EP1000433B1 - Verfahren zur herstellung einer mikrospitzen-elektronenquelle, mit selbstjustierter fokussierelektrode - Google Patents

Verfahren zur herstellung einer mikrospitzen-elektronenquelle, mit selbstjustierter fokussierelektrode Download PDF

Info

Publication number
EP1000433B1
EP1000433B1 EP99920914A EP99920914A EP1000433B1 EP 1000433 B1 EP1000433 B1 EP 1000433B1 EP 99920914 A EP99920914 A EP 99920914A EP 99920914 A EP99920914 A EP 99920914A EP 1000433 B1 EP1000433 B1 EP 1000433B1
Authority
EP
European Patent Office
Prior art keywords
holes
etching
layer
grid
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99920914A
Other languages
English (en)
French (fr)
Other versions
EP1000433A1 (de
Inventor
Aimé Perrin
Brigitte Montmayeul
Régis BLANC
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP1000433A1 publication Critical patent/EP1000433A1/de
Application granted granted Critical
Publication of EP1000433B1 publication Critical patent/EP1000433B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/022Manufacture of electrodes or electrode systems of cold cathodes
    • H01J9/025Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J3/00Details of electron-optical or ion-optical arrangements or of ion traps common to two or more basic types of discharge tubes or lamps
    • H01J3/02Electron guns
    • H01J3/021Electron guns using a field emission, photo emission, or secondary emission electron source
    • H01J3/022Electron guns using a field emission, photo emission, or secondary emission electron source with microengineered cathode, e.g. Spindt-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2329/00Electron emission display panels, e.g. field emission display panels

Definitions

  • the present invention relates to a method for manufacturing a microtip electron source, self-aligned focusing grid.
  • a source of microtip electrons is particularly usable in a display device by cathodoluminescence excited by field emission.
  • FR-A-2 593 953 and FR-A-2 623 013 disclose devices for visualization by cathodoluminescence excited by field emission. These devices include a Electron source with emitting cathodes with microtips.
  • FIG. cross-sectional view of such a screen of microtip visualization.
  • the screen is constituted by a cathode 1, which is a flat structure, disposed opposite another plane structure forming the anode 2.
  • the cathode 1 and the anode 2 are separated by a space in which one has evacuated.
  • the cathode 1 comprises a glass substrate 11 on which is deposited the conductive level 12 in contact with the tips 13.
  • the driver level 12 is covered with an insulating layer 14, for example in silica, itself covered with a conductive layer 15.
  • the anode 2 comprises a substrate transparent 21 covered with a transparent electrode 22 on which are deposited phosphors luminescent or phosphor 23.
  • Anode 2 is brought to an positive voltage of several hundred volts per compared to the tips 13 (typically 200 to 500 V). Sure the extraction grid 15, a tension is applied positive of a few tens of volts (typically 60 at 100 V) with respect to the points 13. Electrons are then torn off at the tips 13 and are attracted by the anode 2. The electron trajectories are included in a cone of half-angle at the top ⁇ dependent on different parameters, among others the 13. This angle causes a defocusing of the electron beam 31 all the more important that the distance between the anode and the cathode is tall.
  • Figure 2 illustrates the case where the grid of focusing is arranged on the cathode.
  • Figure 2 the example of Figure 1 but limited to one single microtip for clarity in the drawing.
  • An insulating layer 16 has been deposited on the grid extraction 15 and supports a metal layer 17 serving as a focus grid. Holes 19, of adequate diameter (typically between 8 and 10 ⁇ m) and concentric to holes 18, have been engraved in layers 16 and 17.
  • the insulating layer 16 serves to isolate electrically the extraction grid 15 and the grid 17.
  • the focusing grid is polarized with respect to the cathode so as to give the electron beam 32 the shape shown in FIG. figure 2.
  • Simulation calculations show that the centering the holes 19 of the focusing grid by ratio to holes 18 of the extraction grid is extremely critical.
  • This structure is usually realized with the classical techniques of photolithography used in microelectronics.
  • a second level of photolithography makes it possible to make the holes 18 in which will be placed the tips.
  • the second level must be positioned extremely precisely by report at the first level. This can not be achieved than with a very efficient equipment and therefore very expensive, which will be all the more penalizing that one will deal with large areas.
  • JP 07-0294 84A discloses a manufacturing process a microtip electron source for self-alignment holes of the extraction grid with the openings of the focusing grid using the side wall of a layer sacrifice as a mask.
  • the invention makes it possible to remedy the problem accurate alignment of holes located at levels different. This is achieved through a process that does not requires only one photolithography step, the one allowing to make the holes of the grid extraction.
  • connection means cathodic are obtained by a deposit of drivers cathode on the support, followed by a deposit of resistive layer.
  • the engraving of the holes in the first insulating layer can be first conducted so anisotropic, said housings being subsequently defined by isotropic etching.
  • a second way to achieve engraving of the second insulating layer is to proceed from the following way.
  • the first and second layers insulators being able to be etched simultaneously, the engraving of the second insulating layer is first conducted isotropically to obtain drafts of cavities, reach the first conductive layer and reveal areas to make the holes of the extraction grid, the grid holes extraction are then etched into the first conductive layer, an isotropic etching being finally continued to obtain the said housing simultaneously in the first insulating layer and said cavities said dimension in the second insulating layer.
  • Figures 3A to 3F are sectional views cross-section of a micropoint electron source in manufacturing course according to a first mode of implementation process of the invention.
  • a layer is deposited (see Figure 3A) metal which is engraved to form cathode conductors 51 parallel to each other. These cathode conductors 51 will serve for example to columns for a matrix display.
  • a diaper resistive 52 is then deposited uniformly. On this resistive layer 52, one deposits successively a first insulating layer 53, a first layer conductor 54 intended to constitute the grid extraction of the microtip electron source, a second insulating layer 55 and a second layer conductor 56 intended to constitute the grid of focusing.
  • the thicknesses of the insulating layers 53 and 55 are chosen according to the planned height for the microtips and the distance to separate the extraction grid of the focusing grid.
  • a layer of photoresist 57 is then uniformly deposited on the second layer conductor 56.
  • the photoresist layer 57 is insolated through a mask then developed for making holes 58 of axes corresponding to the axes of the micropoints to form (see Figure 3B where only one hole 58 has been shown). These holes allow the engraving of the underlying layers. So the holes 58 are extended with holes 59 etched in the second conductive layer 56, which are in turn extended holes 60 etched in the second layer insulating 55.
  • the holes 62 made in the first insulating layer 53 are enlarged by etching isotropic. We obtain the housing 63 visible on the 3D figure. Then the second conductive layer 56 is engraved to widen the holes of this layer up to the cavity size 68 of the second insulation layer 55. The openings 64 are thus obtained. of the focusing grid.
  • each aperture 64 of the focusing grid 66 is perfectly aligned with the corresponding hole 61 of the extraction grid 65.
  • the last step of the process consists of make the microtips by a known method of the skilled person.
  • Each microtip 67 is thus perfectly aligned with the axis of the corresponding hole 61 of the extraction grid 65 and on the axis of the corresponding aperture 64 of the grid of focusing 66.
  • Figures 4A to 4D are sectional views cross-section of a micropoint electron source in manufacturing course according to a second mode of implementation process of the invention. This mode of putting can be used in the case where both Insulating layers are of the same nature or do not engrave not chemically selectively.
  • FIGS. 4A to 4D the same references in FIGS. 3A to 3F refer to the same elements, only the nature of the materials switch.
  • the resin layer photosensitive 57 is insolated through a mask then developed to make holes 58 and these holes 58 are extended with holes 59 etched into the second conductive layer 56 (see Figure 4A).
  • cavities 70 such as their maximum dimension has a determined value, less than the size of the grid openings focus to achieve (see Figure 4B).
  • an anisotropic etching of the first conductive layer 54 can be used in this one of the holes 61 in the extension of the holes 58 and 59.
  • These holes 61 constitute the holes of the grid extraction. They reveal the first insulating layer 53.
  • the isotropic etching is then carried out the first insulating layer 53 to obtain in this layer of the housings 71 centered on the axis of the holes 61 (see Figure 4C).
  • the two insulating layers 53 and 55 being of the same nature, this engraving leads to a enlargement of the cavities already made in the second insulating layer 55 to obtain cavities 72.
  • the two stages of etching of the second layer insulation 55 are provided to finally obtain cavities 72 whose maximum dimension corresponds to the openings of the focusing grid.
  • the second conductive layer 56 is engraved to widen the holes of this layer up to the maximum dimension of the cavities 72 of the second insulating layer 55. This gives the apertures 64 of the focusing grid.
  • microtips 67 can be deposited on the resistive layer 52.
  • Each microtip 67 is thus perfectly aligned on the axis of the corresponding hole 61 of the grid 65 and on the axis of the opening 64 corresponding to the focusing grid 66.
  • FIG. 5 shows a example of electron source with microtips obtained by the first embodiment of the method of the present invention.
  • the holes 61 of the extraction grid 65 and the microtips 67 are arranged in parallel lines. The distance separating two successive holes 61 of the same line is lower than the opening 64 of the grid of 66. The distance between two lines of adjacent microtips is greater than this opening. Widening holes in layers 55 and 56 up to the desired diameter for the grid of focusing 66 renders secants these holes.
  • the openings of the focusing grid corresponding to the same line of microtips 67 then constitute slots with scalloped edges, the axes of these slots being confused with the lines on which are arranged the corresponding microtips.
  • the focus of the electrons is only in the direction perpendicular to the planes of symmetry of the slits.
  • the phosphors placed on the anode which, in the display device, makes facing the cathode must then be arranged according to lines parallel to the lines of emitters.
  • Figure 6 shows another example of electron sources with microtips obtained by the first mode of implementation of this invention.
  • the holes 61 of the grid 65 are located relative to each other others at a greater distance than the diameter of openings 64 of the focusing grid 66.
  • the openings 64 of the focusing grid 66 are concentric holes at holes 61 of the grid 65. The electrons emitted by micropoints 67 are then focused regardless their direction of emission.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Cold Cathode And The Manufacture (AREA)

Claims (5)

  1. Verfahren zur Herstellung einer Mikrospitzen-Elektronenquelle (67) mit Extraktionsgitter (65) und Fokussiergitter (66), umfassend:
    das sukzessive Abscheiden von Katodenverbindungseinrichtungen (51, 52) auf einer Seite eines elektrisch isolierenden Trägers (50), mit einer ersten isolierenden Schicht (53), deren Dicke angepasst ist an die Höhe der zukünftigen Mikrospitzen, einer ersten leitfähigen Schicht (54) zur Bildung des Extraktionsgitters, einer zweiten isolierenden Schicht (55), deren Dicke dem Abstand entspricht, der das Extraktionsgitter von dem Fokussiergitter trennen muss, einer zweiten leitfähigen Schicht (56) zur Bildung des Fokussiergitters, und einer Photoresistschicht (57);
    Ätzen der Photoresistschicht (57), um in ihr Löcher (58) auszubilden, die auf der zweiten leitfähigen Schicht (56) münden, deren Achsen den Achsen der zukünftigen Mikrospitzen entsprechen und deren Durchmesser an die Größe der zukünftigen Mikrospitzen angepasst ist, wobei diese Löcher (58) das Ätzen der anderen auf dem Träger (50) abgeschiedenen Schichten ermöglichen;
    Ätzen der zweiten leitfähigen Schicht (56), um Löcher (59) zu realisieren, die auf der zweiten isolierenden Schicht (55) münden;
    Ätzen der zweiten isolierenden Schicht (55), um in ihr Hohlräume (68, 72) zu realisieren, die sich seitlich erstrecken, bis ihre Dimension auf der ersten leitfähigen Schicht (54) den Öffnungen des Fokussiergitters entspricht;
    Ätzen der ersten leitfähigen Schicht (54), um in ihr die Löcher (61) des Extraktionsgitters zu realisieren;
    Ätzen von Löchern in der ersten isolierenden Schicht (53) bis zum Erreichen der Katodenverbindungseinrichtungen (51, 52) hinsichtlich der Ausbildung der Sitze (63, 71) für die Mikrospitzen;
    Vergrößern der Löcher (59) der zweiten leitfähigen Schicht (56) durch Ätzen, um die Öffnungen (64) des Fokussiergitters herzustellen;
    Beseitigen der nach den Ätzschritten noch vorhandenen restlichen Photoresistschicht;
    Bilden der Mikrospitzen (67) in ihren Sitzen (63, 71) auf den Katodenverbindungseinrichtungen (51, 52).
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Katodenverbindungseinrichtungen durch eine Abscheidung von Katodenleitem (51) auf dem Träger (50), gefolgt von einer Abscheidung einer resistiven Schicht (52), realisiert werden.
  3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass das Ätzen der zweiten isolierenden Schicht (55) folgendermaßen durchgeführt wird:
    zuerst Ätzen der zweiten isolierenden Schicht (55), um in der Verlängerung der Löcher (58) der Photoresistschicht (57) Löcher (60) herzustellen, die auf der ersten leitfähigen Schicht (54) münden;
    dann Ätzen der ersten leitfähigen Schicht (54), um in der Verlängerung der Löcher (58) der Photoresistschicht (57) Sacklöcher herzustellen, wobei diese Sacklöcher Ausgangsstellen für die Löcher (61) des Extraktionsgitters bilden;
    dann die zweite isolierende Schicht (55) solange ätzen, bis die genannten Hohlräume (68) hergestellt sind.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Ätzen der Löcher in der ersten isolierenden Schicht (53) zunächst anisotrop erfolgt und die Sitze (63) anschließend durch isotropes Ätzen definiert werden.
  5. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die erste (53) und zweite (55) isolierende Schicht gleichzeitig geätzt werden können, wobei das Ätzen der zweiten isolierenden Schicht (55) zunächst isotrop erfolgt, um Ausgangsformen (70) der Hohlräume zu erhalten, die erste leitende Schicht (54) zu erreichen und in ihr Zonen frei zu machen, die die Herstellung der Löcher (61) des Extraktionsgitters ermöglichen, anschließend die Löcher (61) des Extraktionsgitters in die erste leitfähige Schicht (54) geätzt werden und schließlich eine isotrope Ätzung durchgeführt wird, um gleichzeitig die genannten Sitze (71) in der ersten isolierenden Schicht (53) und die genannten Hohlräume (72) mit der genannten Dimension in der zweiten isolierenden Schicht (55) zu realisieren.
EP99920914A 1998-05-26 1999-05-25 Verfahren zur herstellung einer mikrospitzen-elektronenquelle, mit selbstjustierter fokussierelektrode Expired - Lifetime EP1000433B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9806607 1998-05-26
FR9806607A FR2779271B1 (fr) 1998-05-26 1998-05-26 Procede de fabrication d'une source d'electrons a micropointes, a grille de focalisation auto-alignee
PCT/FR1999/001218 WO1999062093A1 (fr) 1998-05-26 1999-05-25 Procede de fabrication d'une source d'electrons a micropointes, a grille de focalisation auto-alignee

Publications (2)

Publication Number Publication Date
EP1000433A1 EP1000433A1 (de) 2000-05-17
EP1000433B1 true EP1000433B1 (de) 2003-07-23

Family

ID=9526714

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99920914A Expired - Lifetime EP1000433B1 (de) 1998-05-26 1999-05-25 Verfahren zur herstellung einer mikrospitzen-elektronenquelle, mit selbstjustierter fokussierelektrode

Country Status (6)

Country Link
US (1) US6210246B1 (de)
EP (1) EP1000433B1 (de)
JP (1) JP2002517065A (de)
DE (1) DE69909708T2 (de)
FR (1) FR2779271B1 (de)
WO (1) WO1999062093A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2769751B1 (fr) * 1997-10-14 1999-11-12 Commissariat Energie Atomique Source d'electrons a micropointes, a grille de focalisation et a densite elevee de micropointes, et ecran plat utilisant une telle source
US6448521B1 (en) * 2000-03-01 2002-09-10 General Electric Company Blocking apparatus for circuit breaker contact structure
FR2818797B1 (fr) * 2000-12-22 2003-06-06 Pixtech Sa Procede de fabrication d'une cathode a grille d'extraction et grille de focalisation alignees
FR2836279B1 (fr) * 2002-02-19 2004-09-24 Commissariat Energie Atomique Structure de cathode pour ecran emissif
US7140916B2 (en) * 2005-03-15 2006-11-28 Tribotek, Inc. Electrical connector having one or more electrical contact points
JP5007037B2 (ja) * 2005-11-07 2012-08-22 株式会社アルバック カソード基板の作製方法及び表示素子の作製方法
KR20070096319A (ko) * 2006-03-23 2007-10-02 삼성에스디아이 주식회사 전자 방출 디바이스와 이의 제조 방법 및 이를 이용한 전자방출 표시 디바이스
KR100837407B1 (ko) * 2006-11-15 2008-06-12 삼성전자주식회사 전계방출소자의 제조방법

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5136764A (en) * 1990-09-27 1992-08-11 Motorola, Inc. Method for forming a field emission device
JPH0729484A (ja) * 1993-07-07 1995-01-31 Futaba Corp 集束電極を有する電界放出カソード及び集束電極を有する電界放出カソードの製造方法
US5559389A (en) * 1993-09-08 1996-09-24 Silicon Video Corporation Electron-emitting devices having variously constituted electron-emissive elements, including cones or pedestals
JP3070469B2 (ja) * 1995-03-20 2000-07-31 日本電気株式会社 電界放射冷陰極およびその製造方法
JP3139375B2 (ja) * 1996-04-26 2001-02-26 日本電気株式会社 電界放射冷陰極の製造方法
FR2757999B1 (fr) * 1996-12-30 1999-01-29 Commissariat Energie Atomique Procede d'auto-alignement utilisable en micro-electronique et application a la realisation d'une grille de focalisation pour ecran plat a micropointes
US6045426A (en) * 1999-08-12 2000-04-04 Industrial Technology Research Institute Method to manufacture field emission array with self-aligned focus structure

Also Published As

Publication number Publication date
JP2002517065A (ja) 2002-06-11
WO1999062093A1 (fr) 1999-12-02
EP1000433A1 (de) 2000-05-17
FR2779271A1 (fr) 1999-12-03
FR2779271B1 (fr) 2000-07-07
US6210246B1 (en) 2001-04-03
DE69909708D1 (de) 2003-08-28
DE69909708T2 (de) 2004-04-15

Similar Documents

Publication Publication Date Title
EP1885649A2 (de) Verfahren zur herstellung einer emissionskathode
FR2796489A1 (fr) Dispositif d'affichage a emission de champ comportant un film de nanotube en carbone en tant qu'emetteurs
US20050152042A1 (en) Fiber based field emitter display
EP1000433B1 (de) Verfahren zur herstellung einer mikrospitzen-elektronenquelle, mit selbstjustierter fokussierelektrode
KR20050071480A (ko) 탄소 나노튜브 평판 디스플레이용 장벽 금속층
US6448100B1 (en) Method for fabricating self-aligned field emitter tips
JPH1186719A (ja) 電界放射型素子の製造方法
FR2723255A1 (fr) Dispositif d'affichage a emission de champ et procede pour fabriquer de tels dispositifs
FR2803087A1 (fr) Cathode a emission par champ electrique, dispositif d'emission electronique et son procede de fabrication
US7674149B2 (en) Method for fabricating field emitters by using laser-induced re-crystallization
EP1023741B1 (de) Mikrospitzen-elektronenquelle mit fokussierungsgitter und hoher mikrospitzendichte und flachschirm unter verwendung einer solchen quelle
EP0851451B1 (de) Ein in der Mikroelektronik verwendbares Verfahren zur selbstausrichtung und Verwendung bei der Herstellung eines Fokussierungsgitters für einen flachen Mikrospitzen-Bildschirm
EP0697710B1 (de) Herstellungsverfahren einer Mikrospitzen-Elektronenquelle
US5827100A (en) Method for manufacturing field emission device
FR2756969A1 (fr) Ecran d'affichage comprenant une source d'electrons a micropointes, observable a travers le support des micropointes, et procede de fabrication de cette source
US6875626B2 (en) Field emission arrays and method of fabricating same to optimize the size of grid openings and to minimize the occurrence of electrical shorts
WO1999062094A1 (fr) Methode d'obtention d'ouvertures auto-alignees, en particulier pour electrode de focalisation pour ecran plat a micropointes
EP1842220B1 (de) Mikroelektronische vorrichtung mit mehrfacher elektronenstrahlenemission
FR2765391A1 (fr) Dispositif d'affichage a cathodes a emission de champ
JPH08148083A (ja) フィールドエミッタの表面改質方法
KR100400374B1 (ko) 전계 방출 소자의 제조방법 및 이를 이용한 전계 방출표시소자
JPH04284325A (ja) 電界放出型陰極装置
KR100296956B1 (ko) 집속전극을구비한전계방출표시소자
KR100257569B1 (ko) 화산형 금속필드 에미터 어레이 형성방법

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000113

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB IT

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 69909708

Country of ref document: DE

Date of ref document: 20030828

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20031105

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040426

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070615

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070523

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070507

Year of fee payment: 9

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080525