TWI410765B - System and method for vertical aspherical lens machining - Google Patents

System and method for vertical aspherical lens machining Download PDF

Info

Publication number
TWI410765B
TWI410765B TW096143474A TW96143474A TWI410765B TW I410765 B TWI410765 B TW I410765B TW 096143474 A TW096143474 A TW 096143474A TW 96143474 A TW96143474 A TW 96143474A TW I410765 B TWI410765 B TW I410765B
Authority
TW
Taiwan
Prior art keywords
processing
tool
machining
workpiece
straight
Prior art date
Application number
TW096143474A
Other languages
Chinese (zh)
Other versions
TW200923602A (en
Inventor
Jun-Qi Li
Miao-An Ou-Yang
Qing Liu
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW096143474A priority Critical patent/TWI410765B/en
Publication of TW200923602A publication Critical patent/TW200923602A/en
Application granted granted Critical
Publication of TWI410765B publication Critical patent/TWI410765B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Numerical Control (AREA)
  • Turning (AREA)

Abstract

The present invention provides a system for vertical aspherical lens machining. The system includes: a track designing module for designing a machining track curve of a workpiece; a parameter setting module for setting a tool radius and machining parameters; a track calculating module for calculating a tool path according to the machining track curve of workpiece; a code generating module for generating machining codes according to the tool path; a track displaying module for executing the machining codes and displaying the tool path. A method for vertical aspherical lens machining is also provided.

Description

直軸非球面鏡面加工系統及方法 Straight axis aspheric mirror processing system and method

本發明涉及一種超精密加工系統及方法,特別涉及一種直軸非球面鏡面加工系統及方法。 The invention relates to an ultra-precision machining system and method, in particular to a direct-axis aspheric mirror processing system and method.

隨著科技的進步,超精密加工儀器亦不斷創新。工廠雖已經有了精密及自動化機械,也需要相對應的加工儀器以及正確的加工技術,高精度的產品製造才能達成。 With the advancement of technology, ultra-precision processing instruments are constantly innovating. Although the factory already has precision and automated machinery, it also needs corresponding processing equipment and correct processing technology, and high-precision product manufacturing can be achieved.

非球面光學零件係一種非常重要的光學零件,常用的有抛物面鏡、雙曲面鏡、橢球面鏡等。非球面光學零件可以獲得球面光學零件無可比擬的良好的成像品質,在光學系統中能夠很好的矯正多種像差,改善成像品質,提高系統鑑別能力,它能以一個或幾個非球面零件代替多個球面零件,從而簡化儀器結構,降低成本並有效的減輕儀器重量。 Aspherical optical parts are a very important optical part. Commonly used are parabolic mirrors, hyperbolic mirrors, ellipsoidal mirrors, etc. Aspherical optical components provide unparalleled imaging quality for spherical optical components. They can correct a variety of aberrations, improve imaging quality, and improve system identification in optical systems. It can be used with one or several aspherical parts. It replaces multiple spherical parts, simplifying the instrument structure, reducing costs and reducing instrument weight.

近些年來,出現了許多種新的非球面超精密加工技術,主要有:電腦數控單點金剛石車削技術、電腦數控磨削技術、電腦數控離子束成形技術、電腦數控超精密拋光技術和非球面複印技術等,這些加工方法,基本上解決了各種非球面鏡加工中所存在的問題。前四種方法運用了數控技術,均具有加 工精度較高,效率高等特點,適於批量生產。 In recent years, there have been many new types of aspheric ultra-precision machining technologies, including: CNC single-point diamond turning technology, computer numerical control grinding technology, computer numerical control ion beam forming technology, computer numerical control ultra-precision polishing technology and aspheric surface. Copying techniques, etc., these processing methods basically solve the problems in the processing of various aspherical mirrors. The first four methods use numerical control technology, both of which have High precision and high efficiency, suitable for mass production.

目前,超精密加工係指加工精度為1~0.1μm,表面粗糙度為Ra0.1~0.01μm的加工技術,但這個界限是隨著加工技術的進步不斷變化的,今天的超精密加工可能就是明天的一般加工。超精密加工所要解決的問題,一係加工精度,包括形位公差、尺寸精度及表面狀況,有時有無表面缺陷也是這一問題的核心;二係加工效率,有些加工可以取得較好的加工精度,卻難以取得高的加工效率。超精密加工應該包括微細加工和超微細加工、光整加工等加工技術。 At present, ultra-precision machining refers to processing technology with a processing precision of 1~0.1μm and a surface roughness of Ra0.1~0.01μm, but this limit is constantly changing with the advancement of processing technology. Today's ultra-precision machining may be General processing tomorrow. The problems to be solved by ultra-precision machining, one-line machining accuracy, including geometrical tolerance, dimensional accuracy and surface condition, sometimes with or without surface defects is also the core of this problem; second-line processing efficiency, some machining can achieve better machining accuracy However, it is difficult to achieve high processing efficiency. Ultra-precision machining should include micro-machining and ultra-fine processing, finishing processing and other processing technologies.

超精密加工之加工方法可分為直軸加工及斜軸加工,直軸加工係指刀具的主軸與工件水平面垂直,斜軸加工係指刀具的主軸傾斜於工件工件水平面。 The machining method of ultra-precision machining can be divided into straight-axis machining and oblique-axis machining. Straight-axis machining means that the spindle of the tool is perpendicular to the horizontal plane of the workpiece. The oblique-axis machining means that the spindle of the tool is inclined to the horizontal plane of the workpiece.

然而,傳統的超精密加工人為參與過多,導致加工出來的模具精密不高且加工效率低。而且,由於工藝的限制,斜軸加工只適用於加工小型工件,而且加工工件的剛性不夠。 However, the traditional ultra-precision machining is too much involved, resulting in the processing of the mold is not high precision and processing efficiency. Moreover, due to process limitations, oblique axis machining is only suitable for machining small workpieces, and the rigidity of the machined workpiece is not sufficient.

因此,有必要提供一種直軸非球面鏡面加工系統及方法,其可自動控制精密加工設備的刀具對大型工件進行直軸非球面鏡面精密加工,且加工剛性好,效率高。 Therefore, it is necessary to provide a direct-axis aspheric mirror processing system and method, which can automatically control the precision machining equipment to perform direct-axis aspheric mirror precision machining on large workpieces, and has good processing rigidity and high efficiency.

鑒於以上內容,有必要提供一種直軸非球面鏡面加工系統及方法,其可自動控制精密加工設備的刀具對大型工件進行直軸非球面鏡面精密加工,且加工工件的精度性高、剛性好及 效率高。 In view of the above, it is necessary to provide a direct-axis aspheric mirror processing system and method, which can automatically control the precision machining equipment to perform direct-axis aspheric mirror precision machining on large workpieces, and the workpiece has high precision and rigidity. efficient.

一種直軸非球面鏡面加工系統,其可控制精密加工設備的刀具在與待加工工件垂直的方向上對工件進行直軸非球面鏡面加工,該系統包括:加工軌跡設計模組,用於根據需求設計出工件之加工軌跡曲線;加工參數設置模組,用於設置刀具半徑及刀具加工參數;加工軌跡計算模組,用於根據所設計的工件之加工軌跡曲線計算直軸加工的刀具軌跡座標;加工代碼生成模組,用於根據所述之刀具軌跡座標生成相應的加工代碼;及加工軌跡顯示模組,用於執行所述之加工代碼,顯示刀具直軸加工軌跡,依此刀具直軸加工軌跡可對工件進行直軸非球面鏡面加工。 A direct-axis aspheric mirror processing system capable of controlling a tool of a precision machining device to perform a straight-axis aspheric mirror processing on a workpiece in a direction perpendicular to a workpiece to be processed, the system comprising: a processing trajectory design module for The machining path curve of the workpiece is designed; the machining parameter setting module is used for setting the tool radius and the tool processing parameter; and the machining path calculation module is used for calculating the tool path coordinate of the straight axis machining according to the designed machining path curve of the workpiece; a processing code generating module, configured to generate a corresponding processing code according to the tool path coordinate; and a processing track display module, configured to execute the processing code, display a straight axis processing path of the tool, and directly process the tool according to the tool The trajectory allows straight-axis aspheric mirroring of the workpiece.

一種直軸非球面鏡面加工方法,其可控制精密加工設備的刀具在與待加工工件垂直的方向上對工件進行直軸非球面鏡面加工,該方法包括如下步驟:根據需求設計出工件之加工軌跡曲線;設置刀具半徑及刀具加工參數;根據所設計的工件之加工軌跡曲線計算加工過程中的刀具軌跡座標;根據所述之刀具軌跡座標生成相應的加工代碼;及執行所述之加工代碼,顯示刀具加工軌跡,依此刀具加工軌跡可對工件進行直軸非球面鏡面加工。 A straight-axis aspheric mirror processing method capable of controlling a tool of a precision machining device to perform a straight-axis aspheric mirror processing on a workpiece in a direction perpendicular to a workpiece to be processed, the method comprising the steps of: designing a machining path of the workpiece according to requirements a curve; setting a tool radius and a tool processing parameter; calculating a tool path coordinate in the machining process according to the designed machining path curve of the workpiece; generating a corresponding machining code according to the tool path coordinate; and executing the processing code and displaying The tool machining path can be used to perform straight-axis aspheric mirror processing on the workpiece according to the tool machining path.

相較於習知技術,所述之直軸非球面鏡面加工系統及方法可自動控制精密加工設備之刀具在與工件垂直的方向上對工件進行直軸非球面鏡面精密加工,並提高加工工件的精度性。 Compared with the prior art, the straight-axis aspheric mirror processing system and method can automatically control the precision machining equipment to perform precision machining of the straight-axis aspheric mirror on the workpiece in a direction perpendicular to the workpiece, and improve the workpiece processing. Precision.

10‧‧‧直軸非球面鏡面加工系統 10‧‧‧Direct Aspherical Mirror Finishing System

11‧‧‧加工軌跡設計模組 11‧‧‧Processing Trajectory Design Module

12‧‧‧加工參數設置模組 12‧‧‧Processing parameter setting module

13‧‧‧曲線加圓處理模組 13‧‧‧Curve plus circle processing module

14‧‧‧補償加工模組 14‧‧‧Compensation processing module

15‧‧‧加工軌跡計算模組 15‧‧‧Processing Trajectory Calculation Module

16‧‧‧加工代碼生成模組 16‧‧‧Processing code generation module

17‧‧‧加工軌跡顯示模組 17‧‧‧Processing track display module

圖1係本發明直軸非球面鏡面加工系統Y-Z平面刀具加工示意圖。 1 is a schematic view of the Y-Z plane tool processing of the direct axis aspheric mirror processing system of the present invention.

圖2係本發明直軸非球面鏡面加工系統X-Z平面刀具加工示意圖。 2 is a schematic view of the X-Z plane tool processing of the direct axis aspheric mirror processing system of the present invention.

圖3係本發明直軸非球面鏡面加工系統功能模組圖。 3 is a functional block diagram of a direct-axis aspherical mirror processing system of the present invention.

圖4係本發明直軸非球面鏡面加工方法的較佳實施方式之流程圖。 4 is a flow chart of a preferred embodiment of the direct-axis aspheric mirror processing method of the present invention.

參閱圖1、圖2所示,分別係本發明直軸非球面鏡面加工系統Y-Z平面刀具加工示意圖。該直軸非球面鏡面加工系統運行於精密加工設備的電腦控制系統上或相應的數位控制設備上,用於控制精密加工設備的刀具2之加工軌跡,以達到進一步在與工件垂直的方向上對工件1進行直軸非球面鏡面加工的目的。所述之工件1一般係超硬合金材料的金屬工件,所述刀具2係一種精密加工設備中對工件1進行超精密加工的鑽石砂輪刀具。如圖所示,DE為工件1的中軸線,PQ為刀具2的中軸線,G點為刀具加工過程中刀具2與工件1的切點,O點為刀具加工部分的中心點,OG為刀具加工半徑,且線段OG垂直於該G點處加工曲面切線。在刀具直軸非球面鏡面加工過程中,所述之工件1以其中軸線DE為軸進行轉動,所述之刀具2以其中軸線PQ為軸轉動進而對工件1進行精密加工,同時該刀具2須與工件1在Y-Z軸方向上垂直,也即所述之線段OG須與刀具2的中軸線PQ垂直,以實現直軸加工。本發明直軸非 球面鏡面加工系統X-Z平面刀具加工示意圖如圖2所示。 Referring to FIG. 1 and FIG. 2, respectively, the schematic diagram of the Y-Z plane tool processing of the straight-axis aspheric mirror processing system of the present invention is shown. The straight-axis aspherical mirror processing system runs on a computer control system of a precision processing device or a corresponding digital control device for controlling the machining path of the tool 2 of the precision machining device to further in a direction perpendicular to the workpiece The workpiece 1 performs the purpose of straight-axis aspheric mirror processing. The workpiece 1 is generally a metal workpiece of a superhard alloy material, and the cutter 2 is a diamond grinding wheel tool for ultra-precision machining of the workpiece 1 in a precision machining apparatus. As shown in the figure, DE is the central axis of the workpiece 1, PQ is the central axis of the tool 2, G is the tangent point of the tool 2 and the workpiece 1 during the tool machining, O is the center point of the tool processing part, and OG is the tool machining. The radius, and the line segment OG is perpendicular to the tangential line of the surface at the G point. During the straight-axis aspheric mirror processing of the tool, the workpiece 1 is rotated with the central axis DE as an axis, and the cutter 2 is rotated by the central axis PQ to precisely process the workpiece 1, and the cutter 2 is required to be It is perpendicular to the workpiece 1 in the YZ-axis direction, that is, the line segment OG must be perpendicular to the central axis PQ of the tool 2 to achieve straight-axis machining. Straight axis non-invention Schematic diagram of the X-Z plane tool processing of the spherical mirror processing system is shown in Figure 2.

參閱圖3所示,係本發明直軸非球面鏡面加工系統功能模組圖。該直軸非球面鏡面加工系統10主要包括加工軌跡設計模組11,加工參數設置模組12,曲線加圓處理模組13,補償加工模組14,加工軌跡計算模組15,加工代碼生成模組16及加工軌跡顯示模組17。 Referring to FIG. 3, it is a functional module diagram of the direct-axis aspherical mirror processing system of the present invention. The straight-axis aspheric mirror processing system 10 mainly comprises a processing track design module 11, a processing parameter setting module 12, a curve plus circle processing module 13, a compensation processing module 14, a processing track calculation module 15, and a processing code generation module. Group 16 and processing track display module 17.

所述之加工軌跡設計模組11用於根據需求設計出待加工工件1之加工軌跡曲線。在本實施方式中,所述待加工工件1之加工軌跡曲線在XZ軸座標上可用公式表示為: 其中,R、K、Ai為非球面形狀定義參數,用於控制及調整待加工的工件1加工軌跡曲線。 The processing trajectory design module 11 is configured to design a processing trajectory curve of the workpiece 1 to be processed according to requirements. In this embodiment, the machining trajectory curve of the workpiece 1 to be processed can be expressed by the formula on the XZ axis coordinate as: Among them, R, K, A i are aspherical shape definition parameters for controlling and adjusting the machining path curve of the workpiece 1 to be processed.

所述之加工參數設置模組12用於設置刀具半徑及刀具加工參數。所述之刀具加工參數包括刀具運行速度,切割深度,切割速度等。 The machining parameter setting module 12 is configured to set a tool radius and a tool processing parameter. The tool processing parameters include tool running speed, cutting depth, cutting speed and the like.

所述之曲線加圓處理模組13用於判斷是否需要對待加工工件1之加工軌跡曲線進行加圓處理,及用於當需要進行加圓處理時,對待加工工件1之加工軌跡曲線進行加圓處理。 The curve-plus-circle processing module 13 is configured to determine whether it is necessary to perform rounding processing on the processing trajectory curve of the workpiece 1 to be processed, and to perform rounding on the processing trajectory curve of the workpiece 1 to be processed when the rounding processing is required. deal with.

所述之補償加工模組14用於判斷是否需要補償加工,及當需 要補償加工時,導入補償加工資料對所設計的待加工工件1之加工軌跡曲線進行補償處理。 The compensation processing module 14 is used to determine whether compensation processing is needed, and when needed To compensate for the machining, the compensation machining data is imported to compensate the designed machining path curve of the workpiece 1 to be machined.

所述之加工軌跡計算模組15用於根據加工軌跡設計模組11所設計的待加工工件1之加工軌跡曲線計算直軸加工的刀具軌跡座標。所述之直軸加工的刀具軌跡上每個點的座標到該點處刀具2與工件1的切點的距離都等於刀具加工半徑OG。 The processing trajectory calculation module 15 is configured to calculate a tool trajectory coordinate of the straight axis machining according to the machining trajectory curve of the workpiece 1 to be processed designed by the machining trajectory design module 11. The coordinates of each point on the tool path of the straight-axis machining to the point at which the tool 2 is at the tangent point of the workpiece 1 are equal to the tool machining radius OG.

所述之加工代碼生成模組16用於根據所述之刀具軌跡座標生成相應的加工代碼。 The processing code generation module 16 is configured to generate a corresponding processing code according to the tool path coordinates.

所述之加工軌跡顯示模組17用於執行所述之加工代碼,顯示刀具直軸加工軌跡,依此刀具直軸加工軌跡可對工件進行直軸非球面鏡面加工。 The processing track display module 17 is configured to execute the machining code and display the tool straight axis machining path, and the straight axis aspheric mirror surface processing can be performed on the workpiece according to the tool straight axis machining track.

參閱圖4所示,係本發明直軸非球面鏡面加工方法的較佳實施方式的流程圖。首先,步驟S11,加工軌跡設計模組11根據需求設計出待加工工件1之加工軌跡曲線。在本實施方式中,所述待加工工件1之加工軌跡曲線在XZ軸座標上可用公式表示為: 其中,R、K、Ai為非球面形狀定義參數,用於控制及調整待加工的工件1加工軌跡曲線。 Referring to Figure 4, there is shown a flow chart of a preferred embodiment of the method of processing a direct axis aspheric mirror of the present invention. First, in step S11, the processing trajectory design module 11 designs a processing trajectory curve of the workpiece 1 to be processed according to requirements. In this embodiment, the machining trajectory curve of the workpiece 1 to be processed can be expressed by the formula on the XZ axis coordinate as: Among them, R, K, A i are aspherical shape definition parameters for controlling and adjusting the machining path curve of the workpiece 1 to be processed.

步驟S12,加工參數設置模組12設置刀具半徑及刀具加工參數。所述之刀具加工參數包括刀具運行速度,切割深度,切割速度等。 In step S12, the machining parameter setting module 12 sets the tool radius and the tool processing parameters. The tool processing parameters include tool running speed, cutting depth, cutting speed and the like.

步驟S13,曲線加圓處理模組13判斷是否需要對待加工工件1之加工軌跡曲線進行加圓處理。 In step S13, the curve plus circle processing module 13 determines whether it is necessary to perform rounding processing on the processing trajectory curve of the workpiece 1 to be processed.

步驟S14,當需要進行加圓處理時,曲線加圓處理模組13對待加工工件1之加工軌跡曲線進行加圓處理。 In step S14, when the rounding process is required, the curve plus circle processing module 13 performs a rounding process on the processing trajectory curve of the workpiece 1 to be processed.

步驟S15,補償加工模組14判斷是否需要補償加工資料。 In step S15, the compensation processing module 14 determines whether it is necessary to compensate the processing data.

步驟S16,當需要補償加工資料時,補償加工模組14導入補償加工資料對所設計的待加工工件1之加工軌跡曲線進行補償處理。 In step S16, when the processing data needs to be compensated, the compensation processing module 14 introduces the compensation processing data to compensate the processing curve of the workpiece 1 to be processed.

步驟S17,加工軌跡計算模組15根據所設計的待加工工件1之加工軌跡曲線計算直軸加工的刀具軌跡座標。所述之直軸加工的刀具軌跡上每個點的座標到該點處刀具2與工件1的切點的距離都等於刀具加工半徑OG。 In step S17, the machining trajectory calculation module 15 calculates the tool path coordinates of the straight-axis machining according to the designed machining trajectory curve of the workpiece 1 to be processed. The coordinates of each point on the tool path of the straight-axis machining to the point at which the tool 2 is at the tangent point of the workpiece 1 are equal to the tool machining radius OG.

步驟S18,加工代碼生成模組16根據所述之刀具軌跡座標生成相應的加工代碼。 In step S18, the processing code generation module 16 generates a corresponding processing code according to the tool path coordinates.

步驟S19,加工軌跡顯示模組17執行所述之加工代碼,顯示刀具直軸加工軌跡,依此刀具直軸加工軌跡可對工件進行直軸非球面鏡面加工。 In step S19, the processing track display module 17 executes the processing code to display the straight axis machining path of the tool, and according to the straight axis machining path of the tool, the workpiece can be directly aspherical mirror-finished.

在步驟S13中,若不需要對待加工工件1之加工軌跡曲線進行 加圓處理時,則轉到步驟S15進行執行。 In step S13, if the machining trajectory curve of the workpiece 1 to be processed is not required When the rounding processing is performed, the processing proceeds to step S15.

在步驟S15中,若不需要需要補償加工時,則轉到步驟S17進行執行。 In step S15, if it is not necessary to perform the compensation processing, the process proceeds to step S17.

10‧‧‧直軸非球面鏡面加工系統 10‧‧‧Direct Aspherical Mirror Finishing System

11‧‧‧加工軌跡設計模組 11‧‧‧Processing Trajectory Design Module

12‧‧‧加工參數設置模組 12‧‧‧Processing parameter setting module

13‧‧‧曲線加圓處理模組 13‧‧‧Curve plus circle processing module

14‧‧‧補償加工模組 14‧‧‧Compensation processing module

15‧‧‧加工軌跡計算模組 15‧‧‧Processing Trajectory Calculation Module

16‧‧‧加工代碼生成模組 16‧‧‧Processing code generation module

17‧‧‧加工軌跡顯示模組 17‧‧‧Processing track display module

Claims (8)

一種直軸非球面鏡面加工系統,其可控制精密加工設備的刀具在與待加工工件垂直的方向上對工件進行直軸非球面鏡面加工,該系統包括:加工軌跡設計模組,用於根據需求設計出工件之加工軌跡曲線;加工參數設置模組,用於設置刀具半徑及刀具加工參數;加工軌跡計算模組,用於根據所設計的工件之加工軌跡曲線計算直軸加工的刀具軌跡座標;加工代碼生成模組,用於根據所述之刀具軌跡座標生成相應的加工代碼;及加工軌跡顯示模組,用於執行所述之加工代碼,顯示刀具直軸加工軌跡,依此刀具直軸加工軌跡可對工件進行直軸非球面鏡面加工。 A direct-axis aspheric mirror processing system capable of controlling a tool of a precision machining device to perform a straight-axis aspheric mirror processing on a workpiece in a direction perpendicular to a workpiece to be processed, the system comprising: a processing trajectory design module for The machining path curve of the workpiece is designed; the machining parameter setting module is used for setting the tool radius and the tool processing parameter; and the machining path calculation module is used for calculating the tool path coordinate of the straight axis machining according to the designed machining path curve of the workpiece; a processing code generating module, configured to generate a corresponding processing code according to the tool path coordinate; and a processing track display module, configured to execute the processing code, display a straight axis processing path of the tool, and directly process the tool according to the tool The trajectory allows straight-axis aspheric mirroring of the workpiece. 如申請專利範圍第1項所述之直軸非球面鏡面加工系統,其中該系統還包括曲線加圓處理模組,用於判斷是否需要對工件之加工軌跡曲線進行加圓處理,及當需要進行加圓處理時,對工件之加工軌跡曲線進行加圓處理。 The direct-axis aspheric mirror processing system according to claim 1, wherein the system further comprises a curve and a circle processing module, configured to determine whether a machining path curve of the workpiece needs to be rounded, and when needed When the circle is processed, the machining path curve of the workpiece is rounded. 如申請專利範圍第1項所述之直軸非球面鏡面加工系統,其中該系統還包括補償加工模組,用於判斷是否需要補償加工,及當需要補償加工時,導入補償加工資料對所設計的工件之加工軌跡曲線進行補償處理。 The direct-axis aspheric mirror processing system according to claim 1, wherein the system further comprises a compensation processing module for judging whether compensation processing is required, and when compensation processing is required, introducing compensation processing data to the design The machining path curve of the workpiece is compensated. 如申請專利範圍第1項所述之直軸非球面鏡面加工系統,其中所述之刀具加工參數包括刀具運行速度、切割深度及切割速度。 The direct-axis aspheric mirror processing system of claim 1, wherein the tool processing parameters include a tool running speed, a cutting depth, and a cutting speed. 一種直軸非球面鏡面加工方法,其可控制精密加工設備的刀具在與待加工工件垂直的方向上對工件進行直軸非球面鏡面加工,該方法包括如下步驟:根據需求設計出工件之加工軌跡曲線;設置刀具半徑及刀具加工參數;根據所設計的工件之加工軌跡曲線計算直軸加工的刀具軌跡座標;根據所述之刀具軌跡座標生成相應的加工代碼;及執行所述之加工代碼,顯示刀具直軸加工軌跡,依此刀具直軸加工軌跡可對工件進行直軸非球面鏡面加工。 A straight-axis aspheric mirror processing method capable of controlling a tool of a precision machining device to perform a straight-axis aspheric mirror processing on a workpiece in a direction perpendicular to a workpiece to be processed, the method comprising the steps of: designing a machining path of the workpiece according to requirements a curve; setting a tool radius and a tool processing parameter; calculating a tool path coordinate of the straight axis machining according to the designed machining path curve of the workpiece; generating a corresponding machining code according to the tool path coordinate; and executing the processing code and displaying The straight axis machining path of the tool can be used to perform straight-axis aspheric mirror processing on the workpiece according to the straight-axis machining path of the tool. 如申請專利範圍第5項所述之直軸非球面鏡面加工方法,其中在根據加工軌跡曲線計算直軸加工的刀具軌跡座標的步驟之前還包括:判斷是否需要對工件之加工軌跡曲線進行加圓處理;當需要進行加圓處理時,對工件之加工軌跡曲線進行加圓處理。 The method of processing a straight-axis aspheric mirror according to claim 5, wherein before the step of calculating a tool path coordinate of the straight-axis machining according to the machining path curve, the method further comprises: determining whether it is necessary to round the machining path curve of the workpiece Processing; when the rounding process is required, the machining path curve of the workpiece is rounded. 如申請專利範圍第5項所述之直軸非球面鏡面加工方法,其中在根據加工軌跡曲線計算直軸加工的刀具軌跡座標的步驟之前還包括:判斷是否需要補償加工;若需要補償加工,則導入補償加工資料對所設計的工件之加 工軌跡曲線進行補償處理。 The method of processing a straight-axis aspheric mirror according to claim 5, wherein before the step of calculating a tool path coordinate of the straight-axis machining according to the machining path curve, the method further comprises: determining whether compensation processing is required; Import compensation processing data to the designed workpiece The work track curve is compensated. 如申請專利範圍第5項所述之直軸非球面鏡面加工方法,其中所述之刀具加工參數包括刀具運行速度、切割深度及切割速度。 The straight-axis aspheric mirror processing method according to claim 5, wherein the tool processing parameters include a tool running speed, a cutting depth, and a cutting speed.
TW096143474A 2007-11-16 2007-11-16 System and method for vertical aspherical lens machining TWI410765B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW096143474A TWI410765B (en) 2007-11-16 2007-11-16 System and method for vertical aspherical lens machining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW096143474A TWI410765B (en) 2007-11-16 2007-11-16 System and method for vertical aspherical lens machining

Publications (2)

Publication Number Publication Date
TW200923602A TW200923602A (en) 2009-06-01
TWI410765B true TWI410765B (en) 2013-10-01

Family

ID=44728664

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096143474A TWI410765B (en) 2007-11-16 2007-11-16 System and method for vertical aspherical lens machining

Country Status (1)

Country Link
TW (1) TWI410765B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5678291A (en) * 1994-11-19 1997-10-21 Maschinenfabrik Berthold Hermle Ag Machine tool
US5759457A (en) * 1995-02-24 1998-06-02 Matsushita Electric Industrial Co., Ltd. Method for manufacturing an optical element
US6255619B1 (en) * 1996-03-08 2001-07-03 Nippon Aspherical Lens Co., Lens, semiconductor laser element, device for machining the lens and element, process for producing semiconductor laser element, optical element, and device and method for machining optical element
EP0685298B2 (en) * 1994-04-12 2002-08-07 Schneider GmbH + Co. KG Procedure of and device for fabricating aspheric lens surfaces
TWI355983B (en) * 2007-08-31 2012-01-11 Hon Hai Prec Ind Co Ltd Machining method using oblique rotation shaft

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0685298B2 (en) * 1994-04-12 2002-08-07 Schneider GmbH + Co. KG Procedure of and device for fabricating aspheric lens surfaces
US5678291A (en) * 1994-11-19 1997-10-21 Maschinenfabrik Berthold Hermle Ag Machine tool
US5759457A (en) * 1995-02-24 1998-06-02 Matsushita Electric Industrial Co., Ltd. Method for manufacturing an optical element
US6255619B1 (en) * 1996-03-08 2001-07-03 Nippon Aspherical Lens Co., Lens, semiconductor laser element, device for machining the lens and element, process for producing semiconductor laser element, optical element, and device and method for machining optical element
TWI355983B (en) * 2007-08-31 2012-01-11 Hon Hai Prec Ind Co Ltd Machining method using oblique rotation shaft

Also Published As

Publication number Publication date
TW200923602A (en) 2009-06-01

Similar Documents

Publication Publication Date Title
US6568990B2 (en) System and method for ophthalmic lens manufacture
CN100475394C (en) Method and device for forming three-dimensional surface on workpiece
Lee et al. An investigation of residual form error compensation in the ultra-precision machining of aspheric surfaces
CN105643396A (en) Milling and grinding method of large-caliber off-axis aspherical lens
CN103056731A (en) Five-axis precision ultrasonic milling machining method of large-aperture off-axis aspheric mirror
CN102490103B (en) Meniscus lens and processing method therefor
CN102269830B (en) Processing method for improving central deviation precision of non-spherical lens
US11969805B2 (en) Method and device for milling large-diameter aspheric surface by using splicing method and polishing method
EP2089781B1 (en) Method of surface manufacture with an apex decentered from a spindle axis
EP1409198B1 (en) Method for ophthalmic lens manufacture
Xu et al. Compound machining of tungsten alloy aspheric mould by oblique-axis grinding and magnetorheological polishing
CN113050538B (en) Complex micro-feature spherical crown surface turning track generation method mapped onto cylindrical surface
JP5039129B2 (en) Lens processing method and lens processing apparatus
CN105538085A (en) Special-shaped lens machining method based on computer aided manufacturing (CAM)
CN107443026A (en) Vibration pendulum mirror processing method
TWI410765B (en) System and method for vertical aspherical lens machining
TWI427447B (en) System and method for slanted aspherical lens machining
US20160008942A1 (en) Creation of microstructured spectacle lenses in prescription lens production
CN103212722B (en) A kind of processing method of fery's prism
JP2002126984A (en) Optical center measuring method for spectacles lens, and method and device for installing lens holder of spectacles lens
CN111316179A (en) Method and system for producing an ophthalmic lens
CN101424934A (en) Skew axis aspherical mirror processing system and method
CN109807696B (en) Method for processing low-eccentricity meniscus lens
CN101424933A (en) Skew axis aspherical mirror processing system and method
Brinksmeier et al. Kinematics in ultra-precision grinding of WC moulds

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees