EP0697710B1 - Herstellungsverfahren einer Mikrospitzen-Elektronenquelle - Google Patents

Herstellungsverfahren einer Mikrospitzen-Elektronenquelle Download PDF

Info

Publication number
EP0697710B1
EP0697710B1 EP95401863A EP95401863A EP0697710B1 EP 0697710 B1 EP0697710 B1 EP 0697710B1 EP 95401863 A EP95401863 A EP 95401863A EP 95401863 A EP95401863 A EP 95401863A EP 0697710 B1 EP0697710 B1 EP 0697710B1
Authority
EP
European Patent Office
Prior art keywords
layer
metallic material
process according
microtips
electrically insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95401863A
Other languages
English (en)
French (fr)
Other versions
EP0697710A1 (de
Inventor
Gilles Delapierre
Robert Meyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP0697710A1 publication Critical patent/EP0697710A1/de
Application granted granted Critical
Publication of EP0697710B1 publication Critical patent/EP0697710B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/022Manufacture of electrodes or electrode systems of cold cathodes
    • H01J9/025Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes

Definitions

  • the present invention relates to a method for manufacturing a microtip electron source ("microtips").
  • Such a principle is used to realize cold sources of electrons, capable of replacing the electron-emitting heating filaments, because that such cold springs have a more response fast, lower power consumption and are susceptible to greater miniaturization than these heating filaments.
  • microtip sources One of the most important applications of these cold sources of electrons, also called “microtip sources” is the manufacture of tubes television dishes.
  • Figure 1 is a sectional view schematic and partial of such a flat screen and the Figure 2 is a schematic perspective view and partial view of this flat screen.
  • the flat screen in Figures 1 and 2 includes a source of microtip electrons 2 and a substrate glass 4 which is separated from the source 2 by a space thin in which a vacuum has been created.
  • the substrate 4 carries, facing the source 2, a transparent, electrically conductive layer 6, for example in indium tin oxide, this layer 6 itself carrying elements cathodoluminescent 8, also called “luminophores”.
  • the microtip source 2 includes, on an electrically insulating substrate 10, for example in glass, a set of cathode conductors parallels 12 which constitute the columns of the screen.
  • cathode conductors are covered by a layer 14 of an electrically insulating material such as silica.
  • a set of other drivers parallel electric 15 is placed above the insulating layer 14 and these other conductors 15, or grids, are perpendicular to the conductors cathodic 12 to form the lines of the screen.
  • holes 18, 19 are formed through the insulating layer 14 and these grids 15 and microtips 20 made of a material electron emitter are formed in these holes and are based on the cathode conductors 12.
  • the phosphors 8 are formed on the transparent conductive layer 6, opposite these intersections, as seen in Figure 2.
  • Electrons are extracted by application appropriate electrical voltages between the grids and the microtips then these electrons are accelerated thanks to appropriate electrical voltages applied between the grids and the conductive layer 6 constituting the anode of the screen.
  • Each phosphor 8 excited by electrons 22 emits light 24.
  • microtips located at the intersection of a row and a fed column in tension emit electrons to form a picture element or pixel.
  • Each pixel is actually "excited" by several hundred microtips whose dimensions are of the order of 1 ⁇ m, generally 1.5 ⁇ m, and which are spaced from each other by a distance of the order of a few micrometers, typically 5 ⁇ m.
  • a flat screen typically uses around 10,000 microtips per square millimeter over areas of several square decimetres.
  • the flat screens currently manufactured have surfaces of the order of 5 dm 2 and it is envisaged to manufacture flat screens whose surfaces would go up to approximately 1 m 2 .
  • FIG. 3 illustrates schematically this process, a structure comprising the insulating substrate 10 on which the cathode conductors 12, and the insulating layer 14 which is formed on these cathode conductors and which carries a grid layer 16 electrically conductive.
  • the grids themselves are obtained from this grid layer 16, after having formed the microtips as we will see.
  • a nickel layer 16a is deposited on the grid layer 16 by vacuum evaporation and grazing incidence.
  • the microtips 20 are obtained by evaporation of an electron emitting material 26.
  • a layer 28 of this material then forms on the surface of the gate layer 16a.
  • the holes 19 formed in these layers 16 and 16a gradually decrease as as the thickness of layer 28 increases.
  • the diameter of the material deposits 26 in the holes 18 of the insulating layer 14 varies as the diameter of the holes layer 16a and grid layer 16, which leads to the point shape of the deposits in the holes 18, that is to say at the microtips 20.
  • layer 28 is removed by selective dissolution of the nickel layer 16a, this which brings up these microtips.
  • disks 32 are formed from the layer of silica which results from this oxidation.
  • Reactive ion etching of the substrate silicon 30 then allows the formation of pedestals 34 made of silicon, the discs 32 serving as masks.
  • a layer 40 of silica is then formed. on each disk 32.
  • the pedestals 34 are then oxidized thermally, which leads to the formation of microtips 42 from these pedestals.
  • a layer 46 of this material also forms on layer 40 silica associated with each disc 32.
  • the angle of incidence ⁇ of a beam of evaporation F varies according to the position of the holes 19 of the grid layer 16, which leads to the phenomenon illustrated in FIG. 5, that is to say at microtips with less Y axes perpendicular to the surface of the substrate 10 that the angle of incidence ⁇ is large.
  • the object of the present invention is to remedy these drawbacks.
  • the layer of grid as a cathode for the electrolytic attack of the metallic material.
  • the electrolyte being located around the metallic material so as to avoid an overconcentration of ions which could slow dissolution and cause a significant redeposition of this material on the grid around microdots in formation.
  • the protective layer can be formed by depositing, under grazing incidence, a layer of electrically insulating material on the layer of wire rack.
  • this protective layer is preferably formed by anodic oxidation of the grid layer.
  • the grid layer can be made of a material chosen from the group comprising niobium, tantalum and aluminum.
  • Metallic material can be chosen in the group comprising iron, nickel, chromium, Fe-Ni, gold, silver and copper.
  • the protective layer can be removed by chemical attack.
  • This protective layer can also be removed by reactive ion etching.
  • Figure 6A a structure 49 like the one shown on Figure 3 and which includes the substrate electrically insulator 10 on which the conductors are formed cathodic 12, electrically insulating layer 14 formed on these cathode conductors and the layer of grid 16 formed on this layer electrically insulating 14 (it being understood that, in other modes of specific implementation, the structure may not understand only one cathode conductor).
  • the substrate 10 is in glass
  • cathode conductors are made of a bilayer of chromium and copper
  • layer 14 is in silica
  • the gate layer 16 is made of niobium, tantalum or aluminum.
  • a anodic oxidation of the gate layer 16 which leads to the formation of a layer 50 of oxide of niobium or tantalum oxide or aluminum oxide in the example considered, which covers the part remaining of the grid layer 16, as seen in Figure 6B.
  • An electrolytic deposition is then carried out metallic material at the bottom of holes 18 to that this metallic material overflows from these holes as seen in Figure 6C, part of this material then being above layer 50.
  • the electrolytic bath can be used, the composition of which is as follows: NiCl 2 , 6H 2 O 50 gl -1 NiSO 4 , 6H 2 O 21 gl -1 FeSO 4 2 gl -1 H 3 BO 3 25 gl -1 Na saccharinate 0.8 gl -1
  • the conductors cathodes 12 serve as cathode and block 56 serves anode.
  • the electrically conductive elements 60 which result from the deposition of metallic material at the bottom holes 18 are in contact with the conductors cathodic but are electrically isolated from the grid layer 16 thanks to the protective layer 50 which covers the latter.
  • This protective layer is then removed 50 by chemical attack or by ion etching reactive ( Figure 6D).
  • the structure where the protective layer 50 has been removed, is placed in an appropriate electrolytic bath 64 (containing for example 10% HCl at 37% and 90% H 2 O for the dissolution of nickel iron) and , by means of a suitable electrical voltage source 66, an electrical voltage is established (for example 1 to 2 V for the dissolution of iron-nickel) between the cathode conductors 12 which, in this case, serve as an anode, and the grid layer 16 which serves as a cathode.
  • an appropriate electrolytic bath 64 containing for example 10% HCl at 37% and 90% H 2 O for the dissolution of nickel iron
  • an electrical voltage for example 1 to 2 V for the dissolution of iron-nickel
  • the material of elements 60 is eliminated substantially symmetrical around the Z axis of the holes 18 and the ions metals produced by the chemical attack on the material elements 60 are partly eliminated thanks to the electrolyte renewal and partly redeposited on the grid layer.
  • the fraction redeposited ions is more or less important and can be checked.
  • this step of forming microtips is done with the glass substrate above and the electrolytic bath below, so that allow parts 68 to fall into the bath electrolytic.
  • the interest of the process object of the present invention is to enable the manufacture of self-aligned microtips over the diaper holes grid 16, using a non-directive technique, in an isotropic liquid medium (electrolytic bath 64).

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Cold Cathode And The Manufacture (AREA)

Claims (9)

  1. Herstellungsverfahren einer Mikrospitzen-Elektronenquelle, umfassend:
    die Herstellung einer Struktur (49), ein elektrisch isolierendes Substrat (10), wenigstens einen Kathodenleiter (12) auf diesem Substrat, eine jeden Kathodenleiter bedeckende, elektrisch isolierende Schicht (14) und eine diese elektrisch isolierende Schicht bedeckende, elektrisch leitende Gitterschicht (16) umfassend, wobei über jedem Kathodenleiter Löcher (18, 19) diese Gitterschicht und die elektrisch isolierende Schicht durchdringen, und
    die Bildung einer Mikrospitze (62) in jedem Loch, die aus einem elektronenemittierenden metallischen Material erzeugt wird und auf dem diesem Loch entsprechenden Kathodenleiter ruht,
    dadurch gekennzeichnet, daß die Bildung der Mikrospitzen die folgenden Schritte umfaßt:
    Bilden einer elektrisch isolierenden Schutzschicht (50) auf der Gitterschicht (16),
    Bilden einer chemischen Abscheidung des elektronenemittierenden metallischen Materials auf dem Boden der Löcher bis das metallische Material aus diesen herausragt,
    Entfernen der Schutzschicht (50), und
    Durchführen eines elektrolytischen Angriffs des abgeschiedenen Materials, um aus diesem metallischen Material die Mikrospitzen (62) zu realisieren.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die chemische Abscheidung des elektronenemittierenden metallischen Materials eine elektrolytische Abscheidung ist.
  3. Verfahren nach einem der Ansprüche 1 und 2, dadurch gekennzeichnet, daß man für den elektrolytischen Angriff des metallischen Materials die Gitterschicht (16) als Kathode nimmt.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß man die Schutzschicht (50) bildet, indem man auf der Gitterschicht (16) eine elektrisch isolierende Schicht mit streifendem Einfall abscheidet.
  5. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß man die Schutzschicht durch anodische Oxidation der Gitterschicht (16) bildet.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß man die Gitterschicht (16) aus einem Material erzeugt, das aus der Gruppe ausgewählt wird, die Niobium, Tantal und Aluminium enthält.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß das metallische Material aus der Gruppe ausgewählt wird, die Eisen, Nickel, Chrom, Fe-Ni, Gold, Silber und Kupfer enthält.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Schutzschicht (50) durch chemischen Angriff eliminiert wird.
  9. ,Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Schutzschicht (50) durch reaktives Ionenätzen elimiminert wird.
EP95401863A 1994-08-16 1995-08-09 Herstellungsverfahren einer Mikrospitzen-Elektronenquelle Expired - Lifetime EP0697710B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9410041A FR2723799B1 (fr) 1994-08-16 1994-08-16 Procede de fabrication d'une source d'electrons a micropointes
FR9410041 1994-08-16

Publications (2)

Publication Number Publication Date
EP0697710A1 EP0697710A1 (de) 1996-02-21
EP0697710B1 true EP0697710B1 (de) 1998-11-11

Family

ID=9466324

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95401863A Expired - Lifetime EP0697710B1 (de) 1994-08-16 1995-08-09 Herstellungsverfahren einer Mikrospitzen-Elektronenquelle

Country Status (5)

Country Link
US (1) US5676818A (de)
EP (1) EP0697710B1 (de)
JP (1) JPH0869749A (de)
DE (1) DE69505914T2 (de)
FR (1) FR2723799B1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5766446A (en) * 1996-03-05 1998-06-16 Candescent Technologies Corporation Electrochemical removal of material, particularly excess emitter material in electron-emitting device
US5893967A (en) * 1996-03-05 1999-04-13 Candescent Technologies Corporation Impedance-assisted electrochemical removal of material, particularly excess emitter material in electron-emitting device
FR2757999B1 (fr) * 1996-12-30 1999-01-29 Commissariat Energie Atomique Procede d'auto-alignement utilisable en micro-electronique et application a la realisation d'une grille de focalisation pour ecran plat a micropointes
US6120674A (en) * 1997-06-30 2000-09-19 Candescent Technologies Corporation Electrochemical removal of material in electron-emitting device
US6007695A (en) * 1997-09-30 1999-12-28 Candescent Technologies Corporation Selective removal of material using self-initiated galvanic activity in electrolytic bath
FR2770683B1 (fr) * 1997-11-03 1999-11-26 Commissariat Energie Atomique Procede de fabrication d'une source d'electrons a micropointes
FR2778757B1 (fr) * 1998-05-12 2001-10-05 Commissariat Energie Atomique Systeme d'inscription d'informations sur un support sensible aux rayons x

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5090932A (en) * 1988-03-25 1992-02-25 Thomson-Csf Method for the fabrication of field emission type sources, and application thereof to the making of arrays of emitters
US5026437A (en) * 1990-01-22 1991-06-25 Tencor Instruments Cantilevered microtip manufacturing by ion implantation and etching
FR2663462B1 (fr) * 1990-06-13 1992-09-11 Commissariat Energie Atomique Source d'electrons a cathodes emissives a micropointes.
JP2961334B2 (ja) * 1991-05-28 1999-10-12 セイコーインスツルメンツ株式会社 尖鋭な金属針を持つ原子間力顕微鏡のカンチレバー製造法
US5151061A (en) * 1992-02-21 1992-09-29 Micron Technology, Inc. Method to form self-aligned tips for flat panel displays

Also Published As

Publication number Publication date
FR2723799A1 (fr) 1996-02-23
DE69505914T2 (de) 1999-06-10
FR2723799B1 (fr) 1996-09-20
EP0697710A1 (de) 1996-02-21
JPH0869749A (ja) 1996-03-12
DE69505914D1 (de) 1998-12-17
US5676818A (en) 1997-10-14

Similar Documents

Publication Publication Date Title
EP0172089B1 (de) Bildanzeigevorrichtung mittels feldemissions angeregter Kathodolumineszenz
EP0234989B1 (de) Herstellungsverfahren einer feldeffektangeregten Kathodenlumineszenz-Wiedergabevorrichtung
EP0558393B1 (de) Elektronenquelle mit Mikropunktkathoden und Anzeigevorrichtung mit Kathodolumineszenz erregt durch Feldemission unter Anwendung dieser Quelle
EP0461990B1 (de) Elektronenquelle mit Mikropunktkathoden
EP1885649A2 (de) Verfahren zur herstellung einer emissionskathode
EP0697710B1 (de) Herstellungsverfahren einer Mikrospitzen-Elektronenquelle
JPH1186719A (ja) 電界放射型素子の製造方法
FR2705830A1 (fr) Procédé de fabrication de dispositifs d'affichage à micropointes, utilisant la lithographie par ions lourds.
EP0708473B1 (de) Verfahren zur Herstellung einer Mikrospitzen-Elektronenquelle
US5683282A (en) Method for manufacturing flat cold cathode arrays
EP1000433B1 (de) Verfahren zur herstellung einer mikrospitzen-elektronenquelle, mit selbstjustierter fokussierelektrode
FR2736203A1 (fr) Dispositif d'affichage a emission de champ lateral et procede de fabrication de ce dernier
FR2700217A1 (fr) Procédé de réalisation sur silicium, de cathodes émissives à micropointes pour écran plat de petites dimensions, et produits obtenus.
WO1998025291A1 (fr) Ecran d'affichage comprenant une source d'electrons a micropointes, observable a travers le support des micropointes, et procede de fabrication de cette source
EP0668604A1 (de) Verfahren zur Herstellung einer Kathode eines Mikrospitzen-Fluoreszenzbildschirm und daraus hergestelltes Produkt
EP0856868B1 (de) Feldemissionselektronenquelle und Bildschirm mit solcher Feldemissionselektronenquelle
WO2000002222A1 (fr) Dispositif a emission de champ
EP1029338A1 (de) Vefahren zur herstellung einer mikrospitzen-elektronenquelle
EP0616356B1 (de) Mikrospitzebildwiedergabeanordnung und Herstellungsverfahren
EP1023741B1 (de) Mikrospitzen-elektronenquelle mit fokussierungsgitter und hoher mikrospitzendichte und flachschirm unter verwendung einer solchen quelle
FR2764729A1 (fr) Procede de fabrication d'espaceurs pour ecran plat de visualisation
FR2779243A1 (fr) Procede de realisation par photolithographie d'ouvertures auto-alignees sur une structure, en particulier pour ecran plat a micropointes
FR2797092A1 (fr) Procede de fabrication d'une anode d'un ecran plat de visualisation
FR2786026A1 (fr) Procede de formation de reliefs sur un substrat au moyen d'un masque de gravure ou de depot
FR2788879A1 (fr) Ecran a emission de champ equipe de microcanaux

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB IT

17P Request for examination filed

Effective date: 19960727

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19980129

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT

REF Corresponds to:

Ref document number: 69505914

Country of ref document: DE

Date of ref document: 19981217

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990114

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030806

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030822

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050301

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050809