EP0640185B1 - Gasreibungsvakuumpumpe - Google Patents

Gasreibungsvakuumpumpe Download PDF

Info

Publication number
EP0640185B1
EP0640185B1 EP93911777A EP93911777A EP0640185B1 EP 0640185 B1 EP0640185 B1 EP 0640185B1 EP 93911777 A EP93911777 A EP 93911777A EP 93911777 A EP93911777 A EP 93911777A EP 0640185 B1 EP0640185 B1 EP 0640185B1
Authority
EP
European Patent Office
Prior art keywords
pump
rotor
section
stage
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93911777A
Other languages
English (en)
French (fr)
Other versions
EP0640185A1 (de
Inventor
Hans-Peter Kabelitz
Martin Mühlhoff
Hans Kriechel
Frank Fleischmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Balzers und Leybold Deutschland Holding AG
Original Assignee
Leybold AG
Balzers und Leybold Deutschland Holding AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leybold AG, Balzers und Leybold Deutschland Holding AG filed Critical Leybold AG
Publication of EP0640185A1 publication Critical patent/EP0640185A1/de
Application granted granted Critical
Publication of EP0640185B1 publication Critical patent/EP0640185B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/16Combinations of two or more pumps ; Producing two or more separate gas flows
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/044Holweck-type pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/046Combinations of two or more different types of pumps

Definitions

  • the invention relates to a gas friction vacuum pump with differently designed pump stages, each comprising a rotor section and a stator section.
  • Friction pumps include molecular and turbomolecular vacuum pumps.
  • a moving rotor wall and a stationary stator wall are designed and spaced apart such that the impulses transmitted from the walls to gas molecules located between them have a preferred direction.
  • the rotor and / or stator wall are equipped with thread-like depressions or projections.
  • Turbomolecular vacuum pumps have interlocking rows of stator and rotor blades in the manner of a turbine.
  • Turbomolecular pumps have a relatively low compression (pressure ratio of pressure-side pressure to suction-side pressure) and a relatively high pumping speed (pump speed, volume flow per unit of time). Their manufacture and assembly is complex and expensive. In addition, they require a backing pressure of around 10 ⁇ 2 mbar. Molecular pumps also have a relatively high compression, but their pumping speed is relatively small. They pump up to pressures of 10 mbar and more, so that the effort required for the pre-vacuum generation is less than with turbomolecular pumps. It is therefore known to equip gas friction vacuum pumps with differently designed pump stages, the pump stage on the fore-vacuum side generally being a molecular pump stage because of the better fore-vacuum resistance.
  • the present invention has for its object to design a gas friction vacuum pump with differently designed pump stages in such a way that it can be easily adapted to different applications.
  • the proposed measures have the advantage that the final pressure behavior of the pump can be influenced in a staggered manner by simple variations of the rotor and stator components. For example, it is possible to significantly influence the pump properties of the entire pump by means of modular turbomolecular pump stages that can be placed on a molecular pump stage. The basic structure of the downstream molecular pump is not affected.
  • the friction pump 1 shown in FIG. 1 has a first housing section 2. Part of this first Housing section 2 is the outer cylinder 3, which is equipped with the flange 4. With the help of the flange 4, the friction pump 1 can be connected either directly or via a reducer 5 with the flanges 6 and 7 to the recipient to be evacuated.
  • the reducer 5 is required if the flange 4 of the pump 1 has a smaller or larger diameter than the flange of the recipient, not shown.
  • the rotor 9 is bell-shaped. It comprises the shaft 10 with its axis of rotation 8, the hub 11 and the cylindrical section 12.
  • the drive motor 14 and at least the upper bearing of the two rotor bearings 15 are located within the space 13 formed by the bell-shaped rotor 9.
  • the motor 14 and the rotor bearings 15 are supported on the component 16 fixed to the housing.
  • the outside of the bell-shaped rotor 9 forms, together with the inside of the outer cylinder 3, the pumping surfaces of a molecular pump stage 3, 12 or the annular gas delivery channel 20.
  • the inside of the Housing cylinder 3 separate rings 17, 18, 19 may be provided.
  • the gases to be pumped are conveyed from the inlet 21 to the outlet, not shown.
  • a forevacuum pump, also not shown, is connected to the outlet during operation.
  • the rotor 9 In the area of the hub 11 on the high vacuum side, the rotor 9 is designed conically in such a way that its diameter increases in the direction of flow. A smooth inner surface of the outer cylinder 3 or the associated ring 17 is assigned to this area. Structures 22 serving for gas production are provided on the rotor 9 itself. For example, they can be designed as radial webs, the width of which decreases in the direction of flow, so that the molecular pump stage 3, 12 has an inlet stage 17, 22 with improved delivery capacity.
  • the rotor 9 is fastened by means of a screw 23 in the region of the high-vacuum end of the shaft 10.
  • the end face of the rotor 9 is equipped with a circular projection 25 which is concentric with the axis of rotation 8.
  • This projection 25 is a component of centering means which are provided both on the rotor 9 and on the further rotor sections to be fastened on the end face of the rotor 9.
  • the molecular pump stage 3, 12 is preceded by a turbomolecular pump stage 26.
  • This consists of the rotor section 27 with its rotor blades 28 and the housing section 29 with its stator blades 30.
  • the end face of the rotor section 27 facing the rotor 9 is provided with a recess 31 (centering means) which is concentric with the axis of rotation 8.
  • the diameter of this recess corresponds to the outer diameter of the circular projection 25 on the end face of the rotor 9, as a result of which the desired centering with respect to the axis of rotation 8 is achieved.
  • the housing section 29 is equipped with the flanges 32 and 33.
  • the turbomolecular pump stage 26 is attached to the flange 4 of the molecular pump stage 3, 12.
  • Either the recipient to be evacuated or the reducer 5 is mounted on the flange 33.
  • the fastening of the rotor section 27 to the rotor 9 of the molecular pump stage expediently serves screws 34 which axially penetrate the rotor section 27 and are screwed into the end face of the rotor 9.
  • the position of the screws is indicated by dash-dotted lines 34.
  • the molecular pump stage 3, 12 is preceded by a special friction pump stage (filling stage 35), the housing section 36 of which has a smooth inner surface.
  • the rotor section 37 is designed as described in EP-A 363 503.
  • the rotor section 37 comprises a central part 38 and webs 39.
  • the webs form the structures which effect the gas delivery. Their width and their slope decrease from the suction side to the pressure side. This requires a conical design of the central part 38. It is particularly expedient if the taper of the hub 11 of the rotor 9 of the molecular pump stage 3, 12 continuously adjoins the taper of the central part 38 of the rotor section 37.
  • the housing section 36 On the fore-vacuum side, the housing section 36 is equipped with the flange 41, which is connected to the flange 4 of the molecular pump stage 3, 12. On the inlet side, the reducer 5 closes welded to a component. Of course, there is also the possibility of connecting the housing section 36 and the reducer 5 to one another via flanges. A reducer 5 according to FIG. 2 is then to be used together with a filling stage 35 according to FIG. 4.
  • a turbomolecular pump stage 26 and a filling stage 35 are arranged upstream of the molecular pump stage 3, 12 in the direction of flow.
  • the associated housing sections 3, 36, 29 are connected via flanges.
  • the rotor sections 9, 37, 27 are connected in the manner described for FIG. 2.
  • the respective centering means are appropriately equipped with identical diameters, so that the desired modular structure is possible. If two further pump stages are located upstream of the molecular pump stage 3, 12, then it is only necessary to use longer fastening screws 34 to fasten the two rotor sections.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Abstract

Die Erfindung betrifft eine Gasreibungsvakuumpumpe (1) mit mindestens zwei unterschiedlich gestalteten Pumpstufen (3, 12; 26; 35), welche jeweils einen Rotorabschnitt (9, 27, 37) und einen Gehäuseabschnitt (3, 29, 36) umfassen; um die Pumpe verschiedenen Einsatzfällen anpassen zu können, wird vorgeschlagen, daß hochvakuumseitig verschiedene Eingangsstufen aufsetzbar sind, daß die Pumpstufen lösbar miteinander verbunden sind.

Description

  • Die Erfindung bezieht sich auf eine Gasreibungsvakuumpumpe mit unterschiedlich gestalteten Pumpstufen, welche jeweils einen Rotorabschnitt und einen Statorabschnitt umfassen.
  • Eine derartige Pumpe ist aus dem Dokument EP-A-0 363 503 bekannt.
  • Zu den Reibungspumpen gehören Molekular- und Turbomolekularvakuumpumpen. Bei Molekularpumpen sind eine sich bewegende Rotorwand und eine ruhende Statorwand so gestaltet und beabstandet, daß die von den Wandungen auf dazwischen befindliche Gasmoleküle übertragenen Impulse eine bevorzugte Richtung haben. In der Regel sind Rotor- und/oder Statorwand mit gewindeartigen Vertiefungen oder Vorsprüngen ausgerüstet. Turbomolekularvakuumpumpen weisen nach Art einer Turbine ineinandergreifende Stator- und Rotorschaufelreihen auf.
  • Turbomolekularpumpen haben eine relativ niedrige Kompression (Druckverhältnis von druckseitigem Druck zu saugseitigem Druck) und relativ hohes Saugvermögen (Pumpgeschwindigkeit, Volumendurchfluß pro Zeiteinheit). Ihre Herstellung und Montage ist aufwendig und teuer. Darüber hinaus benötigen sie einen Vorvakuumdruck von etwa 10⁻² mbar. Molekularpumpen haben ebenfalls eine relativ hohe Kompression, ihr Saugvermögen ist jedoch relativ klein. Sie fördern bis zu Drücken von 10 mbar und mehr, so daß der für die Vorvakuumerzeugung erforderliche Aufwand geringer als bei Turbomolekulapumpen ist. Es ist deshalb bekannt, Gasreibungsvakuumpumpen mit unterschiedlich gestalteten Pumpstufen auszurüsten, wobei die vorvakuumseitige Pumpstufe wegen der besseren Vorvakuumbeständigkeit in der Regel eine Molekularpumpstufe ist.
  • Gasreibungsvakuumpumpen mit jeweils zwei unterschiedlich gestalteten Pumpenstufen sind aus EP-A-159 464, EP-A-363 503 und FR-A-25 25 698 bekannt.
  • Der vorliegenden Erfindung liegt die Aufgabe zugrunde, eine Gasreibungsvakuumpumpe mit unterschiedlich gestalteten Pumpenstufen derart auszubilden, daß sie in einfacher Weise an verschiedene Einsatzfälle angepaßt werden kann.
  • Erfindungsgemäß wird diese Aufgabe durch die Merkmale des Patentansprüchs 1 gelöst.
  • Die vorgeschlagenen Maßnahmen haben den Vorteil, daß durch einfache Variationen der Rotor- und Statorbauteile das Enddruckverhalten der Pumpe gestaffelt beeinflußt werden kann. Beispielsweise ist möglich, durch modular auf eine Molekularpumpstufe aufsetzbare Turbomolekularpumpstufen die Pumpeigenschaften der gesamten Pumpe deutlich zu beeinflussen. Der grundsätzlich Aufbau der nachgeschalteten Molekularpumpe wird nicht beeinflußt.
  • Weitere Vorteile und Einzelheiten sollen anhand von in den Figuren 1 bis 4 dargestellten Reibungspumpen erläutert werden. Es zeigen:
    • Figur 1 einen Schnitt durch eine als Molekularpumpe ausgebildete Reibungspumpe nach dem Stand der Technik (EP-A-408 792),
    • Figur 2 einen Teilschnitt durch die Reibungspumpe nach Figur 1, ausgerüstet mit einer hochvakuumseitig angeordneten Turbomolekularpumpenstufe entsprechend EP-A-159 464,
    • Figur 3 einen Teilschnitt durch die Reibungspumpe nach Figur 1, ausgerüstet mit einer hochvakuumseitig angeordneten Molekularpumpenstufe entsprechend EP-A-363 503 und
    • Figur 4 ein Ausführungsbeispiel nach der Erfindung.
  • Die in Figur 1 dargestellte Reibungspumpe 1 weist einen ersten Gehäuseabschnitt 2 auf. Bestandteil dieses ersten Gehäuseabschnittes 2 ist der äußere Zylinder 3, der mit dem Flansch 4 ausgerüstet ist. Mit Hilfe des Flansches 4 kann die Reibungspumpe 1 entweder unmittelbar oder über ein Reduzierstück 5 mit den Flanschen 6 und 7 an den zu evakuierenden Rezipienten angeschlossen werden. Das Reduzierstück 5 ist dann erforderlich, wenn der Flansch 4 der Pumpe 1 einen kleineren oder größeren Durchmesser hat als der Flansch des nicht dargestellten Rezipienten.
  • Der Rotor 9 ist glockenförmig ausgebildet. Er umfaßt die Welle 10 mit ihrer Drehachse 8, die Nabe 11 und den zylindrischen Abschnitt 12. Innerhalb des vom glockenförmigen Rotor 9 gebildeten Raumes 13 befinden sich der Antriebsmotor 14 und zumindest das obere Lager der beiden Rotorlagerungen 15. Der Motor 14 und die Rotorlagerungen 15 stützen sich auf dem gehäusefesten Bauteil 16 ab.
  • Die Außenseite des glockenförmigen Rotors 9 bildet zusammen mit der Innenseite des äußeren Zylinders 3 die pumpaktiven Flächen einer Molekularpumpstufe 3, 12, bzw. den ringförmigen Gasförderkanal 20. In an sich bekannter Weise (EP-A-408 792) können zur Gestaltung der Innenseite des Gehäusezylinders 3 separate Ringe 17, 18, 19 vorgesehen sein. Die zu pumpenden Gase werden vom Einlaß 21 bis zum nicht dargestellten Auslaß gefördert. An den Auslaß wird während des Betriebs eine ebenfalls nicht dargestellte Vorvakuumpumpe angeschlossen.
  • Im Bereich der hochvakuumseitig gelegenen Nabe 11 ist der Rotor 9 derart konisch gestaltet, daß sein Durchmesser in Strömungsrichtung zunimmt. Diesem Bereich ist eine glatte innere Oberfläche des äußeren Zylinders 3 bzw. des zugehörigen Ringes 17 zugeordnet. Der Gasförderung dienende Strukturen 22 sind am Rotor 9 selbst vorgesehen. Sie können beispielsweise als radiale Stege ausgebildet sein, deren Breite in Strömungsrichtung abnimmt, so daß die Molekularpumpstufe 3, 12 eine Einlaufstufe 17, 22 mit verbesserter Förderleistung hat.
  • Im Bereich des hochvakuumseitigen Endes der Welle 10 ist der Rotor 9 mittels einer Schraube 23 befestigt. Die Stirnseite des Rotors 9 ist mit einem kreisförmigen, zur Drehachse 8 konzentrischen Vorsprung 25 ausgerüstet. Dieser Vorsprung 25 ist Bestandteil von Zentriermitteln, die sowohl am Rotor 9 als auch an den auf der Stirnseite des Rotors 9 zu befestigenden weiteren Rotorabschnitten vorgesehen sind.
  • Beim Ausführungsbeispiel nach Figur 2 ist der Molekularpumpstufe 3, 12 eine Turbomolekularpumpstufe 26 vorgelagert. Diese besteht aus dem Rotorabschnitte 27 mit seinen Rotorschaufeln 28 und dem Gehäuseabschnitt 29 mit seinen Statorschaufeln 30. Die dem Rotor 9 zugewandte Stirnseite des Rotorabschnittes 27 ist mit einer zur Drehachse 8 konzentrischen Aussparung 31 (Zentriermittel) versehen. Der Durchmesser dieser Aussparung entspricht dem Außendurchmesser des kreisförmigen Vorsprunges 25 auf der Stirnseite des Rotors 9, wodurch die gewünschte Zentrierung zur Drehachse 8 erreicht wird. Der Gehäuseabschnitt 29 ist mit den Flanschen 32 und 33 ausgerüstet. Mit dem vorvakuumseitig gelegenen Flansch 32 erfolgt die Befestigung der Turbomolekularpumpstufe 26 am Flansch 4 der Molekularpumpstufe 3, 12. An den Flansch 33 wird entweder unmittelbar der zu evakuierende Rezipient oder das Reduzierstück 5 montiert.
  • Der Befestigung des Rotorabschnittes 27 am Rotor 9 der Molekularpumpstufe dienen zweckmäßig Schrauben 34, welche den Rotorabschnitt 27 axial durchsetzen und in die Stirnseite des Rotors 9 eingeschraubt werden. Die Lage der Schrauben ist durch strichpunktierte Linien 34 angedeutet.
  • Beim Ausführungsbeispiel nach Figur 3 ist der Molekularpumpstufe 3, 12 eine besondere Reibungspumpstufe (Füllstufe 35) vorgelagert, deren Gehäuseabschnitt 36 eine glatte innere Oberfläche hat. Der Rotorabschnitt 37 ist derart gestaltet, wie es in der EP-A 363 503 beschrieben ist. Der Rotorabschnitt 37 umfaßt einen Zentralteil 38 und Stege 39. Die Stege bilden die die Gasförderung bewirkenden Strukturen. Ihre Breite und ihre Steigung nehmen von der Saugseite zur Druckseite hin ab. Dieses setzt eine konische Gestaltung des Zentralteiles 38 voraus. Besonders zweckmäßig ist es, wenn sich die Konizität der Nabe 11 des Rotors 9 der Molekularpumpstufe 3, 12 stetig an die Konizität des Zentralteiles 38 des Rotorabschnittes 37 anschließt.
  • Vorvakuumseitig ist der Gehäuseabschnitt 36 mit dem Flansch 41 ausgerüstet, der mit dem Flansch 4 der Molekularpumpstufe 3, 12 verbunden wird. Einlaßseitig ist es mit dem Reduzierstück 5 zu einem Bauteil verschweißt. Es besteht natürlich auch die Möglichkeit, Gehäuseabschnitt 36 und Reduzierstück 5 über Flansche miteinander zu verbinden. Ein Reduzierstück 5 nach Fig. 2 ist dann zusammen mit einer Füllstufe 35 nach Fig. 4 zu verwenden.
  • Beim Ausführungsbeispiel nach Figur 4 sind der Molekularpumpstufe 3, 12 in Strömungsrichtung eine Turbomolekularpumpstufe 26 und eine Füllstufe 35 vorgelagert. Die Verbindung der zugehörigen Gehäuseabschnitte 3, 36, 29 erfolgt über Flansche. Die Verbindung der Rotorabschnitt 9, 37, 27 ist in der Weise realisiert, wie es zur Figur 2 beschrieben wurde. Die jeweiligen Zentriermittel sind zweckmäßig mit identischen Durchmessern ausgerüstet, so daß der gewünschte modulare Aufbau möglich ist. Sind der Molekularpumpstufe 3, 12 hochvakuumseitig zwei weitere Pumpstufen vorgelagert, dann ist es zur Befestigung der beiden Rotorabschnitte lediglich erforderlich, längere Befestigungsschrauben 34 zu verwenden.

Claims (7)

  1. Gasreibungsvakuumpumpe (1) mit unterschiedlich gestalteten Pumpstufen (3, 12; 26; 35), welche jeweils einen Rotorabschnitt (9, 27, 37) und einen Gehäuseabschnitt (3, 29, 36) umfassen, dadurch gekennzeichnet, daß drei unterschiedlich gestaltete Pumpstufen (3, 12; 26; 35) vorgesehen sind, daß einer vorvakuumseitigen Pumpstufe (3, 12) hochvakuumseitig eine Füllstufe mit einem Stator (36) und einem Rotor (38) vorgelagert ist, wobei der Rotor (38) mit einer die Gasförderung bewirkenden Struktur versehen ist, die aus radial sich erstreckenden Stegen (39) besteht, deren Steigung und deren Breite von der Saugseite zur Druckseite hin abnehmen, daß der Füllstufe (35) ihrerseits eine Turbomolekularpumpstufe (26) vorgelagert ist und daß die drei Pumpstufen (3, 12, 26, 35) lösbar miteinander verbunden sind.
  2. Pumpe nach Anspruch 1, dadurch gekennzeichnet, daß ein im wesentlichen zylindrischer Abschnitt (12) des Rotors (9) und ein im wesentlichen zylindrischer Gehäuseabschnitt (3) eine vorvakuumseitige Molekularpumpstufe mit einem im Querschnitt ringförmigen Gasförderkanal (20) bilden.
  3. Pumpe nach Anspruch 2, dadurch gekennzeichnet, daß der hochvakuumseitig gelegene Abschnitt des Rotors (9) mit in Strömungsrichtung zunehmendem Durchmesser konisch gestaltet ist (Nabe 11) und daß er in seinem konischen Abschnitt der Gasförderung dienende Strukturen (22) trägt.
  4. Pumpe nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet,daß die Füllstufe (35) ein Zentralteil (38) aufweist, der mit in Strömungsrichtung zunehmendem Durchmesser gestaltet ist.
  5. Pumpe nach Anspruch 4, dadurch gekennzeichnet, daß sich die Konizität der Nabe (11) des Rotors (9) stetig an die Konizität des Zentralteiles (38) der Füllstufe (35) anschließt.
  6. Pumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die einander zugewandten Stirnseiten der lösbar miteinander zu verbindenden Rotorabschnitte (9, 27, 37) mit Zentriermitteln (25, 31) ausgerüstet sind.
  7. Pumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Gehäuseabschnitt (29, 36) der hochvakuumseitig angeordneten Pumpstufe (26, 35) mit einem Reduzierstück (5) einstückig ausgebildet ist.
EP93911777A 1992-05-16 1993-04-23 Gasreibungsvakuumpumpe Expired - Lifetime EP0640185B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4216237A DE4216237A1 (de) 1992-05-16 1992-05-16 Gasreibungsvakuumpumpe
DE4216237 1992-05-16
PCT/EP1993/000984 WO1993023672A1 (de) 1992-05-16 1993-04-23 Gasreibungsvakuumpumpe

Publications (2)

Publication Number Publication Date
EP0640185A1 EP0640185A1 (de) 1995-03-01
EP0640185B1 true EP0640185B1 (de) 1995-11-15

Family

ID=6459056

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93911777A Expired - Lifetime EP0640185B1 (de) 1992-05-16 1993-04-23 Gasreibungsvakuumpumpe

Country Status (5)

Country Link
US (1) US5553998A (de)
EP (1) EP0640185B1 (de)
JP (1) JPH07506648A (de)
DE (2) DE4216237A1 (de)
WO (1) WO1993023672A1 (de)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4216237A1 (de) * 1992-05-16 1993-11-18 Leybold Ag Gasreibungsvakuumpumpe
JPH0886298A (ja) * 1994-09-19 1996-04-02 Hitachi Ltd ドライターボ真空ポンプ
GB9525337D0 (en) * 1995-12-12 1996-02-14 Boc Group Plc Improvements in vacuum pumps
DE19632874A1 (de) * 1996-08-16 1998-02-19 Leybold Vakuum Gmbh Reibungsvakuumpumpe
DE29717079U1 (de) 1997-09-24 1997-11-06 Leybold Vakuum GmbH, 50968 Köln Compoundpumpe
US6457954B1 (en) * 1998-05-26 2002-10-01 Leybold Vakuum Gmbh Frictional vacuum pump with chassis, rotor, housing and device fitted with such a frictional vacuum pump
JP3092063B2 (ja) * 1998-06-17 2000-09-25 セイコー精機株式会社 ターボ分子ポンプ
US6328527B1 (en) * 1999-01-08 2001-12-11 Fantom Technologies Inc. Prandtl layer turbine
JP3788558B2 (ja) * 1999-03-23 2006-06-21 株式会社荏原製作所 ターボ分子ポンプ
JP3961155B2 (ja) * 1999-05-28 2007-08-22 Bocエドワーズ株式会社 真空ポンプ
US6514035B2 (en) * 2000-01-07 2003-02-04 Kashiyama Kougyou Industry Co., Ltd. Multiple-type pump
DE10008691B4 (de) * 2000-02-24 2017-10-26 Pfeiffer Vacuum Gmbh Gasreibungspumpe
JP5149472B2 (ja) * 2000-05-15 2013-02-20 プファイファー・ヴァキューム・ゲーエムベーハー ガス摩擦ポンプ
DE10111546A1 (de) 2000-05-15 2002-01-03 Pfeiffer Vacuum Gmbh Gasreibungspumpe
DE10046766A1 (de) * 2000-09-21 2002-04-11 Leybold Vakuum Gmbh Compound-Reibungsvakuumpumpe
DE10056144A1 (de) * 2000-11-13 2002-05-23 Pfeiffer Vacuum Gmbh Gasreibungspumpe
US7717684B2 (en) * 2003-08-21 2010-05-18 Ebara Corporation Turbo vacuum pump and semiconductor manufacturing apparatus having the same
GB0322883D0 (en) * 2003-09-30 2003-10-29 Boc Group Plc Vacuum pump
GB0503946D0 (en) * 2005-02-25 2005-04-06 Boc Group Plc Vacuum pump
US7457661B2 (en) * 2005-03-24 2008-11-25 Medtronic Vascular, Inc. Catheter-based, dual coil photopolymerization system
US7326034B2 (en) * 2005-09-14 2008-02-05 Schlumberger Technology Corporation Pump apparatus and methods of making and using same
US7845413B2 (en) * 2006-06-02 2010-12-07 Schlumberger Technology Corporation Method of pumping an oilfield fluid and split stream oilfield pumping systems
JP5369591B2 (ja) 2008-10-03 2013-12-18 株式会社島津製作所 ターボ分子ポンプ
US8152442B2 (en) * 2008-12-24 2012-04-10 Agilent Technologies, Inc. Centripetal pumping stage and vacuum pump incorporating such pumping stage
US9061095B2 (en) 2010-04-27 2015-06-23 Smith & Nephew Plc Wound dressing and method of use
US11274671B2 (en) * 2011-09-14 2022-03-15 Roger L. Bottomfield Turbine cap for turbo-molecular pump
JP6706553B2 (ja) * 2015-12-15 2020-06-10 エドワーズ株式会社 真空ポンプ及び該真空ポンプに搭載される回転翼、反射機構
JP6885851B2 (ja) * 2017-10-27 2021-06-16 エドワーズ株式会社 真空ポンプ、ロータ、ロータフィン、およびケーシング
GB2592618A (en) * 2020-03-03 2021-09-08 Edwards Ltd Turbine blades and methods of manufacture of turbine blades

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2224009A5 (de) * 1973-03-30 1974-10-25 Cit Alcatel
US4579508A (en) * 1982-04-21 1986-04-01 Hitachi, Ltd. Turbomolecular pump
JPS6034594U (ja) * 1983-08-16 1985-03-09 セイコー精機株式会社 縦型タ−ボ分子ポンプ
JPS60182394A (ja) * 1984-02-29 1985-09-17 Shimadzu Corp タ−ボ分子ポンプ
US4732529A (en) * 1984-02-29 1988-03-22 Shimadzu Corporation Turbomolecular pump
DE3410905A1 (de) * 1984-03-24 1985-10-03 Leybold-Heraeus GmbH, 5000 Köln Einrichtung zur foerderung von gasen bei subatmosphaerischen druecken
DE3613344A1 (de) * 1986-04-19 1987-10-22 Pfeiffer Vakuumtechnik Turbomolekular-vakuumpumpe fuer hoeheren druck
JPS6341695A (ja) * 1986-08-07 1988-02-22 Seiko Seiki Co Ltd タ−ボ分子ポンプ
JPS6385288A (ja) * 1986-09-29 1988-04-15 Hitachi Ltd 真空ポンプ
JPS6463698A (en) * 1987-09-02 1989-03-09 Hitachi Ltd Turbo vacuum pump
DE3891201T1 (de) * 1988-01-05 1990-01-11 Valerij Borisovic Solochov Vakuum-molekularpumpe
EP0363503B1 (de) * 1988-10-10 1993-11-24 Leybold Aktiengesellschaft Pumpenstufe für eine Hochvakuumpumpe
EP0408791B1 (de) * 1989-07-20 1994-03-16 Leybold Aktiengesellschaft Reibungspumpe mit glockenförmigem Rotor
EP0408792B1 (de) * 1989-07-20 1993-09-29 Leybold Aktiengesellschaft Gasreibungspumpe mit mindestens einer auslassseitigen Gewindestufe
DE4216237A1 (de) * 1992-05-16 1993-11-18 Leybold Ag Gasreibungsvakuumpumpe

Also Published As

Publication number Publication date
US5553998A (en) 1996-09-10
EP0640185A1 (de) 1995-03-01
DE59300970D1 (de) 1995-12-21
DE4216237A1 (de) 1993-11-18
JPH07506648A (ja) 1995-07-20
WO1993023672A1 (de) 1993-11-25

Similar Documents

Publication Publication Date Title
EP0640185B1 (de) Gasreibungsvakuumpumpe
DE69310993T2 (de) Turbomolekularvakuumpumpen
DE2412624C2 (de) Molekularvakuumpumpenanordnung
EP0159464B1 (de) Molekularvakuumpumpe
EP0408791B1 (de) Reibungspumpe mit glockenförmigem Rotor
EP1252445B1 (de) Turbomolekularpumpe
EP0408792B1 (de) Gasreibungspumpe mit mindestens einer auslassseitigen Gewindestufe
EP1067290B1 (de) Vakuumpumpe
WO1999060275A1 (de) Reibungsvakuumpumpe mit stator und rotor
EP2295812A1 (de) Vakuumpumpe
EP0363503B1 (de) Pumpenstufe für eine Hochvakuumpumpe
EP1017944B1 (de) Compoundpumpe
EP0697068A1 (de) Reibungsvakuumpumpe mit lagerabstützung
EP1706645A1 (de) Mehrstufige reibungsvakuumpumpe
EP1243796B1 (de) Vakuumpumpe
DE4339060A1 (de) Getriebeverdichter für die Verdichtung von Sauerstoff
DE2409857A1 (de) Turbomolekularvakuumpumpe mit zumindest teilweise glockenfoermig ausgebildetem rotor
DE2526164A1 (de) Turbomolekularvakuumpumpe mit zumindest teilweise glockenfoermig ausgebildetem rotor
EP1119709A1 (de) Reibungsvakuumpumpe mit stator und rotor
DE10224604B4 (de) Evakuierungseinrichtung
DE1628271C3 (de) Mehrstufiger Flüssigkeitsringverdichter bzw. mehrstufige Flüssigkeitsringpumpe
EP1119710B1 (de) Reibungsvakuumpumpe
EP1319131A1 (de) Compound-reibungsvakuumpumpe
WO2001011240A1 (de) Reibungsvakuumpumpe mit pumpaktiven elementen
DE20200839U1 (de) Zweistufige Flüssigkeitsringpumpe in Blockbauweise

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19941020

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI

17Q First examination report despatched

Effective date: 19950428

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

REF Corresponds to:

Ref document number: 59300970

Country of ref document: DE

Date of ref document: 19951221

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960106

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER & PEDRAZZINI AG PATENTANWAELTE

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19960402

Year of fee payment: 4

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: BALZERS UND LEYBOLD DEUTSCHLAND HOLDING AKTIENGESE

26N No opposition filed
ITPR It: changes in ownership of a european patent

Owner name: CAMBIO NOME EPO;BALZERS UND LEYBOLD DEUTSCHLAND HO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970430

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010312

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010319

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010321

Year of fee payment: 9

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021231

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050423

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070616

Year of fee payment: 15

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20091201

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20091201