameter
(from U)
EE
SteuereinheitControl unit
FF
Tangentetangent
HH
Halterungbracket
KK
BearbeitungskonturMachining contour
LL
LinsenrohlingLens blank
M1, M2, M3, M4M1, M2, M3, M4
MeßsystemeMeasuring systems
NN
Normale (zu F)Normal (to F)
OO
Oberfläche
(von W)
surface
(from W)
PP
Berührungspunkt
(T auf W)
Point of contact
(T on W)
RR
Mikroprozessor-RechnerMicroprocessor calculator
SS
(Rotations-)Spindel(Rotation) spindle
TT
TopfwerkzeugPotting tool
UU
UmfangsteilCircumferential part
VV
WerkzeugspindelTool spindle
WW
Werkstückworkpiece
XX
Achseaxis
ZZ.
Achseaxis
1010th
CNC-WerkzeugmachineCNC machine tool
1212th
Gestellframe
1414
Tischtable
1616
HorizonalrahmenHorizontal frame
1818th
Schlittencarriage
2020th
Gehäusecasing
2222
Kopfhead
2424th
UmlenkgetriebeDeflection gear
2626
VertikalrahmenVertical frame
2828
Schlittencarriage
3030th
Drehantrieb (für H/W)Rotary drive (for A / W)
4040
BedientafelControl panel
5050
Eingabe-/Ausgabe-EinheitInput / output unit
6060
Umschalt-Einrichtung / WeicheSwitchover device / switch

Claims (10)

  1. Procedure of fabricating aspheric surfaces on lens blanks (L), particularly glass blanks, using a CNC machine tool with a control unit (E) and a movable cup-shaped tool (T) rotating around an axis (A) for grinding and/or polishing the lens blank (L) in a holder (H) that can be moved into a processing position along a first feeding axis (Z), the cup-shaped tool (T) being rotatable around an axis of rotation (B) at right angles to the first feeding axis (Z) and being linearly adjustable along a second feeding axis (X) at right angles to the axis of rotation (B) and to the first feeding axis (Z), and the cup-shaped tool (T) being guided on the lens blank (L) along a processing contour (K) predetermined by the control unit (E) so that a selectable angle of lead (heading angle (β) is maintained between the longitudinal axis (A) of the cup-shaped tool (T) and the tangent line (F) in its point of contact (P) on the workpiece (W), characterized by the following features:
    a) the cup-shaped tool (T) rotated by a rotary drive is moved with a point of contact (P) adjustable via the angle of lead (β) towards the workpiece (W) rotating around the first feeding axis (Z),
    b) the cup-shaped tool (T) is guided from the edge of the workpiece (W) to its center and beyond along the processing contour (K) by means of the control unit (E) through interpolation control of the feeding axes (X, Z) as well as of the axis of rotation (B),
    c) during or after processing of the workpiece (W), scanning values of its surface are obtained and considered in the control unit (E) for subsequent processing through a changed trajectory guidance of the cup-shaped tool (T).
  2. Procedure according to claim 1, wherein the angle of lead (β) is 0 degrees.
  3. Procedure according to claim 1 or claim 2, wherein the processing parameters for determination of the processing contour (K) are entered into a microprocessor computer (R), e.g. via a keyboard under monitor control or via an interface, whereupon the tool trajectory data are calculated in the control unit (E).
  4. Procedure according to any one of claims 1 to 3, wherein the processing contour (K) is defined for the workpiece (W) in microsteps based upon the lens geometry and wherein the corresponding parameters for the instantaneous movement control of the cup-shaped tool (T) and the holder (H) are programmed.
  5. Procedure according to any one of claims 1 to 4, wherein the surface of the lens blank (L) is rough-worked to a spherical shape that is utterly approximated to the predetermined aspheric processing contour (K).
  6. Device for fabricating aspheric surfaces on lens blanks (L), particularly glass blanks, comprising a CNC machine tool with a control unit (E), an adjustable cup-shaped tool (T) rotated around an axis (A) for grinding and/or polishing the lens blank (L), a holder (H) for receiving the lens blank (L), which holder (H) can be moved into a processing position along a first feeding axis (Z) by means of a first feeding drive (II), the cup-shaped tool (T) being rotatable around an axis of rotation (B) at right angles to the first feeding axis (Z) as well as being linearly adjustable along a second feeding axis (X) at right angles to the axis of rotation (B) and to the first feeding axis (Z) by means of a second feeding drive (I), in particular for performing the procedure according to any one of claims 1 to 5, wherein the cup-shaped tool (T) is advanceable to the workpiece (W) which rotates around the first feeding axis (Z) by means of a rotary drive (30), with a point of contact (P) being adjustable via the angle of lead (β), and which is guidable from the edge of the workpiece (W) to its center and beyond along the processing contour (K) by means of the control unit (E) through interpolation control of the feeding axes (X, Z) as well as of the axis of rotation (B), with a measuring system (M1, M2, M3, M4) assigned to each axis (X, Z, B) the values of which can, together with the scanning values of the processed surface, be fed into the control unit (E) and be evaluated in a microprocessor computer (R) for correcting the tool trajectory by comparison of the actual surface with the processing contour (K).
  7. Device according to claim 6, wherein for rotation of the workpiece (W), especially in the vicinity of the first feeding drive (II), an additional drive (IV) is available for an additional axis (C) that is centric with regard to the workpiece holder (H).
  8. Device according to claim 7, wherein there is a switch-over device (60) for changing the holder operation from pure rotation to controlled circular motion operation and vice-versa.
  9. Device according to any one of claims 6 to 8, wherein the cup-shaped tool (T) is arranged at a fixed distance to the transverse axis (B) and is adjustable by means of a linear third feeding drive (III).
  10. Device according to claim 9, wherein the third feeding drive (III) is arranged parallel to the feeding direction of the second drive (I).
EP94117272A 1994-04-12 1994-11-02 Procedure of and device for fabricating aspheric lens surfaces Expired - Lifetime EP0685298B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4412370 1994-04-12
DE4412370A DE4412370A1 (en) 1994-04-12 1994-04-12 Method and device for producing aspherical lens surfaces

Publications (3)

Publication Number Publication Date
EP0685298A1 EP0685298A1 (en) 1995-12-06
EP0685298B1 true EP0685298B1 (en) 1997-08-20
EP0685298B2 EP0685298B2 (en) 2002-08-07

Family

ID=6515074

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94117272A Expired - Lifetime EP0685298B2 (en) 1994-04-12 1994-11-02 Procedure of and device for fabricating aspheric lens surfaces

Country Status (4)

Country Link
EP (1) EP0685298B2 (en)
AT (1) ATE157038T1 (en)
DE (2) DE4412370A1 (en)
ES (1) ES2107101T3 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19756960B4 (en) * 1997-12-20 2011-06-09 Asphericon Gmbh Method for processing rotationally symmetrical functional surfaces

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2113828B1 (en) * 1995-07-04 1999-01-01 Wernicke & Co Gmbh PROCEDURE FOR POLISHING AS WELL AS CASE FOR DRILLING, CUTTING AND WELDING OF GLASSES.
DE19543184A1 (en) * 1995-09-18 1997-03-20 Opto Phot Lichttechnik Gmbh Device for mechanical polishing of conical surfaces e.g. optical glass
DE19616526A1 (en) * 1996-04-25 1997-11-06 Rainer Jung Machine for the machining of optical materials for the production of optical parts
WO1999021682A1 (en) * 1997-10-24 1999-05-06 Precitech Inc. A polishing apparatus for forming aspheric surfaces
DE19751750B4 (en) * 1997-11-21 2007-08-02 Schneider Gmbh + Co. Kg Method and device for producing polishable optical lenses from lens blanks
FR2805767B1 (en) * 2000-03-06 2002-06-21 Essilor Int METHOD FOR MANUFACTURING A SURFACE OF AN OPHTHALMIC LENS, INSTALLATION FOR IMPLEMENTING THE METHOD AND OPHTHALMIC LENS OBTAINED ACCORDING TO THE PROCESS
US6602110B2 (en) 2001-06-28 2003-08-05 3M Innovative Properties Company Automated polishing apparatus and method of polishing
JP4336092B2 (en) * 2002-10-21 2009-09-30 西部電機株式会社 NC processing machine with polishing unit
DE10310561B4 (en) * 2003-03-11 2007-04-26 Optotech Optikmaschinen Gmbh Method and device for producing spectacle lenses and other shaped bodies with optically active surfaces
DE102004028544B4 (en) * 2004-01-17 2012-01-12 Asphericon Gmbh Method for processing and measuring rotationally symmetrical workpieces and grinding and polishing tool
DE102004019931B4 (en) * 2004-04-21 2012-01-05 Schneider Gmbh & Co. Kg Correction procedure for cutting machines
DE102004047563A1 (en) * 2004-09-30 2006-04-06 Asphericon Gmbh Method of polishing
FR2902683B1 (en) * 2006-06-22 2008-10-10 Essilor Int PROCESS AND MACHINING MACHINE FOR OPTICAL OBJECT
DE102007050482B4 (en) * 2007-10-19 2017-08-24 Thielenhaus Technologies Gmbh Method and device for finish machining
TWI410765B (en) * 2007-11-16 2013-10-01 Hon Hai Prec Ind Co Ltd System and method for vertical aspherical lens machining
CN102049717A (en) * 2010-07-19 2011-05-11 长春理工大学 Controlling computerized numerical control (CNC) high-quality aspheric surface forming control method and hardware system
CN103192305A (en) * 2013-03-19 2013-07-10 西安交通大学苏州研究院 Point contact polishing device and method of aspheric-surface optical element
DE102014206424A1 (en) * 2014-04-03 2015-10-08 Carl Zeiss Vision International Gmbh Polishing tool and device and method for shape-error-optimized polishing processing of spectacle lens surfaces and mold shells for eyeglass lens manufacturing
CN105196274A (en) * 2015-09-16 2015-12-30 中国科学院国家天文台南京天文光学技术研究所 Sub-mirror assembling and disassembling device for segmented mirror of large astronomical telescope
CN107139345B (en) * 2017-06-08 2019-02-26 天津大学 The complex-curved ultra-precise cutting forming method of fragile material
JP6592060B2 (en) 2017-11-01 2019-10-16 ファナック株式会社 Machine tool and plastic working method
TWI681845B (en) * 2018-11-15 2020-01-11 財團法人工業技術研究院 Method and system for controlling polishing and grinding
EP4063046A1 (en) * 2021-03-23 2022-09-28 Licardor GmbH Method and device for turning workpieces
CN114460900B (en) * 2021-12-24 2023-02-10 泉州华中科技大学智能制造研究院 Method and device for processing special-shaped curved glass profile

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE533468A (en) * 1953-11-25
DE1234572B (en) * 1960-12-14 1967-02-16 Kogyogijutsuin Cho Radius milling machine for grinding curved lens surfaces
US3837125A (en) * 1973-09-04 1974-09-24 Celestron Pacific Method and system for making schmidt corrector lenses
SU878530A1 (en) * 1979-02-09 1981-11-07 Институт космических исследований АН СССР Method of formation of optical surfaces
DE2937976C2 (en) * 1979-09-20 1983-02-24 Prontor-Werk Alfred Gauthier Gmbh, 7547 Wildbad Machine for grinding or milling convex and / or concave spherical surfaces
FR2528748A1 (en) 1982-06-18 1983-12-23 Essilor Int MACHINE FOR MACHINING CURVED SURFACES
JPS63169258A (en) * 1986-12-26 1988-07-13 Matsushita Electric Ind Co Ltd Automatic form compensating method in spherical grinding and device thereof
US4909621A (en) * 1987-08-17 1990-03-20 Evans Cyril C H Method of making hydrogel contact lenses having aspheric front surfaces
DE3911986A1 (en) * 1989-04-12 1990-10-18 Benzinger Carl Gmbh & Co METHOD AND DEVICE FOR MOLDING WORKPIECES
JPH085011B2 (en) * 1989-07-10 1996-01-24 オリンパス光学工業株式会社 Grinding machine
EP0439425B1 (en) * 1990-01-24 1993-04-14 Ciba-Geigy Ag Device for machining an ophthalmic lens with, in particular, aspheric surfaces
FR2681546B1 (en) * 1991-09-20 1995-12-08 Essilor Int MULTI-AXIS DIGITAL CONTROL MACHINING METHOD AND MACHINE.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19756960B4 (en) * 1997-12-20 2011-06-09 Asphericon Gmbh Method for processing rotationally symmetrical functional surfaces

Also Published As

Publication number Publication date
EP0685298B2 (en) 2002-08-07
DE59403792D1 (en) 1997-09-25
EP0685298A1 (en) 1995-12-06
ATE157038T1 (en) 1997-09-15
ES2107101T3 (en) 1997-11-16
DE4412370A1 (en) 1995-10-19

Similar Documents

Publication Publication Date Title
EP0685298B1 (en) Procedure of and device for fabricating aspheric lens surfaces
EP1719585B1 (en) Machine for machining optical workpieces, by name plastic spectacle lenses
DE19529786C1 (en) Method and tool for producing a concave surface on a lens blank
EP1291106B1 (en) Method and apparatus for the surface machining of work pieces made of non-brittle material in the optics fabrication, and tool therefor
EP0849038B1 (en) High speed lathe for manufacturing optical active surfaces
DE60203154T2 (en) Device for processing spectacle lenses
EP2631033B1 (en) Method and device for machining spectacle lens blanks
DE4230979A1 (en) METHOD AND MACHINING MACHINE WITH MULTIAXIAL DIGITAL CONTROL
CH630832A5 (en) NUMERICALLY CONTROLLED GRINDING MACHINE.
DE60122836T2 (en) Device for producing lens surfaces
EP1037727B1 (en) Device for machining the edges of spectacle glasses
EP0727280B1 (en) Apparatus for polishing spherical lenses
DE3750688T2 (en) Machine tool.
EP0440578A1 (en) Device for machining curved planes onto moulds for optical or ophthalmic lenses
DE202007007704U1 (en) Device for mechanical finishing of roller bearing rings has computer controller for controlling pivot angle and alignment of bisector of pivot angle
DE2659489A1 (en) Milling machine for aspherical faces of optical lenses - has workpiece carrier on cross table with X and Y slides movable independently
DE19538663B4 (en) High-speed dressing machine for machining the blades of the rotor of a turbine or the like
DE2807268A1 (en) Centre and edge grinder for optical lenses - uses two part spindle to hold lens at top and bottom during machining under NC
DE3936699C2 (en) Attachment device for a tool grinding machine
DE19529525A1 (en) Numerically controlled turning machine or lathe for wooden articles
DE102004009088A1 (en) Machine for turning external spiral profiles especially for transport spirals and extruders has the cutting tools fitted on a rotating tilting ring on a horizontal feed and with processor control
DE10341712B3 (en) Automatic de-burring of molding joint lines on casting cores, machines along path derived from known joint line geometry and measurements related to applied force
DE19630426A1 (en) CNC machining of shoemakers&#39; last
EP1393855B1 (en) Method for producing an optical lens
DE19543184A1 (en) Device for mechanical polishing of conical surfaces e.g. optical glass

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19950317

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI NL PT

17Q First examination report despatched

Effective date: 19960124

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI NL PT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19970820

REF Corresponds to:

Ref document number: 157038

Country of ref document: AT

Date of ref document: 19970915

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970820

REF Corresponds to:

Ref document number: 59403792

Country of ref document: DE

Date of ref document: 19970925

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN P. & C. S.N.C.

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2107101

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 19971119

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: LOH OPTIKMASCHINEN AG

Effective date: 19980520

NLR1 Nl: opposition has been filed with the epo

Opponent name: LOH OPTIKMASCHINEN AG

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20011026

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20011031

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20011114

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20011119

Year of fee payment: 8

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20020807

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE CH DE ES FR GB IT LI NL PT

REG Reference to a national code

Ref country code: CH

Ref legal event code: AEN

Free format text: AUFRECHTERHALTUNG DES PATENTES IN GEAENDERTER FORM

NLR2 Nl: decision of opposition
GBTA Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977)
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021130

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
ET3 Fr: translation filed ** decision concerning opposition
BERE Be: lapsed

Owner name: *SCHNEIDER G.M.B.H. + CO. K.G.

Effective date: 20021130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20031023

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050502

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20050502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051102

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20101130

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20101119

Year of fee payment: 17

Ref country code: CH

Payment date: 20101123

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101118

Year of fee payment: 17

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20111102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59403792

Country of ref document: DE

Effective date: 20120601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120601