EP0657899B1 - Dauermagnet-Legierungspulver auf Eisenbasis für harzgebundene Magneten und daraus hergestellte Magneten - Google Patents

Dauermagnet-Legierungspulver auf Eisenbasis für harzgebundene Magneten und daraus hergestellte Magneten Download PDF

Info

Publication number
EP0657899B1
EP0657899B1 EP94306610A EP94306610A EP0657899B1 EP 0657899 B1 EP0657899 B1 EP 0657899B1 EP 94306610 A EP94306610 A EP 94306610A EP 94306610 A EP94306610 A EP 94306610A EP 0657899 B1 EP0657899 B1 EP 0657899B1
Authority
EP
European Patent Office
Prior art keywords
iron
permanent magnet
koe
ihc
magnetic phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94306610A
Other languages
English (en)
French (fr)
Other versions
EP0657899A1 (de
Inventor
Hirokazu Kanekiyo
Satoshi Hirosawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neomax Co Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Publication of EP0657899A1 publication Critical patent/EP0657899A1/de
Application granted granted Critical
Publication of EP0657899B1 publication Critical patent/EP0657899B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/002Making metallic powder or suspensions thereof amorphous or microcrystalline
    • B22F9/008Rapid solidification processing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0579Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B with exchange spin coupling between hard and soft nanophases, e.g. nanocomposite spring magnets

Definitions

  • this invention provides iron-based permanent magnet material consisting of microcrystal clusters where the average crystal size of each component phase is in the range 1 nm to 30 nm and where both a soft magnetic phase consisting of a ferromagnetic alloy whose main components are ⁇ -Fe and a ferromagnetic alloy having iron, and a hard magnetic phase having a Nd 2 Fe 14 B-type crystal structure, coexist within the same powder particles.
  • This invention relating to iron-based permanent magnets and alloy powders for iron-based bonded magnets and their fabrication, used for obtaining suitable iron-based bonded magnets for all kinds of motors, actuators and magnetic circuits for magnetic sensors, as well as magnetic rolls and speakers, regards iron-based permanent magnets and their fabrication which yield isotropic iron-based bonded magnets having a residual magnetic flux density Br greater than 0.5 T (5 kG) unobtainable from hard ferrite magnets.
  • Permanent magnets used in stepping motors, power motors and actuators utilised in home electronic goods and electric goods in general are mainly limited to hard ferrites, which have various problems such as, demagnetisation at low temperatures with the fall of iHc, the ease of formation of defects, cracks and lowering of mechanical strength due to the quality of a ceramic material, and the difficulty to fabricate complicated forms.
  • These days, along with the miniaturisation of home electronics and OA equipment, small, light-weight magnetic materials to be used in these products are being sought.
  • motor vehicles as much effort is being made towards saving money and resources by making vehicles light- weighted, even more small, light-weight electrical components for motor vehicles are being sought.
  • Nd-Fe-B-type bonded magnet For example, for a Nd-Fe-B-type bonded magnet to satisfy such magnetic characteristics, 10 ⁇ 15 at% of Nd needs to be included making their cost incredibly high compared to hard ferrite magnets. Production of Nd metal requires many separation and reduction processes which in turn needs large scale equipment. As well as this, for 90% magnetisation, a magnetic field of close to 1.59 ⁇ 10 6 A/m (20 kOe) is required and there are problems with the magnetisation characteristics such as being unable to achieve complicated multipole magnetisation such that the pitch between the magnetic poles is less than 1.6 mm.
  • Nd-Fe-B-type magnet whose main component is an Fe 3 B-type compound with a composition close to Nd 4 Fe 77 B 19 (at%) (R. Coehoorn et al., J. de Phys., C8, 1988, 669-670).
  • This permanent magnet has a semi-stable structure with a polycrystalline structure in which a soft magnetic Fe 3 B phase and a hard magnetic Nd 2 Fe 14 B phase coexist.
  • it is insufficient as a rare earth magnetic material with a low iHc in the range 1.59 ⁇ 10 5 A/m ⁇ 2.39 ⁇ 10 5 A/m (2 kOe ⁇ 3 kOe), and is unsuitable for industrial use.
  • US 5 022 939 for example discloses a permanent magnet material having a composition represented by the formula R x T (100-x-y-z-w) B y M z Ni w
  • the permanent magnet material consists essentially of a primary phase of substantially tetragonal grain structure, or a primary phase of substantially tetragonal grain structure and at least one R-poor auxiliary phase selected from amorphous and crystalline R-poor auxiliary phases.
  • Nd-Fe-B-type magnets whose main phase is an Fe 3 B-type compound
  • This incapability of providing a high-enough iHc is caused by a large grain size of the soft magnetic phase, typically 50 nm, which is not small enough to effectively prevent magnetisation rotation in the soft magnetic phase from occurring under a demagnetisation field.
  • the molten alloy may be melt quenched using a rotating roll, by splat quenching, by gas atomising or by a combination of these methods, and, after obtaining an essentially amorphous structure or a structure containing small amounts of micro-crystals dispersed within an amorphous matrix. Then, following a particular heat treatment applied at a particular heating rate, an iron-based permanent magnet material aggregate in ribbon or flake form is obtained, consisting of micro-crystal clusters in which soft magnetic phases containing a ferromagnetic alloy, whose main components are ⁇ -Fe and an interemetallic compound with iron as its main phase, and hard magnetic phases, having a Nd 2 Fe 14 B-type crystal structure, coexist.
  • both soft magnetic phases consisting of a ferromagnetic alloy whose main components are ⁇ -Fe and iron-based phase
  • hard magnetic phases having a Nd 2 Fe 14 B-type crystal structure will coexist within the same powder particles, and so, for mean crystal particle sizes of each constituent phase in the range of 1 nm ⁇ 30 nm, an intrinsic coercive force above the realistically required 3.98 ⁇ 10 5 A/m (5 kOe) is apparent and, by moulding magnetic powder having a particle size of 3 micrometres ⁇ 500 micrometres into the required forms using a resin, they can obtain permanent magnets in a usable form.
  • the crystallisation heat treatment consists in first raising the temperature at a rate of 10°C per minute to 50°C per minute from the temperature at the start of crystallisation, at say about 500°C. A treatment temperature of 600°C ⁇ 750°C is then maintained for a time, which may be from ten minutes to ten hours, and is typically six or seven hours, sufficient to achieve crystallization.
  • microcrystal clusters where the mean crystal size of each component phase is in the range 1 nm ⁇ 30 nm; and also there is achieved a crystalline aggregate where both a soft magnetic phase consisting of a ferromagnetic alloy whose main components are ⁇ -Fe and an intermetallic compound with iron as its main phase, and a hard magnetic phase having a Nd 2 Fe 14 B-type crystal structure coexist within the same powder particles.
  • iron-based permanent magnet material in ribbon or flake form can be obtained having the following magnetic characteristics.
  • a method of producing an alloy powder for bonding with resin to manufacture a rare earth bonded magnet comprising melting a composition whose formula is represented by
  • the alloy is rapidly heated to about 500°C, the temperature then being steadily raised, at a rate of 10°C to 50°C/min, to a crystallization temperature of between 600°C and 750°C.
  • the crystallization temperature is maintained for from six to seven hours advantageously, in an inert gas atmosphere and/or in a vacuum of a pressure less than 1.33 Pa (10 -2 Torr).
  • Said rapid quenching and solidification may be achieved by one or both of the melt quenching or gas atomizing procedures.
  • Such rapid quenching and solidifying is advantageously accomplished with the aid of a rotating roll whose periphery moves at a speed in the range 10 m/sec to 50 m/sec.
  • the initial melting of the constituent components of the alloy and/or the post quench crystallization heat treatment thereof may be conducted in an atmosphere of an inert gas such as argon; and the latter treatment may be conducted while the alloy is subjected to sub atmospheric pressure.
  • an inert gas such as argon
  • the pulverization may be effective to obtain a powder having a particle size of from 3 to 500 micrometers. Prior to such pulverization the alloy can be found to have the magnetic properties:-
  • One of the focal points of this invention is the grain size of the soft magnetic phase which is to consist the fine crystalline aggregate together with the Nd 2 Fe 14 B type hard magnetic phase.
  • the grain size must be much smaller than 50nm, which is the typical grain size of the previously existing magnet material, eg. Coehoorn et al. (1988).
  • composition and processing method are largely specified as follows.
  • adding Cr causes the crystal particles to be about 1/2 - 1/3 times smaller compared to compositions without Cr, and as we can increase the magnetocrystalline anisotropy constant of the R 2 Fe 14 B phase by partially replacing the iron atoms in this hard magnetic phase with Cr, it is effective for raising iHc. This is ineffective, however, for Cr compositions less than 0.01 at%.
  • Cr couples anti-ferromagnetically with Fe, Br and the squareness of the demagnetization curve is greatly reduced, and so we cannot obtain a Br above 0.8 T (8 kG) with a Cr composition greater than 7 at%.
  • the Cr composition range is 0.01 at% to 7 at%.
  • Partially replacing Fe with Co inhibits the loss of magnetization caused by the addition of Cr, and so avoids the great reduction in Br and the squareness of the demagnetization curve while at the same time improving the magnetization characteristics.
  • the crystal phase of the magnetic powder that constitutes the bonded magnet of this invention will have both a soft magnetic phase consisting of a ferromagnetic alloy whose main components are ⁇ -Fe or iron-based intermetallic compound, and a hard magnetic phase having a Nd 2 Fe 14 B-type crystal structure coexisting within the same powder. But without the latter hard magnetic phase, an iHc would not appear.
  • the average particle size of the powder must be sufficiently small, as high precision molding cannot be performed for powders larger than 500 micrometers. Also, for sizes less than 3 micrometers, the comparative increase in the surface area means that much resin must be used as a binder, and as it is undesirable for the packing density to be too small, the particle size is limited to 3 micrometers - 500 micrometers.
  • microcrystal clusters where the average crystal size of each component phase is in the range 1 nm - 30 nm and where both soft magnetic phases consisting of a ferromagnetic alloy whose main components are ⁇ -Fe or iron-based intermetallic compound and hard magnetic phases having a Nd 2 Fe 14 B-type crystal structure coexist within the same powder particles.
  • melt-quenching method using a rotary roll may be employed if one is able to obtain an essentially amorphous structure or a structure where small amounts of microcrystals are dispersed in amorphous matrix.
  • Methods other than melt-quenching using a rotary roll may also be employed such as splat quenching, gas atomizing or a combination of these techniques.
  • a circumferential velocity of the rotor in the range of 10m/sec - 50m/sec is desirable as one can obtain a suitable quenched structure. That is, if the surface velocity is less than 10m/sec, we cannot obtain the desired amorphous structure. Further, a circumferential velocity exceeding 50m/sec is undesirable as microcrystal clusters having good hard magnetic properties do not form on crystallization. However, small amounts of ⁇ -Fe phase or semi-stable Nd-Fe-B compound within the quenched structure may be permitted as they do not significantly reduce the magnetic characteristics.
  • the heat treatment giving the best magnetic properties depends on the particular composition. Below a heat treatment temperature of 600°C, the Nd 2 Fe 14 B phase does not precipitate and no iHc will be apparent, and for a temperature exceeding 750°C, the particle growth is significant, degrading iHc, Br and the squareness of the demagnetization curve, meaning we cannot obtain the magnetic characteristics described above. Thus, the heat treatment temperature is limited to 600°C - 750°C.
  • the magnetic properties of the obtained alloy powder are mostly independent of the heat treatment time, but we can say that after six hours, there is a trend towards a fall in Br with the passage of time, so a heat treatment time of less than six hours is desirable.
  • an important process parameter of this invention is the heating rate at which the temperature is raised from a temperature close to that of the start of crystallization during the heat treatment, and if this heating rate velocity is less than 10°C per minute, crystal grain growth occurs during the temperature rise and we cannot obtain microcrystal clusters having good hard magnetic properties, nor an iHc above 3.98 ⁇ 10 5 A/m (5 kOe).
  • the bonded magnet relating to this invention is an isotropic magnet, and may be fabricated by any of the known methods listed below such as compression molding, injection molding, extrusion molding, roll molding and resin impregnation.
  • thermosetting resin For compression molding, after mixing the magnetic powder into a thermosetting resin, a coupling agent and a lubricating agent, heating up to a setting temperature after compression molding will cause the heated resin to harden.
  • thermosetting resin for resin impregnation, after compression molding the magnetic powder and heat treating as necessary, one can impregnate a thermosetting resin, and the resin will harden on heating. Further, after compression molding the magnetic powder and heat treating as necessary, one can also impregnate a heat plastic resin.
  • the weight ratio of the magnetic powder within the bonded magnet differs from previous fabrications being 70 wt% - 99.5 wt%, the remaining 0.5 wt%- 30 wt% being resin.
  • the desired weight ratio of the magnetic powder is 95 wt% - 99.5 wt%
  • the desired packing ratio of the magnetic powder is 90 wt% - 95 wt%
  • the desired weight ratio of the magnetic powder is 96 wt% - 99.5 wt%.
  • thermosetting or heat plasticity properties for the synthetic resin used for this invention, one can use a resin having either thermosetting or heat plasticity properties, with a thermally stable resin being desirable.
  • a resin having either thermosetting or heat plasticity properties for example, we recommend polyamide, polyimide, phenol resin, fluororesin, silicon resin or epoxy resin.
  • compositions No. 1- 18 shown in Table 1 a total of 30 gr was weighed out using more than 99.5% pure Fe,Co,Cr,B,Nd,Pr,Al,Si,S,Ni,Cu,Zn,Ga,Ag,Pt,Au or Pb metal, placed in a quartz crucible having a 0.08 mm diameter orifice in its base, and melted by high frequency heating under an Ar atmosphere at a pressure of 74.6 kPa (56 cmHg).
  • the molten surface was pressurized by Ar gas, and the molten alloy was injected from a height of 0.7 mm from the outer surface of a Cu roll rotating at a circumferential velocity of 20m/sec at room temperature, forming a melt quenched thin film 2 mm - 4 mm and 20 micrometers - 40 micrometers thick.
  • the obtained thin film was shown to be amorphous using characteristic Cu K ⁇ x-rays.
  • this thin film was then raised to above 580°C - 600°C, at which crystallization begins, under an Ar atmosphere at the rate shown in Table 1, and then maintained for seven hours at the heat treatment temperature also shown in Table 1. Then, the thin film was cooled to room temperature and removed, forming a sample 2mm - 4mm wide, 20 micrometers - 40 micrometers thick and 3mm - 5mm long. The magnetic characteristics were measured using a VSM, with the results shown in Table 2.
  • This bonded magnet has a density of 6.0 g/cm 3 and its magnetic characteristics are shown in Table 3.
  • melt quenched thin films were produced under the same conditions as for actual example 1, using 99.5% pure Fe,Co,Cr,B,Nd,Pr and Ni.
  • the temperature of this thin flake was then raised to above 580°C - 600°C, at which crystallization begins, under an Ar atmosphere at the rate shown in Table 1, and then maintained for seven hours at the heat treatment temperature also shown in Table 1, cooled to room temperature and removed, producing a sample 2mm - 4mm wide, 20 micrometers - 40 micrometers thick and 3mm - 5mm long, whose magnetic characteristics were measured using a VSM. These results are shown in Table 2.
  • sample No. 19 has a multiphase structure of ⁇ Fe and Nd 2 Fe 14 B phases, with the main phase being the Fe 3 B phase.
  • the average crystal particle size is 50 nm, larger compared to the previous samples No. 1 - 18 and is comparable to average grain sizes in multi - phase magnets in the prior art.
  • Sample No. 20 has a multiphase structure consisting of ⁇ -Fe and Nd 2 Fe 14 B phases, and has a microstructure with the average crystal particle size being about 20 nm, the same as actual example 1, but the squareness of the demagnetization curve is degraded compared to sample No. 3, which contains Co.
  • Sample 21 has a large average crystal particle size of 50 nm, and we do not obtain an iHc above 3.98 ⁇ 10 5 A/m (5 kOe).
  • Sample No. 22 has a multiphase structure with mixed ⁇ Fe, Fe 3 B and Nd 2 Fe 14 B phases, but the growth of the ⁇ -Fe phase is significant leading to a demagnetization curve with a fall in the magnetization at the Br point of the second quadrant of the magnetization curve, and we cannot obtain a (BH)max above 79.6 kJ/m 3 (10 MGOe).
  • Sample No 24 has an average crystal particle size in the range 70nm, with large crystals compared to sample No. 3 of the same composition, and so Br, iHc and (BH)max are degraded when compared to sample No 3.
  • the magnetization curve, shown in Figure 1 After processing bonded magnet No. 3, which has the magnetic characteristics listed in Table 3, so that the permeance coefficient becomes 1, the magnetization curve, shown in Figure 1, has been found by pulse magnetizing from a weak magnetic field in the range of 1.59 ⁇ 10 5 A/m - 3.98 ⁇ 10 6 A/m (2 kOe - 50 kOe) and each time measuring the residual magnetic flux density of the magnet in the open magnetic configuration. By taking the magnetization rate for the residual magnetic flux density at 3.98 ⁇ 10 6 A/m (50 kOe) as 100%, the curve is found by estimating the magnetization rate for each magnetization field as a relative ratio of the residual magnetic flux density. The magnetic field required for 90% magnetization is about 1.03 10 6 A/m (13 kOe).
  • the magnetic field required for 90% magnetization is about 1.51 10 6 A/m (19 kOe), a 4.77 ⁇ 10 5 A/m (6 kOe) larger magnetic field compared to that for bonded magnet No. 3 which has Co added.
  • iron-based permanent magnet material not only with a Br above 0.8 T (8kG) and an iHc above 3.98 ⁇ 10 5 A/m (5 kOe), but also with a good squareness of the second quadrant of the demagnetization curve and with good thermal and magnetization characteristics.
  • this invention can provide bonded magnets with a magnetic efficiency exceeding that of hard ferrite magnets and having an iHc above 3.98 ⁇ 10 5 A/m (5 kOe) and a Br above 0.55 T (5.5 kG). Further, we can shorten the industrial process by complete molding into magnetic parts or magnets, and so these bonded magnets can compare in cost and performance with sintered hard ferrit magnets.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Hard Magnetic Materials (AREA)

Claims (20)

  1. Permanentmagnetmaterial auf der Basis von Eisen, bestehend aus einem Feinkristallaggregat aus gemeinsam verteilten magnetisch weichen Phasen und einer Hartmagnetphase,
    wobei die Zusammensetzungsformel dargestellt ist durch
    entweder Fe100-x-y-z-aCrxByRzCoa
    oder Fe100-x-y-z-a-bCrxByRzCoaMb
    (wobei R eines oder eine Mischung aus Pr und Nd ist; und wobei es sich bei M um eines oder mehrere von Al, Si, S, Ni, Cu, Zn, Ga, Ag, Pt, Au, Pb handelt),
    und wobei die Symbole x, y, z, a und b einschränkende Zusammensetzungsbereiche darstellen, welche die folgenden Werte erfüllen:
    0,01 ≤ x ≤ 7 at%
    15 ≤ y ≤ 30 at%
    3 ≤ z ≤ 6 at%
    0,01 ≤ a ≤ 30 at%
    0,01 ≤ b ≤ 10 at%
    und wobei die Weichmagnetphase und die Hartmagnetphase in demselben kristallinen Aggregat koexistieren, vorausgesetzt daß die Weichmagnetphase aus einem α-Eisen und einer ferromagnetischen Phase mit haupsächlich Eisen besteht, wobei die Hartmagnetphase eine Kristallstruktur vom Nd2Fe14B-Typ aufweist,
    und wobei die Durchschnittspartikelgröße des kristallinen Aggregats im Bereich von 1 nm bis 30 nm liegt.
  2. Permanentmagnetmaterial auf der Basis von Eisen gemäß Anspruch 1, dessen Zusammensetzungsformel dargestellt ist durch
    Fe100-x-y-z-aCrxByRzCoa,
    und wobei die Symbole x, y, z und a einschränkende Zusammensetzungsbereiche darstellen, welche die folgenden Werte erfüllen:
    0,01 ≤ x ≤ 3 at%
    15 ≤ y ≤ 20 at%
    4 ≤ z ≤ 5,5 at%
    1 ≤ a ≤ 10 at%
    und wobei eine Weichmagnetphase bestend aus α-Eisen und einer ferromagnetischen Phase mit Eisen als Hauptbestandteil und eine Hartmagnetphase mit einer Kristallstruktur vom Nd2Fe14B-Typ in dem kristallinen Aggregat koexistieren, und wobei die Durchschnittspartikelgröße des kristallinen Aggregats im Bereich von 1 nm bis 30 nm liegt, und wobei die magnetischen Eigenschaften wie folgt sind:
    3,98·105 A/m (5 kOe) ≤ iHc ≤ 5,17·105 A/m (6,5 kOe),
    Br > 1 T (10 kG),
    (BH)max > 95,5 kJ/m3 (12 MGOe).
  3. Permanentmagnetmaterial auf der Basis von Eisen gemäß Anspruch 1, dessen Zusammensetzungsformel dargestellt ist durch
    Fe100-x-y-z-aCrxByRzCoa,
    und wobei die Symbole x, y, z und a einschränkende Zusammensetzungsbereiche darstellen, welche die folgenden Werte erfüllen:
    3 ≤ x ≤ 7 at%
    15 ≤ y ≤ 20 at%
    4 ≤ z ≤ 5,5 at%
    1 ≤ a ≤ 10 at%
    und wobei eine Weichmagnetphase bestend aus α-Eisen und einer ferromagnetischen Phase mit Eisen als Hauptbestandteil und eine Hartmagnetphase mit einer Kristallstruktur vom Nd2Fe14B-Typ in dem kristallinen Aggregat koexistieren, und wobei die Durchschnittspartikelgröße des kristallinen Aggregats im Bereich von 1 nm bis 30 nm liegt, und wobei die magnetischen Eigenschaften wie folgt sind:
    iHc > 5,17·105 A/m (6,5 kOe),
    0,8 T (8kG) ≤ Br ≤ 1 T (10 kG),
    79,6 kJ/m3 (10 MGOe) ≤ (BH)max ≤ 95,5 kJ/m3 (12 MGOe).
  4. Permanentmagnetmaterial auf der Basis von Eisen gemäß Anspruch 1, dessen Zusammensetzungsformel dargestellt ist durch
    Fe100-x-y-z-a-bCrxByRzCoaMb,
    und wobei die Symbole x, y, z, a und b einschränkende Zusammensetzungsbereiche darstellen, welche die folgenden Werte erfüllen:
    0,01 ≤ x ≤ 3 at%
    15 ≤ y ≤ 20 at%
    4 ≤ z ≤ 5,5 at%
    1 ≤ a ≤ 10 at%
    0,5 ≤ b ≤ 3 at%
    und wobei eine Weichmagnetphase bestend aus α-Eisen und einer ferromagnetischen Phase mit Eisen als Hauptbestandteil und eine Hartmagnetphase mit einer Kristallstruktur vom Nd2Fe14B-Typ in dem kristallinen Aggregat koexistieren, und wobei die Durchschnittspartikelgröße des kristallinen Aggregats im Bereich von 1 nm bis 30 nm liegt, und wobei die magnetischen Eigenschaften wie folgt sind:
    3,98·105 A/m (5kOe) ≤ iHc ≤ 5,17·105A/m (6,5 kOe),
    Br > 1,02 T (10,2 kG),
    (BH)max > 99,5 kJ/m3 (12,5 MGOe).
  5. Permanentmagnetmaterial auf der Basis von Eisen gemäß Anspruch 1, dessen Zusammensetzungsformel dargestellt ist durch
    Fe100-x-y-z-a-bCrxByRzCoaMb,
    und wobei die Symbole x, y, z, a und b einschränkende Zusammensetzungsbereiche darstellen, welche die folgenden Werte erfüllen:
    3 ≤ x ≤ 7 at%
    15 ≤ y ≤ 20 at%
    4 ≤ z ≤ 5,5 at%
    1 ≤ a ≤ 10 at%
    0,5 ≤ b ≤ 3 at%
    und wobei eine Weichmagnetphase bestend aus α-Eisen und einer ferromagnetischen Phase mit Eisen als Hauptbestandteil und eine Hartmagnetphase mit einer Kristallstruktur vom Nd2Fe14B-Typ in dem kristallinen Aggregat koexistieren, und wobei die Durchschnittspartikelgröße des kristallinen Aggregats im Bereich von 1 nm bis 30 nm liegt, und wobei die magnetischen Eigenschaften wie folgt sind:
    iHc > 5,17·105 A/m (6,5 kOe),
    0,82 T (8,2 kG) ≤ Br ≤ 1,02 T (10,2 kG),
    83,6 kJ/m3 (10,5 MGOe) ≤ (BH)max ≤ 99,5 kJ/m3 (12,5 MGOe).
  6. Permanentmagnetmaterial auf der Basis von Eisen gemäß Anspruch 1 mit folgenden magnetischen Eigenschaften:
    iHc ≥ 3,98·105 A/m (5 kOe),
    Br ≥ 0,8 T (8 kG),
    und
    (BH)max ≥ 79,6 kJ/m3 (10 MGOe).
  7. Permanentmagnetmaterial auf der Basis von Eisen gemäß Anspruch 1, dessen Zusammensetzungsformel dargestellt ist durch
    Fe100-x-y-z-aCrxByRzCoa,
    und wobei die Symbole x, y, z und a einschränkende Zusammensetzungsbereiche darstellen, welche die folgenden Werte erfüllen:
    0,01 ≤ x ≤ 7 at%
    15 ≤ y ≤ 30 at%
    3 ≤ z ≤ 6 at%
    0,01 ≤ a ≤ 30 at%
    und wobei, nachdem das Material zu einem Pulver mit einer durschnittlichen Partikelgröße von 3 Mikrometern bis 500 Mikrometern pulverisiert wurde, es folgende magnetische Eigenschaften aufweist:
    iHc ≥ 3,98·105 A/m (5 kOe),
    Br ≥ 0,7 T (7 kG),
    (BH)max ≥ 63,7 kJ/m3 (8 MGOe).
  8. Permanentmagnetmaterial auf der Basis von Eisen gemäß Anspruch 1, dessen Zusammensetzungsformel dargestellt ist durch
    Fe100-x-y-z-a-bCrxByRzCoaMb,
    und wobei die Symbole x, y, z, a und b einschränkende Zusammensetzungsbereiche darstellen, welche die folgenden Werte erfüllen:
    0,01 ≤ x ≤ 7 at%
    15 ≤ y ≤ 30 at%
    3 ≤ z ≤ 6 at%
    0,01 ≤ a ≤ 30 at%
    0,01 ≤ b ≤ 10 at%
    und wobei, nachdem das Material zu einem Pulver mit einer durschnittlichen Partikelgröße von 3 Mikrometern bis 500 Mikrometern pulverisiert wurde, es folgende magnetische Eigenschaften aufweist:
    iHc ≥ 3,98·105 A/m (5 kOe),
    Br ≥ 0,72 T (7,2 kG),
    (BH)max ≥ 66,8 kJ/m3 (8,4 MGOe).
  9. Harzgebundener Permanentmagnet, erhältlich durch Verwendung des Permanentmagnetmaterials gemäß Anspruch 1,
    wobei das Material, das zu einem Pulver mit einer durschnittlichen Partikelgröße von 3 Mikrometern bis 500 Mikrometern pulverisiert wurde und dann durch Bindung mit Harz zur Herstellung eines harzgebundenen Permanentmagneten in Form gebracht wurde, folgende magnetische Eigenschaften aufweist:
    iHc ≥ 3,98·105 A/m (5 kOe),
    Br ≥ 0,55 T (5,5 kG),
    (BH)max ≥ 47,7 kJ/m3 (6 MGOe).
  10. Verfahren zur Herstellung eines Legierungspulvers zur Bindung mit Harz zur Herstellung eines seltenerdgebundenen Magneten; wobei das Verfahren das Schmelzen einer Zusammensetzung umfaßt, deren Formel dargestellt wird durch:
    entweder
    Fe100-x-y-z-aCrxByRzCoa
    oder
    Fe100-x-y-z-a-bCrxByRzCoaMb
    (wobei R eines oder eine Mischung aus Pr und Nd ist; und wobei es sich bei M um eines oder mehrere von Al, Si, S, Ni, Cu, Zn, Ga, Ag, Pt, Au, Pb handelt),
    und wobei die Symbole x, y, z, a und b einschränkende Zusammensetzungsbereiche darstellen, welche die folgenden Werte erfüllen:
    0,01 ≤ x ≤ 7 at%
    15 ≤ y ≤ 30 at%
    3 ≤ z ≤ 6 at%
    0,01 ≤ a ≤ 30 at%
    0,01 ≤ b ≤ 10 at%
    dadurch gekennzeichnet, daß die geschmolzene Legierung rasch abgeschreckt wird, so daß im wesentlichen mehr als 90% der erstarrten Legierung amorph sind, und dann erneut auf eine Kristallisationstemperatur von 580°C bis 750°C erwärmt wird und auf dieser Temperatur über eine Zeitdauer von zehn Minuten bis zehn Stunden gehalten wird, ausreichend zur Umwandlung der im wesentlichen amorphen Struktur in ein kristallines Aggregat, worin eine Weichmagnetphase bestehend aus α-Eisen, einer ferromagnetischen Phase mit Eisen als Hauptbestandteil, und eine Hartmagnetphase mit einer Kristallstruktur vom Nd2Fe14B-Typ koexistiert, wobei das kristalline Aggregat einen Durchschnittskristallpartikeldurchmesser von 1 nm bis 30 nm aufweist; und Pulversieren des Aggregats zur Herstellung des Pulvers.
  11. Verfahren gemäß Anspruch 10 und wobei die rasche Erstarrung durch ein oder mehrere Verfahren ausgewählt aus Schmelzabschrecken und Gasatomisieren erreicht wird.
  12. Verfahren gemäß einem der vorhergehenden Ansprüche 10 oder 11, und wobei die Wärmebehandlung in einer Argonatmosphäre erfolgt.
  13. Verfahren gemäß einem der vorhergehenden Ansprüche 10 bis 12, und wobei das Aggregat zur Herstellung eines Pulvers mit einer Partikelgröße von 3 bis 500 Mikrometern pulversiert wird.
  14. Verfahren gemäß einem der vorhergehenden Ansprüche 10 bis 13, und wobei das rasche Abschrecken und Erstarren mit Hilfe einer Walze erreicht wird, welche sich mit einer Geschwindigkeit im Bereich von 10 m/sec bis 50 m/sec dreht.
  15. Verfahren gemäß einem der Ansprüche 10 bis 14, und wobei nach dem Abschrecken und Erstarren der geschmolzenen Legierung, so daß die Legierungsstruktur größtenteils amorph ist, die Legierung rasch auf etwa 500°C erwärmt wird, wobei die Temperatur dann ständig erhöht wird, bei einer Rate von 10°C bis 50°C/Minute, auf eine Kristallisationstemperatur zwischen 600°C und 750°C.
  16. Verfahren gemäß Anspruch 15, wobei die Kristallisationstemperatur sechs bis sieben Stunden in einer Inertgasatmosphäre und/oder in einem Vakuum mit einem Druck von weniger als 1,333 Pa (10-2 Torr) gehalten wird.
  17. Verfahren gemäß einem der Ansprüche 10 bis 16, wobei
    das geschmolzene Material verarbeitet wird, erst durch ein rasches Erstarrungsverfahren, in ein amorphes Material oder ein Material, worin eine geringe Menge feiner Kristalle und amorphem Material koexistieren, und dann durch eine Wärmebehandlung, wobei bei der Wärmebehandlung zur Kristallisierung einer amorphen Legierung die Kristallisierungswärmebehandlung mit einer Erwärmungsrate zwischen 10°C/Min. und 50°C/Min. von nahe der Temperatur, bei welcher die Kristallisation beginnt, bis zu einer isothermen Wärmebearbeitungstemperatur zur Herstellung von magnetisch hartem Material erfolgt, wobei eine Weichmagnetphase bestehend aus α-Eisen und einer ferromagnetischen Legierung mit Eisen als Hauptbestandteil und eine Hartmagnetphase mit einer Kristallstruktur vom Nd2Fe14B-Typ in demselben Partikel koexistieren, und, wobei die Durschnittskristallpartikelgröße der Bestandteilphasen im Bereich von 1 nm bis 30 nm liegt.
  18. Verfahren zur Herstellung eines Permanentmagnetmaterials auf der Basis von Eisen gemäß Anspruch 17, wobei eine amorphe Legierung in Band-, Flocken- oder Pulverform, erhalten durch ein Schmelzabschreckverfahren, ein Spritzabschreckverfahren, ein Gasatomisierungsverfahren oder kombinierte Verfahren hiervon als Wärmebehandlungsvorläufermaterial verwendet wird.
  19. Verfahren zur Herstellung eines Permanentmagnetmaterials auf der Basis von Eisen gemäß Anspruch 17, wobei die Kristallisierungswärmebehandlung bei 600°C bis 750°C in einer Inertgasatmosphäre oder in einem Vakuum von einem Druck von weniger als 1,333 Pa (10-2 Torr) erfolgt.
  20. Seltenderdgebundener Magnet, wenn aus Harz hergestellt, gebunden mit einem Pulver des Permanentmagnetmaterials, hergestellt durch das Verfahren gemäß einem der vorhergehenden Ansprüche 10 bis 19.
EP94306610A 1993-12-10 1994-09-08 Dauermagnet-Legierungspulver auf Eisenbasis für harzgebundene Magneten und daraus hergestellte Magneten Expired - Lifetime EP0657899B1 (de)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP34164893 1993-12-10
JP34164893 1993-12-10
JP34164693 1993-12-10
JP341648/93 1993-12-10
JP34164693 1993-12-10
JP341650/93 1993-12-10
JP34165093 1993-12-10
JP341646/93 1993-12-10
JP34165093 1993-12-10
JP34357593 1993-12-15
JP343575/93 1993-12-15
JP34357593 1993-12-15

Publications (2)

Publication Number Publication Date
EP0657899A1 EP0657899A1 (de) 1995-06-14
EP0657899B1 true EP0657899B1 (de) 2000-03-08

Family

ID=27480606

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94306610A Expired - Lifetime EP0657899B1 (de) 1993-12-10 1994-09-08 Dauermagnet-Legierungspulver auf Eisenbasis für harzgebundene Magneten und daraus hergestellte Magneten

Country Status (5)

Country Link
US (1) USRE37666E1 (de)
EP (1) EP0657899B1 (de)
KR (1) KR0149901B1 (de)
CN (1) CN1080920C (de)
DE (1) DE69423305T2 (de)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3490228B2 (ja) * 1996-03-25 2004-01-26 アルプス電気株式会社 硬磁性合金圧密体およびその製造方法
EP0886284B1 (de) * 1996-04-10 2002-10-23 Showa Denko Kabushiki Kaisha Gusslegierung für die Herstellung von Dauermagneten mit seltenen Erden und Verfahren zur Herstellung dieser Legierung und dieser Dauermagneten
US5872501A (en) * 1996-07-07 1999-02-16 Toda Kogyo Corporation Rare earth bonded magnet and rare earth-iron-boron type magnet alloy
KR100345995B1 (ko) 1997-02-06 2002-07-24 스미토모 도큐슈 긴조쿠 가부시키가이샤 미세한 결정 조직을 갖는 박판 자석의 제조 방법
EP0860838B1 (de) * 1997-02-20 2004-04-21 Alps Electric Co., Ltd. Dauermagnetlegierung, Dauermagnetlegierungs-Pressling und Herstellungsverfahren dazu
US6332933B1 (en) 1997-10-22 2001-12-25 Santoku Corporation Iron-rare earth-boron-refractory metal magnetic nanocomposites
JP3275882B2 (ja) 1999-07-22 2002-04-22 セイコーエプソン株式会社 磁石粉末および等方性ボンド磁石
TW505928B (en) 1999-06-11 2002-10-11 Seiko Epson Corp Magnetic powder and isotropic bonded magnet
EP1061532B1 (de) * 1999-06-11 2006-11-22 Seiko Epson Corporation Magnetpulver und isotroper Verbundmagnet
US6589367B2 (en) * 1999-06-14 2003-07-08 Shin-Etsu Chemical Co., Ltd. Anisotropic rare earth-based permanent magnet material
DE19945942C2 (de) * 1999-09-24 2003-07-17 Vacuumschmelze Gmbh Verfahren zur Herstellung von Dauermagneten aus einer borarmen Nd-Fe-B-Legierung
JP3951525B2 (ja) * 1999-11-25 2007-08-01 セイコーエプソン株式会社 薄帯状磁石材料、薄帯状磁石材料の製造方法、磁石粉末および希土類ボンド磁石
CN1162872C (zh) * 1999-12-27 2004-08-18 住友特殊金属株式会社 铁基磁性材料合金粉末的制造方法
JP4684461B2 (ja) 2000-04-28 2011-05-18 パナソニック株式会社 磁性素子の製造方法
CN101673605B (zh) * 2008-09-08 2011-12-07 南京理工大学 各向异性纳米/非晶复相块体永磁材料及其制备方法
CN103632834B (zh) * 2013-12-03 2015-12-02 江苏大学 一种高性能各向异性钕铁硼磁体的制备方法
CN103730227B (zh) * 2014-01-28 2016-04-27 成都银河磁体股份有限公司 一种纳米双相各向同性复合永磁体及其制备方法
CN104439235B (zh) * 2014-12-20 2017-03-29 珠海嘉磁电子有限公司 一种复合软磁材料的制备方法
US10629341B2 (en) * 2016-08-22 2020-04-21 Ford Global Technologies, Llc Magnetic phase coupling in composite permanent magnet
CN108262488B (zh) * 2018-01-24 2021-07-06 浙江农林大学 一种金纳米颗粒修饰的纳米磁珠的制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01103805A (ja) * 1987-07-30 1989-04-20 Tdk Corp 永久磁石
US5022939A (en) * 1987-07-30 1991-06-11 Tdk Corporation Permanent magnets
JP2598558B2 (ja) * 1990-08-17 1997-04-09 富士電気化学株式会社 永久磁石
JP3502107B2 (ja) * 1991-08-29 2004-03-02 Tdk株式会社 永久磁石材料の製造方法
JP2966169B2 (ja) * 1991-11-11 1999-10-25 住友特殊金属株式会社 希土類磁石並びに希土類磁石用合金粉末とその製造方法
CN1053988C (zh) * 1991-11-11 2000-06-28 住友特殊金属株式会社 稀土磁体和稀土磁体用的合金粉末及其制造方法

Also Published As

Publication number Publication date
EP0657899A1 (de) 1995-06-14
CN1105474A (zh) 1995-07-19
USRE37666E1 (en) 2002-04-23
KR0149901B1 (ko) 1999-05-15
CN1080920C (zh) 2002-03-13
DE69423305D1 (de) 2000-04-13
DE69423305T2 (de) 2000-11-30
KR950020781A (ko) 1995-07-24

Similar Documents

Publication Publication Date Title
EP0657899B1 (de) Dauermagnet-Legierungspulver auf Eisenbasis für harzgebundene Magneten und daraus hergestellte Magneten
JP2751109B2 (ja) 熱安定性の良好な焼結型永久磁石
JPH01103805A (ja) 永久磁石
US6338761B1 (en) Iron-based permanent magnets and their fabrication as well as iron-based permanent magnet alloy powders for permanent bonded magnets and iron-based bonded magnets
JP2727507B2 (ja) 永久磁石およびその製造方法
EP0542529A1 (de) Verfahren zur Herstellung von Legierungspulvern des SE-Fe/Co-B-M-Typs und gebundene Magnete mit diesem Legierungspulver
JPH0447024B2 (de)
EP1127358B1 (de) Sm (Co, Fe, Cu, Zr, C) ZUSAMMENSETZUNGEN UND VERFAHREN ZU DEREN HERSTELLUNG
EP0323125A1 (de) Permanent-Magnet aus seltenen Erden
JPH1053844A (ja) 希土類−鉄−ボロン系磁石合金及びその製造法並びに該希土類−鉄−ボロン系磁石合金を用いたボンド磁石
KR100204256B1 (ko) 자기적 이방성 및 내식성이 우수한 희토류-에프이-비 계영구자석분말 및 접합자석
JP3519443B2 (ja) 永久磁石合金粉末とその製造方法
JPH07263210A (ja) 永久磁石並びに永久磁石合金粉末とその製造方法
JPH01100242A (ja) 永久磁石材料
JP3488354B2 (ja) 微細結晶永久磁石合金及び等方性永久磁石粉末の製造方法
JP2999648B2 (ja) 希土類磁石並びに希土類磁石合金粉末とその製造方法
JP3710154B2 (ja) 鉄基永久磁石とその製造方法並びにボンド磁石用鉄基永久磁石合金粉末と鉄基ボンド磁石
JPH08335506A (ja) 高保磁力鉄基永久磁石及びボンド磁石
JP2868963B2 (ja) 永久磁石材料、ボンド磁石用原料、ボンド磁石用原料粉末及びボンド磁石の製造方法
JP3703903B2 (ja) 異方性ボンド磁石
JPH07176417A (ja) 鉄基ボンド磁石とその製造方法
JP3623583B2 (ja) 異方性ボンド磁石
JP2925840B2 (ja) Fe−B−R系ボンド磁石
JP3103219B2 (ja) マグネットロールとその製造方法
JPH09115711A (ja) 異方性ボンド磁石

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE FR GB IT NL

17P Request for examination filed

Effective date: 19951204

17Q First examination report despatched

Effective date: 19970701

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT NL

REF Corresponds to:

Ref document number: 69423305

Country of ref document: DE

Date of ref document: 20000413

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130930

Year of fee payment: 20

Ref country code: NL

Payment date: 20130918

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20130923

Year of fee payment: 20

Ref country code: FR

Payment date: 20130902

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20130925

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20130930

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69423305

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: V4

Effective date: 20140908

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20140907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140907