EP0634769B1 - Herstellungsverfahren für Mikrospitzenkaltkathoden - Google Patents

Herstellungsverfahren für Mikrospitzenkaltkathoden Download PDF

Info

Publication number
EP0634769B1
EP0634769B1 EP94401582A EP94401582A EP0634769B1 EP 0634769 B1 EP0634769 B1 EP 0634769B1 EP 94401582 A EP94401582 A EP 94401582A EP 94401582 A EP94401582 A EP 94401582A EP 0634769 B1 EP0634769 B1 EP 0634769B1
Authority
EP
European Patent Office
Prior art keywords
holes
grid
mask
defects
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94401582A
Other languages
English (en)
French (fr)
Other versions
EP0634769A1 (de
Inventor
Pierre Vaudaine
Brigitte Montmayeul
Michel Borel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP0634769A1 publication Critical patent/EP0634769A1/de
Application granted granted Critical
Publication of EP0634769B1 publication Critical patent/EP0634769B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/022Manufacture of electrodes or electrode systems of cold cathodes
    • H01J9/025Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/319Circuit elements associated with the emitters by direct integration

Definitions

  • the present invention relates to an improvement to a method for manufacturing a microtip electron source. It makes it possible to improve the uniformity and / or the reproducibility of the emission of cathodes with microtips and to relax the manufacturing constraints.
  • Microtip emissive cathodes are sources of electrons used in particular in the field of visualization and in particular for flat screens. They can also be used in electron guns or in vacuum gauges.
  • Document FR-A-2 593 953 describes a method of manufacturing a display device by cathodoluminescence excited by field emission.
  • the electron source is a microtip cathode deposited on a glass substrate and having a matrix structure.
  • FIG. 1 schematically represents a known source of electrons with microtip emissive cathodes described in detail in the aforementioned document FR-A-2 623 013.
  • This source has a matrix structure and optionally comprises on a substrate 2, for example made of glass, a thin layer of silica 4.
  • a plurality of electrodes 5 in the form of parallel conductive strips playing the role of cathodic conductors and constituting the columns of the matrix structure.
  • the cathode conductors are each covered by a resistive layer 7 which can be continuous (except on the ends to allow the connection of the cathode conductors with polarization means 20).
  • Above the insulating layer 8 are formed a plurality of electrodes 10 also in the form of parallel conductive strips. These electrodes 10 are perpendicular to the electrodes 5 and play the role of grids which constitute the lines of the matrix structure.
  • a resistive layer can optionally be placed above or below the electrodes 10.
  • Document EP-A-0 461 990 recommends using electrodes (for example cathode conductors) in the form of a lattice so that the microtips are arranged in the openings of the lattice of these electrodes.
  • the breakdown resistance no longer depends, in the first order, on the thickness of the resistive layer but on the distance between the cathode conductor and the microtip.
  • Figure 2 is a schematic top view of the electron source and Figure 3 is an enlarged and sectional view along the axis III-III of Figure 2.
  • This matrix structure comprises a substrate 1, for example made of glass, and possibly a thin layer 6 of silica. On the silica layer 6 is formed a series of parallel electrodes 3, each having a lattice structure, playing the role of cathode conductors. These are the columns of the matrix structure.
  • the cathode conductors 3 are covered by the resistive layer 9 made of silicon and by the insulating layer 11 made of silica. Above the insulating layer 11 is formed another series of parallel electrodes also having an openwork but different structure, designed to minimize the areas of overlap with the cathode conductors. These electrodes are perpendicular to the cathode conductors and constitute the grids. These are the lines of the matrix structure.
  • Figures 2 and 3 show a detail of one of the grids of the device.
  • the grid bearing the general reference 13, comprises parallel tracks 14 orthogonally cutting other parallel tracks 15.
  • the grid has enlarged zones 17, here of square shape. It can be seen in FIG. 2 that the areas 16 of overlap of the cathode conductor 3 and tracks 14 and 15 of the grid have a very small surface.
  • the enlarged zones 17 are located in the center of the meshes forming the cathode conductor.
  • microwares 18 are formed in the thickness of the grid and of the insulating layer 11.
  • the microtips 19 are deposited in these holes and rest on the resistive layer 9.
  • a micro-hole and micro-tip assembly constitutes a micro-emitter of electrons.
  • the micro-emitters occupy the central regions of the mesh of the conductor lattice cathodic and the enlarged and square areas 17 of the grid. In the case shown in Figures 2 and 3, each of the meshes of the cathode conductor or each enlarged grid area comprises 16 micro-emitters.
  • the dimensions of the micro-transmitters are optimized to obtain the best emission. These are the diameter of the holes, the geometry of the points, the thickness of the insulating layer and the thickness of the grid. Indeed, the emission current strongly depends on these dimensions. It is inversely proportional to the diameter of the holes. It is optimum when the holes are circular and decreases when the holes lose this circular shape, for example when they become oval. The emission current is still optimum when the tips of the tips are located in the thickness of the gate conductor. It decreases very quickly when the points are high and they protrude above the grid or when they are low and their top remains below the grid. The position of the apex of the points is related to the thickness of the insulating layer in which the holes are etched and to the geometry of the points, in particular the angle of the cone which they form.
  • the emitted current is constant. If, in the emissive surface of a cathode or if from one cathode to another, the diameter of the holes varies in an uncontrolled way, or even if the points come out of the thickness of the grids, the emitted current will vary and the uniformity of emission or its reproducibility is no longer guaranteed. This amounts to saying that the emission is affected if the manufacturing parameters exceed the admissible tolerance range for obtaining the dimensions required for the micro-emitters.
  • the equipment used for the manufacture of the emissive cathode is not perfect and their performance is only optimum and reproducible within a certain tolerance. If this tolerance is wider than that of the emissive structure, the characteristics of the emission are affected. On the other hand, certain defects originate from or are amplified by the substrate, in particular by its lack of flatness.
  • the invention overcomes these drawbacks by intervening on a mask used during the manufacture of microtip cathodes to voluntarily create regularly distributed defects, at a sufficiently fine periodicity to make them invisible and in a range of sufficiently large dimensions or shapes. large or in sufficient number to drown all the defects (voluntary and involuntary).
  • the mask is corrected to provide it, over its entire surface, with holes of diameters varying according to a distribution making it possible to encompass these manufacturing defects.
  • the mask is corrected to provide it, over its entire surface, with round holes and oval holes whose major axes lie in the direction of the small axes of the oval holes of defective grid, the round holes and the oval correction holes being regularly mixed on the mask.
  • the number of holes in the mask is increased so that the grid of future sources is provided with a number of holes equivalent to a good positioning of the holes by compared to the grid.
  • the method of manufacturing the holes can advantageously be a photolithographic method.
  • the emissive structure illustrated in FIGS. 2 and 3 can advantageously be produced by a known method and briefly summarized below.
  • a metal layer is deposited, for example by sputtering.
  • This metallic layer can be a niobium layer 2000 angstroms thick.
  • the cathode conductors 3 are produced from the previously deposited metal layer by giving them a lattice shape. This can be done by photolithography and reactive ion etching.
  • the resistive layer 9 made of doped silicon is then deposited, for example by sputtering.
  • the thickness of this layer can be 5000 angstroms.
  • an insulating layer 11 for example made of silica, is deposited by a chemical vapor deposition (CVD) technique or by sputtering.
  • CVD chemical vapor deposition
  • the vapor deposition technique is preferably used, which makes it possible to obtain an oxide layer of uniform quality and of constant thickness.
  • niobium approximately 400 nm thick is deposited, for example by vacuum evaporation, from which the gate conductors are formed by photolithography and reactive ion etching.
  • the holes for the microtip housing are formed by a photolithography method. For this, a layer of photosensitive resin is spread over the grid conductors or the areas of the insulating layer 11 exposed, then dried in an oven. The resin layer is exposed to ultraviolet rays through an opaque mask provided with holes corresponding to the holes to be obtained on the grid conductors and the insulating layer. For this, the mask was positioned relative to the substrate to obtain the grid holes at the desired locations.
  • the same hole mask is used for all substrates. In the case of a sunstroke nearby, this mask is at scale 1 and covers the entire emissive surface. In the case of exposure by photo-repeater, it can be at scale 5 and cover only a fraction of the emissive surface. The elementary insolation step is then repeated as many times as necessary to cover the entire emissive surface.
  • the substrate After exposure, the substrate is soaked in a developer bath in order to open the holes in the resin.
  • a dry etching process makes it possible to etch the holes in the grid conductors and then in the insulating layer 11, the resin layer serving as a mask.
  • the resin layer is removed, for example by a wet chemical process.
  • microtips occurs in three stages.
  • a layer of nickel is first deposited by evaporation under vacuum and at high incidence relative to the perpendicular to the substrate so that the nickel is deposited only on the upper face of the structure and on the flanks of the holes of the grid previously etched. in the structure but not at the bottom of the holes made in the insulation.
  • the material which is to form the points 19 is deposited in a direction perpendicular to the substrate so as to deposit this material on the nickel layer previously deposited and also at the bottom of the holes.
  • this new layer for example molybdenum
  • the holes gradually become blocked and a cone (microtip) is formed in each hole. The deposit is stopped when the holes are plugged.
  • the nickel layer is then dissolved by an electrochemical process, which makes it possible to evacuate the molybdenum layer which it supports on the upper face of the structure, while keeping the tips in the holes.
  • the points are therefore automatically centered in the holes.
  • Their height depends on the angle of the cone which is linked to the deposition parameters and also to the diameter of the holes. At a constant cone angle, the wider the holes, the higher the points and vice versa.
  • An inhomogeneous emission from a microtip cathode can be linked to a variation too significant diameter of the holes on the structure constituting the cathode. If, for example, the exposure was carried out with a photo-repeater which remakes its focusing at each stage, this focusing can be disturbed locally by defects in the flatness of the substrate. As a result, for example, certain areas of the structure fall outside the depth of field and, as a result, the holes come out too small. To remedy this defect, holes of different diameters are mixed on the emissive surface so as to always have a certain number of micro-emitters which emit at their optimum level. The overall emission level is reduced but it is homogeneous.
  • FIG. 4 shows part of a mask 30 intended for the creation of micro-holes in a microtip cathode structure used for a fluorescent screen.
  • This part of the mask comprises three adjacent sets of holes 31, 32 and 33, corresponding to three adjacent meshes defined by the cathode conductors on the cathode. These three meshes constitute an elementary group. Several of these elementary groups are needed to help form a pixel on the screen.
  • Each mesh comprises for example sixteen micro-emitters which emit at their optimum level when the diameter of the micro-holes is 1.3 ⁇ m as announced above.
  • the assembly 31 is formed of holes of 1.1 ⁇ m in diameter, that is to say theoretically producing holes of 1.1 ⁇ m on the emissive structure.
  • the assembly 32 is formed of 1.3 ⁇ m holes in diameter, that is to say theoretically producing 1.3 ⁇ m holes on the emissive structure.
  • the assembly 33 is formed of holes of 1.5 ⁇ m in diameter, that is to say theoretically producing holes of 1.5 ⁇ m on the emissive structure.
  • the emissive structure therefore comprises an equally distributed distribution of assemblies such as 31, 32 and 33.
  • the micro-emitters corresponding to the assemblies 32 which will emit in an optimum manner.
  • the other micro-transmitters, corresponding to sets 31 and 33 will have a very reduced emission. If in other areas of the emissive structure the transfer of the holes of the mask was badly carried out and that results in an increase in diameter of the micro-holes of the electron source of 0.2 ⁇ m, these are the micro transmitters corresponding to the assemblies 31 which will emit in an optimum manner.
  • the other micro-transmitters, corresponding to sets 32 and 33 will have a very reduced emission.
  • the same reasoning can be used for sets 33 in the event of a 0.2 ⁇ m diameter reduction. As a result, there is always the same number of micro-emitters emitting optimally distributed uniformly over the entire source which thus emits homogeneously.
  • An inhomogeneous emission from a microtip cathode can also be linked to an alteration in the shape of the holes transferred to the emissive structure.
  • An aberration of the optics of the exposure equipment can lead to obtaining oval holes inclined for example at 45 ° to the left. So from a mask having uniformly round holes one can obtain on the emissive structure zones with round holes corresponding to an optic without aberration and zones with holes all oval and also inclined and corresponding to an optic with aberration.
  • the correction to be made on the mask then consists of regularly mixing, over the entire surface of the mask, round holes with oval holes inclined at 45 ° to the right.
  • FIG. 5 shows part of such a corrective mask and representing a set of sixteen holes corresponding to a mesh of the emissive structure. It is noted that this assembly comprises eight round holes 41 and eight oval holes 42 inclined to the right, the round and oval holes being regularly distributed. On the mask, all the sets of holes are identical to those shown in Figure 5.
  • FIG. 6 in this case represents the shapes of holes reproduced on a mesh 45 of the emissive structure by the holes of the mask 40 of FIG. 5.
  • the circular holes 41 of the mask correspond to the emissive structure of the oval holes 46 inclined to the left .
  • the oval holes 42 inclined to the right correspond to the emissive structure of the circular holes 47.
  • the balance of the holes on the whole of the emissive structure reveals as many inclined oval holes as round holes, the oval holes inclined to the left and on the right giving the same emission level for micro-transmitters. It will be understood that the emission level from the cathode is homogeneous over the entire emissive surface.
  • An inhomogeneous emission from a microtip cathode can also be linked to an incorrect positioning of the grids relative to the microtips.
  • the misalignment is large enough (greater than 2 ⁇ m) so that holes are outside the enlarged areas reserved for them in the grid.
  • Figure 7 gives an example of such a misalignment.
  • the enlarged and square area 17 is not centered in the mesh 21 defined by the cathode conductor 3. Of the sixteen micro-transmitters shown, seven are outside the area 17 and do not emit.
  • the area covered by the holes 18 is enlarged in the mesh beyond the square area 17 so that if this area 17 is off-center in the mesh, it still covers the same number of microtips.
  • simply increase the number of holes in the mask so as to transfer the desired number of holes.
  • a mesh By way of example, to always have sixteen micro-transmitters in operation, it is possible, for a mesh, to provide 36 holes arranged in a square on the corresponding part of the mask.
  • Figure 8 shows the result obtained for a square area 17 centered in the mesh 21.
  • Figure 9 shows the result obtained for a square area 17 offset from the mesh 21. In both cases, there are always sixteen micro- transmitters in operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Cold Cathode And The Manufacture (AREA)

Claims (5)

  1. Herstellungsverfahren für Mikrospitzenkaltkathoden, wobei die Mikrospitzen (19) elektrisch verbunden sind mit wenigstens einem kathodischen Leiter (3) und sich in Löchern (18) befinden, die in wenigstens einem Elektronenextraktionsgitter (13) vorgesehen sind, das Verfahren einen Maskierungsschritt benutzt, um die Löcher des Gitters mittels einer Maske (30, 40) herzustellen, die entsprechende Löcher aufweist, und die Löcher der Maske festgelegte Abmessungen und Formen aufweisen, um theoretisch zur Herstellung von Löchern mit Abmessungen, Formen und Lagen innerhalb bestimmter Toleranzen in dem Gitter zu führen, wobei die Spitzen (19) der Mikrospitzen sich innerhalb der Dicke des Gitters (13) befinden müssen,
    dadurch gekennzeichnet,
    daß, anschließend an die Herstellung einer Elektronenquelle nach diesem Verfahren:
    - man bewertet, ob die Quelle eine Emission hat, die ausreichend homogen und/oder reproduzierbar ist bei einer anderen Quelle,
    - wenn die Emission der Quelle als inhomogen und/oder nicht-reproduzierbar beurteilt wird, man die Fehler feststellt, die Ursache dieser inhomogenen und/oder nicht-reproduzierbaren Emission sind und die zurückzuführen sind auf Formen, auf Abmessungen oder auf Lagen von Löchern, die außerhalb der Toleranz liegen, oder auf die Tatsache, daß die Spitzen der Mikrospitzen sich nicht innerhalb der Dicke des Gitters befinden,
    - man dann die verwendeten Masken korrigiert, um die zukünftigen, durch dieses Verfahren entwickelten Quellen homogen und/oder reproduzierbar zu machen, wobei die Korrektur darin besteht, die Formen und/oder die Abmessungen von wenigstens einer gewissen Anzahl von Löchern der Maske und/oder die Anzahl der Löcher der Maske zu verändern, um die vorhergehend festgestellten Fehler zu kompensieren, indem man absichtlich Fehler und/oder zusätzliche Löcher schafft, gleichmäßig verteilt über die Emissionsfläche, so daß man immer dieselbe Anzahl optimal emittierender Mikrospitzen hat, gleichmäßig verteilt über die Gesamtheit der Quelle.
  2. Verbesserung nach Anspruch 1,
    dadurch gekennzeichnet, daß, wenn die Fehler hervorgerufen werden durch eine Veränderung des Durchmessers der Löcher des Gitters außerhalb der Toleranzen, man die Maske (30) korrigiert, um sie über ihre gesamte Fläche mit Löchern (31,32,33) variierender Durchmesser zu versehen, entsprechend einer Verteilung, die ermöglicht, diese Herstellungsfehler einzuschließen bzw. zu umfassen.
  3. Verbesserung nach einem der Ansprüche 1 oder 2,
    dadurch gekennzeichnet, daß, wenn die Fehler zurückzuführen sind auf das Vorhandensein von ovalen Gitterlöchern, man die Maske (40) korrigiert, um sie über ihre gesamte Fläche mit runden Löchern (41) und ovalen Löchern (42) zu versehen, deren Hauptachsen sich in der Richtung der Nebenachsen der fehlerhaften ovalen Gitterlöcher befinden, wobei die runden und die ovalen Korrekturlöcher gleichmäßig gemischt sind auf der Maske.
  4. Verbesserung nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet, daß, wenn die Fehler durch eine schlechte Positionierung der Löcher bezüglich des Gitter (17) verursacht werden, man die Anzahl an Löchern (18) in der Maske erhöht, so daß das Gitter der zukünftigen Quellen mit einer Löcherzahl versehen ist, die einer guten Positionierung der Löcher bezüglich des Gitters entspricht.
  5. Verbesserung nach einem der vorhergehenden Ansprüche
    dadurch gekennzeichnet, daß das Löcherherstellungsverfahren ein photolithgraphisches Verfahren ist.
EP94401582A 1993-07-12 1994-07-08 Herstellungsverfahren für Mikrospitzenkaltkathoden Expired - Lifetime EP0634769B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9308556A FR2707795B1 (fr) 1993-07-12 1993-07-12 Perfectionnement à un procédé de fabrication d'une source d'électrons à micropointes.
FR9308556 1993-07-12

Publications (2)

Publication Number Publication Date
EP0634769A1 EP0634769A1 (de) 1995-01-18
EP0634769B1 true EP0634769B1 (de) 1996-09-18

Family

ID=9449175

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94401582A Expired - Lifetime EP0634769B1 (de) 1993-07-12 1994-07-08 Herstellungsverfahren für Mikrospitzenkaltkathoden

Country Status (5)

Country Link
US (1) US5482486A (de)
EP (1) EP0634769B1 (de)
JP (1) JPH0729485A (de)
DE (1) DE69400562T2 (de)
FR (1) FR2707795B1 (de)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5731228A (en) 1994-03-11 1998-03-24 Fujitsu Limited Method for making micro electron beam source
US5542866A (en) * 1994-12-27 1996-08-06 Industrial Technology Research Institute Field emission display provided with repair capability of defects
US5621272A (en) * 1995-05-30 1997-04-15 Texas Instruments Incorporated Field emission device with over-etched gate dielectric
US5589728A (en) * 1995-05-30 1996-12-31 Texas Instruments Incorporated Field emission device with lattice vacancy post-supported gate
US5686782A (en) * 1995-05-30 1997-11-11 Texas Instruments Incorporated Field emission device with suspended gate
FR2736465B1 (fr) * 1995-07-03 1997-08-08 Commissariat Energie Atomique Dispositif d'amorcage et/ou de maintien d'une decharge et jauge a vide a cathode froide comportant un tel dispositif
FR2737927B1 (fr) * 1995-08-17 1997-09-12 Commissariat Energie Atomique Procede et dispositif de formation de trous dans une couche de materiau photosensible, en particulier pour la fabrication de sources d'electrons
US5746634A (en) * 1996-04-03 1998-05-05 The Regents Of The University Of California Process system and method for fabricating submicron field emission cathodes
US6611093B1 (en) * 2000-09-19 2003-08-26 Display Research Laboratories, Inc. Field emission display with transparent cathode
US6612889B1 (en) 2000-10-27 2003-09-02 Science Applications International Corporation Method for making a light-emitting panel
US6620012B1 (en) * 2000-10-27 2003-09-16 Science Applications International Corporation Method for testing a light-emitting panel and the components therein
US6545422B1 (en) * 2000-10-27 2003-04-08 Science Applications International Corporation Socket for use with a micro-component in a light-emitting panel
US6822626B2 (en) * 2000-10-27 2004-11-23 Science Applications International Corporation Design, fabrication, testing, and conditioning of micro-components for use in a light-emitting panel
US7288014B1 (en) 2000-10-27 2007-10-30 Science Applications International Corporation Design, fabrication, testing, and conditioning of micro-components for use in a light-emitting panel
US9159527B2 (en) * 2003-10-16 2015-10-13 Carl Zeiss Microscopy, Llc Systems and methods for a gas field ionization source
FR2873852B1 (fr) * 2004-07-28 2011-06-24 Commissariat Energie Atomique Structure de cathode a haute resolution
JP6953917B2 (ja) * 2017-09-01 2021-10-27 王子ホールディングス株式会社 反射防止構造体

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3817592A (en) * 1972-09-29 1974-06-18 Linfield Res Inst Method for reproducibly fabricating and using stable thermal-field emission cathodes
US4324999A (en) * 1980-04-30 1982-04-13 Burroughs Corporation Electron-beam cathode having a uniform emission pattern
FR2593953B1 (fr) * 1986-01-24 1988-04-29 Commissariat Energie Atomique Procede de fabrication d'un dispositif de visualisation par cathodoluminescence excitee par emission de champ
FR2623013A1 (fr) * 1987-11-06 1989-05-12 Commissariat Energie Atomique Source d'electrons a cathodes emissives a micropointes et dispositif de visualisation par cathodoluminescence excitee par emission de champ,utilisant cette source
FR2663462B1 (fr) * 1990-06-13 1992-09-11 Commissariat Energie Atomique Source d'electrons a cathodes emissives a micropointes.
FR2687839B1 (fr) * 1992-02-26 1994-04-08 Commissariat A Energie Atomique Source d'electrons a cathodes emissives a micropointes et dispositif de visualisation par cathodoluminescence excitee par emission de champ utilisant cette source.

Also Published As

Publication number Publication date
FR2707795A1 (fr) 1995-01-20
US5482486A (en) 1996-01-09
FR2707795B1 (fr) 1995-08-11
JPH0729485A (ja) 1995-01-31
DE69400562D1 (de) 1996-10-24
DE69400562T2 (de) 1997-03-27
EP0634769A1 (de) 1995-01-18

Similar Documents

Publication Publication Date Title
EP0634769B1 (de) Herstellungsverfahren für Mikrospitzenkaltkathoden
EP0461990B1 (de) Elektronenquelle mit Mikropunktkathoden
EP0001030B1 (de) Verfahren zur Herstellung einer Maske gemäss einem vorgegebenen Muster auf einem Träger
EP0558393A1 (de) Elektronenquelle mit Mikropunktkathoden und Anzeigevorrichtung mit Kathodolumineszenz erregt durch Feldemission unter Anwendung dieser Quelle
EP1885649A2 (de) Verfahren zur herstellung einer emissionskathode
EP0696045A1 (de) Kathode eines flachen Bildschirmes mit konstantem Zugriffswiderstand
EP0707237B1 (de) Verfahren zur Herstellung von Löchern in Photoresistschichten, Anwendung für die Herstellung von Elektronenquelle mit Mikrospitzenemissionskathoden und flachen Bildschirmen
FR2705830A1 (fr) Procédé de fabrication de dispositifs d'affichage à micropointes, utilisant la lithographie par ions lourds.
EP0671755B1 (de) Elektronenquelle mit Mikrospitzenemissionskathoden
EP0708473B1 (de) Verfahren zur Herstellung einer Mikrospitzen-Elektronenquelle
EP0668604B1 (de) Verfahren zur Herstellung einer Kathode eines Mikrospitzen-Fluoreszenzbildschirms und daraus resultierendes Produkt
EP1000433B1 (de) Verfahren zur herstellung einer mikrospitzen-elektronenquelle, mit selbstjustierter fokussierelektrode
EP0697710B1 (de) Herstellungsverfahren einer Mikrospitzen-Elektronenquelle
FR2737928A1 (fr) Dispositif d'insolation de zones micrometriques et/ou submicrometriques dans une couche photosensible et procede de realisation de motifs dans une telle couche
EP2887360B1 (de) Messung der Auflösung eines Röntgenstrahlabbildungssystems
EP0709741B1 (de) Photolithographisches Verfahren zur Herstellung von kreisförmigen Strukturen mit hoher Dichte
EP0759631B1 (de) Verfahren und Vorrichtung zur Herstellung von Löchern in einer Schicht lichtempfindlichen Materials, insbesondere zur Herstellung von Elektronenquellen
EP2005465A1 (de) Verfahren zur herstellung mehrschichtiger strukturen mit gesteuerten eigenschaften
WO2006079741A2 (fr) Dispositif microelectronique emetteur d'electrons a plusieurs faisceaux
WO1999023680A1 (fr) Procede de fabrication d'une source d'electrons a micropointes
FR2779243A1 (fr) Procede de realisation par photolithographie d'ouvertures auto-alignees sur une structure, en particulier pour ecran plat a micropointes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE GB IT LI NL

17P Request for examination filed

Effective date: 19950629

17Q First examination report despatched

Effective date: 19951116

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE GB IT LI NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19960918

REF Corresponds to:

Ref document number: 69400562

Country of ref document: DE

Date of ref document: 19961024

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19961122

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970731

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070727

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080708

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110729

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120625

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130201

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69400562

Country of ref document: DE

Effective date: 20130201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130708