EP0594809B1 - Funkantennenanordnung in der nähe von fahrzeug-fensterscheiben - Google Patents

Funkantennenanordnung in der nähe von fahrzeug-fensterscheiben Download PDF

Info

Publication number
EP0594809B1
EP0594809B1 EP93908820A EP93908820A EP0594809B1 EP 0594809 B1 EP0594809 B1 EP 0594809B1 EP 93908820 A EP93908820 A EP 93908820A EP 93908820 A EP93908820 A EP 93908820A EP 0594809 B1 EP0594809 B1 EP 0594809B1
Authority
EP
European Patent Office
Prior art keywords
antenna
arrangement according
window
antenna arrangement
radio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93908820A
Other languages
English (en)
French (fr)
Other versions
EP0594809A1 (de
Inventor
Heinz Lindenmeier
Jochen Hopf
Leopold Reiter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuba Automotive GmbH and Co KG
Original Assignee
Fuba Automotive GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuba Automotive GmbH and Co KG filed Critical Fuba Automotive GmbH and Co KG
Publication of EP0594809A1 publication Critical patent/EP0594809A1/de
Application granted granted Critical
Publication of EP0594809B1 publication Critical patent/EP0594809B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/325Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle
    • H01Q1/3275Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle mounted on a horizontal surface of the vehicle, e.g. on roof, hood, trunk
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/1271Supports; Mounting means for mounting on windscreens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/1271Supports; Mounting means for mounting on windscreens
    • H01Q1/1278Supports; Mounting means for mounting on windscreens in association with heating wires or layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/1271Supports; Mounting means for mounting on windscreens
    • H01Q1/1285Supports; Mounting means for mounting on windscreens with capacitive feeding through the windscreen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/325Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle
    • H01Q1/3283Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle side-mounted antennas, e.g. bumper-mounted, door-mounted

Definitions

  • Radio antennas e.g. for C-Netz or D-Netz mobile phones, are often mounted as rod-shaped or other shaped antennas near the rear roof edge due to the good antenna function or glued to the rear window as an adhesive antenna. In any case, the antennas protrude from the outside of the vehicle and are therefore, in contrast to e.g. to disc antennas, referred to as external antennas.
  • the antennas are typically loaded up to 25 W in the case of transmission. Because of the simple mounting option, antennas that are glued onto the rear window and that capacitively couple the antenna signal through the window are particularly advantageous.
  • Such an antenna arrangement, which is glued to the rear window of the vehicle, is e.g. known from DE 39 31 807 A1, EP 0 279 117 A1 and US RE 33743 (E).
  • the electromagnetic radiation i.e. the electrical and magnetic fields
  • the electromagnetic radiation reach into the vehicle interior through adjacent window openings.
  • this is primarily the rear window, but to a lesser extent other neighboring window openings, e.g. that of the rear side windows, for the coupling of the fields into the vehicle interior.
  • heating conductors with busbars at the upper and lower edge of the pane are used orthogonally to the maximum pane dimension.
  • Panes with flat vapor-deposited metallic layers are also technically feasible today.
  • With regard to the field configuration such heated disks are more favorable given for a shielding effect.
  • there is still no adequate shielding effect since the earthing conditions of the disc heaters designed according to the prior art are undefined for the frequencies of the radio systems.
  • the field strengths that occur inside the vehicle are usually large.
  • antennas that are mounted on the outer skin of the roof near the rear roof edge already produce electrical and magnetic field strengths that reach the limit values according to DIN 0848 in the head area of the rear passengers or even exceed.
  • the object of the invention is therefore to provide an antenna arrangement with which the fields in the passenger compartment are significantly reduced, the performance of the external antenna with respect to radio operation being fully retained.
  • roof antennas and adhesive antennas can be used with antenna arrangements according to the invention without any problems, since the field strengths occurring in the passenger compartment can be kept safely below the limit values of DIN draft 0848 at the maximum transmission powers that are common today.
  • the antennas according to the invention thus avoid the disadvantages of the prior art which endanger the safety of passengers.
  • a particularly great advantage is that the extent of the reduction can be adapted to the respective requirements, such as the maximum transmission power or antenna type used, by appropriate choice of the size, the arrangement and the configuration of the structure 4, so that the technical outlay in each case is not made greater than necessary must become.
  • the vehicle window which has the structure 4
  • the external antenna 1 is an antenna which is mounted on the rear roof edge of the vehicle and is mounted in the vicinity of the window opening closed by the window 2.
  • the external antenna 1 is an antenna, the antenna base 10 of which is fastened on the outside of the vehicle window 2; this is usually done by gluing, which is why one speaks of adhesive antennas.
  • the signal connection between antenna 1 and radio 23 takes place, as usual, via a coaxial line 18.
  • the outer conductor of the coaxial line 18 is, as usual, electrically conductively connected to the body 3 near the antenna base.
  • the outer conductor of the coaxial line 15 is electrically conductively connected to the body in the vicinity of the antenna base 10.
  • some of the electric field lines 17 and thus also some of the magnetic field lines pass through openings in the body, e.g. through the window openings into the passenger compartment and close against the metallic body 3 in the interior. Persons who are in the area of the fields are thereby exposed to electromagnetic energy.
  • Particularly high field strengths naturally occur in the immediate vicinity of the external antenna 1.
  • particularly high field concentrations also occur in the part of the pane opening which is adjacent to the external antenna and which is identical to the pane 2, that is to say in the upper region of the pane.
  • the rear passengers are particularly at risk in the head area. The risk naturally increases with the amount of transmission power.
  • Fig. 1b part of the rear window, as is common today, is covered with a heating field 20.
  • the heated area is arranged in the lower area of the pane 2 and is smaller than the entire pane opening, so that the adhesive antenna 1 can be mounted above the heating field in free space.
  • the heating conductors of the heating field are not electrically connected to the body 3 for frequencies of the radio service, since the wires 24 supplying the direct current are only connected to the body ground or to the positive connection of the battery at a greater distance.
  • the laying and the length of the wires 24 supplying the direct current are designed according to the prior art under vehicle-specific aspects and not with regard to the electrical effect for the frequencies of the radio service.
  • FIG. 2 shows such an antenna arrangement in section
  • FIG. 3 in a top view for the example of an external antenna 1 mounted on the rear roof edge.
  • the pane 2 is now provided with a two-dimensional, that is to say flat structure 4 made of conductive material with a low surface resistance in the frequency range of the radio service.
  • a surface resistance must be effective for the frequency range of the radio service through the structure 4, which surface resistance is significantly lower than the field wave resistance of the free space.
  • the structure 4 is suitable for shielding act and can effectively prevent electrical and magnetic fields generated by the external antenna 1 from penetrating into the vehicle interior.
  • structure 4 can e.g. be vapor-deposited in the form of a coating. These metallic layers are vapor-deposited very thinly, which maintains the transparency for light and at the same time achieves the required low-impedance for the radio frequencies.
  • a very thin layer is sufficient, which in turn is suitable for direct currents, e.g. would be too high-resistance for the purposes of a window heating.
  • the required low impedance for direct currents can then be set by printed conductors.
  • At least one edge of the structure 4 must have a low-resistance connection to the metallic body 3.
  • pane 2 is inserted into the body 3 in the manner customary today and mechanically connected to the body by means of the pane adhesive 13, which is applied as a bead of adhesive parallel to the outer pane edge.
  • the electrically low-resistance connection for the frequencies of the radio service can in many cases be particularly simple and therefore advantageous, as assumed in the example of FIGS. 2 and 3, via the flat opposite edges of the body and the edges of the structure 4 via the adhesive bead.
  • the required low resistance of the connection can ideally be achieved, for example, by means of a silver-containing and therefore highly conductive adhesive 13. This causes the structure 4 to be at the potential of the body.
  • the low-resistance connection to the body 3 can in principle take place in different ways in the antennas according to the invention.
  • the use of a conductive adhesive indicated above is ideal from an electrical point of view, but the high cost of such adhesives is disadvantageous.
  • the radio services for which the antenna arrangements according to the invention are preferably used, are generally arranged at frequencies in the UHF range or higher, the capacity thus formed is sufficient to provide a sufficiently low-resistance connection between the structure 4 and the body 3.
  • Disc adhesives currently used sometimes have low losses at high frequencies, while others are highly lossy due to a high proportion of soot, so that in addition to the capacitive connection there is also a high ohmic conductivity. Even when such window adhesives are used, a low-resistance connection between the body and structure 4 is therefore reliably provided for the frequencies of the radio services.
  • the low-impedance connection between structure 4 and body 3 required for antenna arrangements according to the invention can also be made in a punctiform manner.
  • Fig. 6 shows this possibility in section and Fig. 7 in plan view.
  • the washer is inserted into the body with a rubber seal, as was customary in the past.
  • a sufficiently low-resistance connection to the body 3 is therefore not always given in all cases because of the edges of the structure 4 and body 3 that are only opposite on the end face. If the connection is not low-resistance, which can be determined by measuring the impedance between structure 4 and body 3, the low-resistance connection can be ensured exclusively or by means of one or more wire bridges from structure 4 to body 3.
  • the low impedance of a wire bridge is not sufficient for the frequency ranges in which the radio systems under consideration are operated, i.e. essentially above about 400 MHz, since a wire bridge with a length of approx. 10 cm, which is difficult to go below, already results in an inductive impedance of approx. 280 ohms in the frequency range of the C network.
  • the low-impedance for the frequencies of the radio service can then be restored by compensating for the intrinsic inductance of the wire by means of a capacitance 12 connected in series. In the example given, a capacitance of approximately 1.2 pF is required.
  • connection points 25 on the structure 4 and 33 on the body there is an effective low-resistance connection between the connection points 25 on the structure 4 and 33 on the body.
  • connection point 25 on the structure 4 is preferably chosen where the greatest return currents flow to the antenna base point 10, because this results in the greatest advantageous effect electrically.
  • this is the axis of symmetry of the pane at the upper edge, that is to say in the immediate vicinity of the antenna base point 10.
  • the connection point 33 is preferably selected as close as possible to the connection point 25 on the body.
  • the electrical character of this connection is that of a series resonance.
  • the disadvantage of this version of the low-resistance connection using a wire bridge is the installation and contacting costs. Electrically equivalent and therefore functionally equivalent, the low-resistance connection between the body 3 and the structure 4 which is effective with regard to the connection point 25 can also be achieved by means of a line transformation. This advantageously eliminates the assembly costs for the wire bridge.
  • FIG. 8 Such an embodiment according to the invention is shown in FIG. 8.
  • the line character results between the upper edge of the structure 4a and the opposing metallic body 3, with the structure 4a running empty on the left and right side.
  • the respective idling is transformed according to the length 36 or 37 into an impedance which takes effect between the structure 4a and the body 3 in the vertical line of symmetry 38 and which, with a suitably selected dimension 36 or 37, results in an AC short circuit with series resonance character.
  • the structure 4a and thus also the dimensions 36 and 37 for the region of the structure 4a lying on the left and for the right of the axis of symmetry 38 are advantageously of the same mirror image.
  • the total horizontal dimension of the structure 4 thus results in 27 as the sum of the dimensions 36 and 37.
  • the dimensions 36 and 37 are typically carried out for the fulfillment of this task in such a way that a lambda-quarter transformation or a transformation with a corresponding similar one Characteristic (by an odd integer multiple of lambda quarter) results.
  • the exact required dimensions 36 and 37 are preferably determined by measuring the impedance between structure 4 and the body on the axis of symmetry 38, since the fields of the line via which the line transformation results are also partially present in the glass of the pane 2 , resulting in an approximately shorter effective wavelength deviating from the free space wavelength.
  • the upper area of the panes is therefore very important, since the heads of the rear passengers can come very close to pane 2 there.
  • the lower area of the pane 2 is considerably further away from the body of the rear passengers. This is particularly true when the disc 2 is arranged relatively flat.
  • the effectiveness of the structure 4 is usually particularly great in the upper region of the pane and there again in the middle, even if the external antenna 1 is attached there in the middle on the pane 2 or in the vicinity on the body 3. For the same reasons, it is then possible to dispense with the structure 4 down to the lower region of the pane 2, without disadvantages relevant in practice, or it can at least be carried out in these regions with less technical effort.
  • FIG. 4 shows an antenna arrangement according to the invention for an adhesive antenna 1 in a sectional view, in which these aspects are taken into account.
  • Fig. 5 shows the same arrangement in the top view. 10 again designates the antenna base, that is also the area on the pane to which the adhesive antenna 1 is glued. In the case of antenna arrangements according to the invention, this mounting point 10 is preferably inside the area covered by the structure 4, since particularly high field concentrations occur again in the area of the base point 10 of the antenna 1.
  • the surface of the adhesive antenna 1 facing the pane, by means of which the mechanical connection to the pane is also established, is typically of metallic design in such antennas in such a way that a capacitively sufficiently low-resistance connection passes through the pane is given to a metallic counter surface 14 on the inside of the pane.
  • the inner conductor of a coaxial line 18, which establishes the signal connection to the radio, is connected to this counter surface 14.
  • the outer conductor of the coaxial line 18 is connected to the structure 4 near the counter surface 14 in antennas according to the invention. Because of the shielding effect of the structure 4, there are no jacket waves on the coaxial line 18.
  • structure 4 again covers the entire pane surface, with the exception of the area in which the signal is coupled in from the coaxial line 15 to the adhesive antenna 1 through the pane.
  • the density of the printed conductors 7 is designed differently in different areas of the structure 4, namely with a high density in the upper area of the pane 2 and there again in the middle, in the lower area and there again at the edges, the conductor density is significantly lower .
  • the necessary size of the counter surface 14 and the surface at the base of the adhesive antenna 1 is known from commercially available antenna types and is typically 2 to 4 cm 2 when, for example, the frequencies of the C or D network radio telephone are considered.
  • the signal supply to the adhesive antenna 1 for antenna arrangements according to the invention can also take place from the outside while maintaining the advantages, that is to say not only capacitively through the pane, as assumed in FIGS. 4 and 5. Because of the problematic cable routing, this technology is hardly used in practice for adhesive antennas.
  • the two-dimensional, optically transparent structure 4 which is largely impervious to radio waves in the frequency range of the radio service, can be implemented in various ways.
  • the realization by wire-shaped conductors, which are applied in the screen printing process, is of particular interest in practice.
  • the mesh size can then increase or the number of conductors can decrease, e.g. in the manner shown in FIG. 5, without thereby overall impairing the advantages of the invention.
  • FIG. 10 Another advantageous embodiment of a structure 4 is shown in FIG. 10, in which the return currents to the antenna base point are effectively detected by conductors running in a star shape towards the antenna base point 10.
  • This structure 4a which is not very extensive in terms of area, considerably reduces the fields inside.
  • FIG. 8 shows a structure similar in area to that of FIG. 10, which extends essentially on the pane 2 in the vicinity of the antenna base point 10.
  • the effectiveness of a structure for achieving the object according to the invention decreases if the area covered by the structure 4 is made smaller.
  • the field strengths are greatest near the base point and rapidly decrease with increasing distance from it, comparatively small-area structures 4 are also able to significantly reduce the field strengths in the interior of the vehicle.
  • the required areal extension of structure 4 is therefore also dependent on the maximum transmission power used, since with small transmission powers only a slight reduction in the fields is required.
  • Antenna arrangements according to the invention relate to radio devices with at least medium output power.
  • HF output powers are understood to be in the range above approximately 5 W, with which the field strengths in the passenger compartment exceed the limit values according to DIN 0848 at least in the interior without design according to the invention.
  • the area of the pane 2 covered by the structure 4 can naturally be less than, for example, the maximum power of about 25 W used in the C network in the vehicle.
  • an RF output power of, for example, 5 W the area of the pane 2 covered by the structure 4 can naturally be less than, for example, the maximum power of about 25 W used in the C network in the vehicle.
  • an inventive one Antenna arrangement for a power of approximately 5 W in combination with an antenna shape which produces pronounced fields in the vicinity of the base point 10 can be stated with respect to the dimensions of the structure 4 on the basis of measurements that the dimensions 36 and 37 and 35 (Fig. 8) must not be significantly less than about 1/4 of the mean operating wavelength in the frequency range of the radio service. At higher frequencies, at which the operating wavelength becomes very small, it is necessary not to make the dimensions smaller than about 10 cm in the case of the dimensions 27 and 35. 27 is the sum of the dimensions 36 and 37.
  • the window 2 there are usually other structures on the window 2, at least if it is the rear window of a vehicle, e.g. Heating fields 20 or structures 34 for radio reception antennas.
  • 7, 8 and 10 show examples of antenna arrangements according to the invention in combination with heating fields 20.
  • the heating field 20 does not have the characteristic features of a structure 4 with regard to the design and the electrical wiring in the frequency range of the radio service, e.g. is not connected to the body 3 with low resistance. Therefore, the electromagnetic fields that the radio antenna emits are not or only slightly weakened by the heating field 20. Since, for the reasons mentioned above, in the lower area of the pane in which the heating field 20 is arranged, however, the fields of the external antenna 1 are smaller than in the upper area of the pane and, moreover, the body parts hardly approach the lower part of the pane in practice 7, it is often sufficient to arrange the structure 4 only in the upper region of the pane.
  • the low-resistance connection between the structure of the heating field 20 and the body 3 is e.g. reached again via the busbars 30 of the heating field 20 directly opposite the body panel and via the adhesive bead.
  • the heating field 20 simultaneously becomes the structure 4, subarea 4b, and thus fulfills the tasks according to the invention with regard to a reduction of the electromagnetic fields in the vehicle interior.
  • an adhesive with good dielectric but low ohmic conductivity is advantageous in this case.
  • the heating field 20 is also connected to the body in the area of the busbars with a low impedance and is therefore also a component of the structure 4. If, as in many cases, the heating field in the area of the window opening consists only of horizontal conductors, it is shielding effect is present, but possibly not yet sufficient.
  • the shielding effect of the heating field 20 acting as structure 4 can, however, be improved by additional measures in terms of effectiveness in the sense of the invention.
  • three additional conductors 31 arranged almost vertically are provided in the middle, which can conduct currents in the direction of the antenna base 10 and which are arranged on equipotential lines with respect to the heating conductors, so that no heating current flows in the transverse direction.
  • the effect is further improved by the interdigital structure 32, via which the structure 4b is capacitively coupled to the structure 4a.
  • antennas that have a low-impedance base impedance with respect to the base, such as lambda / 4, 5/8 lambda or 3/4 lambda radiators, which have a funnel impedance in the vicinity of the characteristic impedance of 50 ohms of conventional coaxial cables and their advantage in easy adaptation to the power cable.
  • the use of these antenna shapes goes hand in hand with large reverse currents on the base area. Depending on the electrical properties of the base area, that is to say on its surface impedance, there may therefore be losses which undesirably reduce the efficiency of the external antenna 1.
  • the external antenna e.g. is arranged in the center of the roof of a vehicle because the body has a very low and low-loss surface impedance.
  • the external antenna 1 is arranged in the vicinity of a window opening formed by a vehicle window 2. If a structure 4 of conductive material with a low surface resistance in the frequency range of the radio service is then applied completely or partially to the vehicle window 2, at least some of the currents flow back to the antenna base via parts of the structure 4.
  • the surface resistance of the structure is low-resistance compared to the field-wave resistance of the free space, i.e. 377 ohms.
  • a value that is at least 5 times lower in terms of amount can be considered sufficient to significantly reduce the fields in the interior, e.g. to reach 6 dB.
  • the aim should therefore be to make the surface impedance of the structure as conductive as possible, such as the metallic body.
  • This requires, for example, a surface coating with a correspondingly high level specific conductivity or a correspondingly high thickness, which may result in an inadmissible decrease in the optical transparency.
  • this structure 4 is also to take on the function of a window heating at the same time, further requirements with regard to the ohmic conductivity for direct current must be met.
  • the selection of a suitable type of coating therefore plays an important role in antenna arrangements according to the invention, especially in the case of external antennas 1 with large base point currents.
  • coatings with very different electrical properties are available today, there is no restriction on the applicability of antenna arrangements according to the invention.
  • the surface resistance can be changed via the spacing between the conductors.
  • the surface resistance for the frequencies of the radio service can be set within wide limits independently of the resistance for direct current (heating field), since the depth of penetration is extremely small at high frequencies, while the entire cross section is full of current in direct current.
  • Such antenna shapes are characterized by a low current at the antenna base point, with the result that even low currents on an adjacent base area or structure 4. As a particular advantage, this does not result in any requirement for low resistance compared to 377 ohms that goes beyond the object of the invention.
  • Such antenna shapes are e.g. Lambda / 2 dipoles fed below, which, however, can only be adapted to the characteristic impedance of coaxial cables.
  • the use of antennas according to DE 40 07 824 A1 (FIG. 9) which are coaxially fed through the base point and are particularly suitable for adhesive antennas is particularly advantageous for antenna arrangements according to the invention.
  • FIG. 11 structure 4 is formed from several areas.
  • the area 4a which extends in the immediate vicinity of the antenna base 10 is e.g. low-resistance connected to the body 3 at the upper edge of the structure 4a via the adhesive bead. Due to the low-resistance connection in the area of the busbars, the heating field 20 is a component of the structure 4, namely the area 4b.
  • the structures 34 serve in a known manner as antenna elements for radio reception, e.g.
  • the antenna structures 34 become part of the structure 4 in that they are connected to the body with low impedance via wire bridges compensated for the frequencies of the radio service, which thereby have the character of series resonance circuits with a replacement inductor 28 and a series-connected capacitance 12. Because of the very small value of the capacitance 12, lower frequencies, e.g. of the LMK and VHF radio broadcasting area then only a negligible capacitive load on the structures 34, as a result of which the performance of the radio receiving antenna is not inadmissibly impaired.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Details Of Aerials (AREA)

Abstract

Die Erfindung bezieht sich auf eine Antennenanordnung für Kraftfahrzeuge, die aus einer Funk-Außenantenne (1) und einer Fahrzeugscheibe (2) in einer metallischen Karosserie (3) besteht. Die Funk-Außenantenne (1) ist in der Nähe der Scheibenöffnung auf der Karosserie (3) oder auf der Fahrzeugscheibe (2) angebracht. Auf die Fahrzeugscheibe ist in der Nähe der Funk-Außenantenne (1) eine optisch weitgehend transparente, jedoch für Funkwellen im Frequenzbereich des Funkdienstes im Hinblick auf die durch die Scheibenöffnung hindurch tretende elektromagnetische Strahlung weitgehend undurchlässige zweidimensionale Struktur (4) aus leitendem Material aufgebracht. Diese Struktur ist für den Frequenzbereich des Funkdienstes niederohmig mit der metallischen Karosserie (3) verbunden und die Abmessungen der Struktur sind derart gewählt, daß die von der Außenantenne erzeugte elektromagnetische Strahlung im Fahrzeuginneren ausreichend abgeschirmt ist.

Description

  • Funkantennen, z.B. für C-Netz oder D-Netz Mobiltelefone, werden häufig wegen der guten Antennenfunktion als stabförmige oder auch anders geformte Antennen in der Nähe der hinteren Dachkante montiert oder als Klebeantenne auf die Heckscheibe geklebt. In jedem Fall stehen die Antennen von der Fahrzeugaußenhaut nach außen weg und werden daher, im Gegensatz z.B. zu Scheibenantennen, als Außenantennen bezeichnet.
  • Die Antennen werden im Sendefall typisch bis zu 25 W beaufschlagt. Wegen der einfachen Montagemöglichkeit sind Antennen, die auf die Heckscheibe aufgeklebt werden und die kapazitiv das Antennensignal durch die Scheibe einkoppeln, besonders vorteilhaft. Eine derartige Antennenanordnung, die auf die Fahreugheckscheibe geklebt wird, ist z.B. bekannt aus DE 39 31 807 A1, EP 0 279 117 A1 und US RE 33743 (E).
  • Die elektromagnetische Strahlung, also die elektrischen und magnetischen Felder, greifen durch der Antenne benachbarte Scheibenöffnungen in das Fahrzeuginnere. Bei den üblichen Montagepunkten an der hinteren Dachkante oder bei Klebeantennen auf der Heckscheibe ist dies vor allem die Heckscheibe, in geringerem Umfang können jedoch auch andere benachbarte Scheibenöffnungen, z.B. die der hinteren Seitenscheiben, für die Einkopplung der Felder ins Fahrzeuginnere beteiligt sein.
  • Heutige Heckscheiben weisen in der Regel Scheibenheizungen auf, die entweder aus aufgedruckten und meist horizontal angebrachten Leitern oder aus einer Vielzahl von horizontalen Einzeldrähten bestehen, die zwischen die beiden Scheiben einer Verbundglasscheibe eingelegt sind. Derartige Leiterstrukturen weisen eine gewisse Schirmwirkung bezüglich der Einkopplung elektromagnetischer Felder in den Innenraum auf und reduzieren die Feldstärken im Vergleich zu Heckscheiben, die kein Heizfeld aufweisen. Der Effekt ist jedoch gering, wenn keine speziellen Maßnahmen bezüglich der Ausgestaltung der Heizungsanordnung getroffen werden. Dies resultiert auch daraus, daß bei Funksystemen die vertikale Polarisation verwendet wird und daß die Funkantennen meist mittig zur Fahrzeuglängsachse angeordnet werden. Die sich ergebende Feldkonfiguration ist dann derart, daß horizontal angeordnete Heizleiter nicht geeignet sind, die Ströme zum Antennenfußpunkt zurückzuführen. Entsprechend gering ist damit die abschirmende Wirkung normaler Heizfelder.
  • In Sonderfällen werden auch orthogonal zur maximalen Scheibenabmessung angeordnete Heizleiter mit Sammelschienen am oberen und am unteren Scheibenrand verwendet. Scheiben mit flächig aufgedampften metallischen Schichten sind ebenfalls heute technisch realisierbar. Bezüglich der Feldkonfiguration sind bei derartigen beheizten Scheiben dann günstigere Voraussetzungen für eine abschirmende Wirkung gegeben. Trotzdem ergibt sich auch dann keine ausreichende Schirmwirkung, da die Erdungsverhältnisse der nach dem Stand der Technik ausgeführten Scheibenheizungen für die Frequenzen der Funksysteme undefiniert sind.
  • Wie Messungen zeigen, sind die auftretenden Feldstärken im Fahrzeuginneren in der Regel groß. Bei den typischerweise im Mobilfunk verwendeten Sendeleistungen von bis zu 25 W ergeben sich bereits bei Antennen, die auf die Dachaußenhaut in der Nähe der hinteren Dachkante montiert sind, elektrische und magnetische Feldstärken, die die Grenzwerte nach DIN-Entwurf 0848 im Kopfbereich der Fondpassagiere erreichen oder sogar überschreiten.
  • Bei auf die Scheibe geklebten Antennen ist die Situation noch problematischer. Da vor allem in der Nähe des Antennenfußpunkts sehr hohe Feldstärken auftreten, werden die Grenzwerte nach DIN-Entwurf 0848 in größeren Bereichen des Fahrgastraums überschritten, wobei die spezielle Bauform der Antenne hier einen erheblichen Einfluß auf die Feldverteilung aufweist.
  • In all diesen Fällen kann eine Gefährdung der Fahrgäste nicht sicher ausgeschlossen werden.
  • Aufgabe der Erfindung ist es daher, eine Antennenanordnung anzugeben, mit der die Felder im Fahrgastraum deutlich abgesenkt werden, wobei die Leistungsfähigkeit der Außenantenne bezüglich des Funkbetriebs voll erhalten bleibt.
  • Diese Aufgabe wird durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst.
  • Die Vorteile der Erfindung bestehen insbesondere darin, daß mit erfindungsgemäßen Antennenanordnungen sowohl Dachantennen als auch Klebeantennen problemlos eingesetzt werden können, da die im Fahrgastraum auftretenden Feldstärken bei den heute üblichen maximalen Sendeleistungen sicher unter den Grenzwerten des DIN-Entwurfs 0848 gehalten werden können. Damit werden mit erfindungsgemäßen Antennen die die Sicherheit der Fahrgäste gefährdenden Nachteile des Stands der Technik vermieden.
  • Als besonders großer Vorteil ist anzusehen, daß das Ausmaß der Reduktion durch entsprechende Wahl der Größe, der Anordnung und der Ausgestaltung der Struktur 4 den jeweiligen Erfodernissen wie maximal verwendete Sendeleistung oder Antennentyp angepaßt werden kann, so daß der technische Aufwand jeweils nicht größer als notwendig gemacht werden muß.
  • Ein weiterer wesentlicher Vorteil ist darin zu sehen, daß bei Fahrzeugen, die mit erfindungsgemäßen Antennenanordnungen ausgestattet sind, die Fahrzeugscheibe, die die Struktur 4 aufweist, ebenfalls noch beheizt werden kann und auch noch Strukturen aufweisen kann, die als Antennenstrukturen für Rundfunkempfang geeignet sind, so daß sich bezüglich der bisherigen Funktion von Fahrzeugscheiben keine Einschränkungen ergeben.
  • Ausführungsbeispiele der Erfindung sind in Zeichnungen dargestellt und werden im folgenden beschrieben:
  • Fig.1:
    • a) Antennenanordnung nach dem Stand der Technik mit einer Außenantenne 1, die auf dem Dach in der Nähe der hinteren Scheibenkante montiert ist und deren Felder in den Fahrgastraum hineingreifen (Schnitt).
    • b) dito mit einer Klebeantenne.
    Fig.2:
    Erfindungsgemäße Antennenanordnung mit einer Außenantenne 1, die auf dem Dach in der Nähe der hinteren Scheibenkante montiert ist und deren Felder nicht in den Fahrgastraum hineingreifen (Schnitt).
    Fig.3:
    Erfindungsgemäße Antennenanordnung nach Fig.2, Draufsicht.
    Fig.4:
    Antennenanordnung nach der Erfindung, im Schnitt dargestellt, mit einer Klebeantenne und mit einer Struktur 4, die sich über die gesamte Scheibenöffnung erstreckt.
    Fig.5:
    Antennenanordnung nach der Erfindung nach Fig. 4, aber in der Draufsicht. Die Struktur 4 ist als Gitternetz ausgebildet und so ausgeführt, daß in der unmittelbaren Umgebung des Antennenfüßpunktes 10 eine besonders hohe Wirksamkeit im Hinblick auf die Reduktion der Felder im Fahrzeuginneren gegeben ist.
    Fig.6:
    Antennenanordnung nach der Erfindung, im Schnitt dargestellt, mit einer Klebeantenne und mit einer Struktur 4, die nur einen Teil der Scheibenöffnung bedeckt. Im übrigen Bereich erstreckt sich zum großen Teil das Heizfeld 20. Die Struktur 4 ist über eine Drahtverbindung 11, deren Induktivität durch die Kapazität 12 kompensiert ist, mit der Karosserie 3 verbunden.
    Fig.7:
    Antennenanordnung nach der Erfindung nach Fig.6, aber in der Draufsicht.
    Fig.8:
    Antennenanordnung nach der Erfindung mit einer niederohmigen Verbindung zwischen Struktur 4 und Karosserie 3, die mittels einer Leitungstransformation ausgebildet ist.
    Fig.9:
    Antennenanordnung nach der Erfindung, im Schnitt dargestellt, mit einer Klebeantenne mit Dipolcharakter, die koaxial von unten gespeist wird und mit einer Struktur 4, die nur längs einer Scheibenkante leitend mit der Karosserie verbunden ist. Im unteren Bereich der Scheibe ist das Heizfeld 20 angeordnet.
    Fig. 10:
    Antennenanordnung nach der Erfindung nach Fig.9, aber in der Draufsicht. Die Struktur 4 ist vorwiegend aus radial angeordneten Leitern aufgebaut.
    Fig.11:
    Antennenanordnung nach der Erfindung, bei der gleichzeitig Rundfunksignale empfangen werden.
  • Fig. 1a und Fig. 1b zeigen Antennenanordnungen nach dem Stand der Technik. Im Beispiel der Fig. la ist die Außenantenne 1 eine an der hinteren Dachkante des Fahrzeugs montierte Antenne, die in der Nähe der durch die Scheibe 2 geschlossenen Scheibenöffnung angebracht ist. Im Beispiel der Fig.1b ist die Außenantenne 1 eine Antenne, deren Antennenfuß 10 auf der Fahrzeugscheibe 2 außen befestigt ist; dies erfolgt in der Regel durch eine Klebung, weswegen man von Klebeantennen spricht.
  • Die Signalverbindung zwischen Antenne 1 und Funkgerät 23 erfolgt, wie üblich, über eine koaxiale Leitung 18. Im Beispiel der Fig. la ist der Außenleiter der koaxialen Leitung 18, wie üblich, in der Nähe des Antennenfüßpunkts mit der Karosserie 3 elektrisch leitend verbunden. Im Beispiel der Fig. 1b ist der Außenleiter der koaxialen Leitung 15 in der Nähe des Antennenfußes 10 mit der Karosserie elektrisch leitend verbunden.
  • Im Sendefall ergeben sich, ausgehend von der Außenantenne 1, elektrische Feldlinien 17, die sich gegen die metallische Karosserie schließen (Fig. la und Fig. 1b). Mit den elektrischen Feldlinien sind dielektrische Verschiebungsströme verknüpft. Diese Ströme schließen sich als Oberflächenströme auf der metallischen Karosserie 3 zum Antennenfußpunkt. Des weiteren sind magnetische Feldlinien vorhanden, die in Fig. la und Fig. 1b nicht dargestellt sind, und die senkrecht auf den elektrischen Feldlinien 17 stehen, also aus der Zeichnungsebene heraustreten.
  • Wie in Fig. la und Fig. 1b dargestellt, treten bei Antennenanordnungen nach dem Stand der Technik einige der elektrischen Feldlinien 17 und damit auch einige der magnetischen Feldlinien durch Öffnungen der Karosserie, also z.B. durch die Fensteröffnungen, in den Fahrgastraum ein und schließen sich im Innenraum gegen die metallische Karosserie 3. Personen, die sich im Bereich der Felder aufhalten, sind dadurch elektromagnetischer Energie ausgesetzt.
  • Besonders hohe Feldstärken treten naturgemäß in unmittelbarer Nähe der Außenantenne 1 auf. Im Beispiel der Fig. 1a treten daher auch im der Außenantenne benachbarten Teil der Scheibenöffnung, die mit der Scheibe 2 identisch ist, also im oberen Bereich der Scheibe, besonders hohe Feldkonzentrationen auf. Im Falle einer Heckscheibe und einer an der hinteren Dachkante montierten Außenantenne sind damit die Fondpassagiere speziell im Kopfbereich gefährdet. Die Gefährdung nimmt naturgemäß zu mit der Höhe der Sendeleistung.
  • Im Falle einer Klebeantenne, wie in Fig. 1b dargestellt, greifen noch mehr Feldlinien in den Innenraum, weil in der unmittelbaren Umgebung des Antennenfußpunkts 10 bei Antennenanordnungen nach dem Stand der Technik keine ausreichend großen metallischen Gegenflächen auf dem Potential der Karosserie vorhanden sind. Daher sind auch wesentlich höherer Feldstärken im Fahrzeuginneren festzustellen. Teilweise wird bei Klebeantennen wegen der einfacheren Montage sogar auf die elektrische Verbindung des Außenleiters des Koaxialkabels 18 mit der metallischen Karosserie 3 in der Nähe des Antennenfußes 10 verzichtet. Dadurch können sich dann Mantelwellen auf dem Koaxialkabel 18 ausbreiten, die hohe Feldkonzentrationen im Innenraum auch in größerer Entfernung vom Antennenfuß bewirken können. Auch Antennen mit als "Radials" auf der Scheibe angeordneten Zusatzleitern ergeben im Hinblick auf die unerwünschten Feldstärken im Fahrzeuginneren keine Verbesserung.
  • In Fig. 1b ist ein Teil der Heckscheibe, wie heute üblich, mit einem Heizfeld 20 bedeckt. Der beheizte Bereich ist dabei im unteren Bereich der Scheibe 2 angeordnet und kleiner als die gesamte Scheibenöfffnung, so daß die Klebeantenne 1 oberhalb des Heizfelds im freien Raum montiert werden kann. Die Heizleiter des Heizfeldes sind dabei elektrisch für Frequenzen des Funkdienstes nicht niederohmig mit der Karosserie 3 verbunden, da die den Gleichstrom zuführenden Drähte 24 erst in größerem Abstand mit der Karosseriemasse oder mit dem Plusanschluß der Batterie verbunden sind. Die Verlegung und die Lange der den Gleichstrom zuführenden Drähte 24 (s. Fig.7 für den Fall einer erfindungsgemäßen Antennenanordnung) wird dabei nach dem Stand der Technik unter fahrzeugspezifischen Aspekten ausgelegt und nicht bezüglich der elektrischen Wirkung für die Frequenzen des Funkdienstes.
  • Die abschirmende Wirkung eines normalen Heizfeldes auf die Einkopplung elektromagnetischer Wellen, die von der Außenantenne 1 abgestrahlt wurden, in den Innenraum, ist daher in der Praxis gering. Die Felder greifen, wie in Fig. 1b dargestellt, im wesentlichen ungeschwächt, durch das Heizfeld 20 in den Innenraum.
  • Im weiteren werden erfindungsgemäße Antennenanordnungen beschrieben, mit denen die Einkopplung elektromagnetischer Wellen in den Innenraum deutlich reduziert wird. Fig. 2 zeigt eine derartige Antennenanordnung im Schnitt, Fig. 3 in der Draufsicht für das Beispiel einer an der hinteren Dachkante montierten Außenantenne 1.
  • Im Gegensatz zu Fig. la ist im Beispiel der Fig. 2 bzw. Fig. 3 die Scheibe 2 nun mit einer zweidimensionalen, also flächigen Struktur 4 aus leitfähigem Material mit niedrigem Oberflächenwiderstand im Frequenzbereich des Funkdienstes versehen. Um die erfindungsgemäßen Vorteile zu erreichen, muß für den Frequenzbereich des Funkdienstes durch die Struktur 4 insgesamt ein Oberflächenwiderstand wirksam sein, der deutlich niederohmiger als der Feldwellenwiderstand des freien Raumes ist. Dann ist die Struktur 4 geeignet, abschirmend zu wirken und kann elektrische und magnetische Felder, die die Außenantenne 1 erzeugt, wirksam davon abhalten, ins Fahrzeuginnere einzudringen.
  • Bei den derzeitigen technologischen Möglichkeiten kann die Struktur 4 z.B. in Form einer Beschichtung flächig aufgedampft sein. Diese metallischen Schichten werden sehr dünn aufgedampft, wodurch die Transparenz für Licht erhalten bleibt und gleichzeitig die erforderliche Niederohmigkeit für die Funkfrequenzen erreicht wird.
  • Genauso geeignet für erfindungsgemäße Antennenanordnungen sind jedoch Strukturen auch aus einzelnen Leitern, wie sie von aufgedruckten Heizfeldern bekannt sind, die im Siebdruckverfahren aufgebracht werden. Um die gewünschte Wirkung bezüglich der Reduktion der Einkopplung elektromagnetischer Felder in den Innenraum zu erreichen, sind bezüglich der verwendeten Geometrien der Strukturen dann die Lehren der Erfindung zu befolgen, die weiter unten noch erläutert werden. Auch die kombinierte Verwendung einer aufgedampften Schicht mit einer aufgedruckten Leiterstuktur kann vorteilhaft sein.
  • Wegen der geringen Eindringtiefe hochfrequenter Funkwellen auf Grund des Skineffekts in metallische Leiter ist nämlich eine sehr dünne Schicht ausreichend, die wiederum für Gleichströme, z.B. für Zwecke einer Scheibenheizung, zu hochohmig wäre. Die erforderliche Niederohmigkeit für Gleichströme wiederum kann dann durch aufgedruckte Leiter eingestellt werden.
  • Um die erfindungsgemäßen Vorteile zu erreichen, muß zumindest eine Berandung der Struktur 4 niederohmig mit der metallischen Karosserie 3 verbunden sein. Im Falle der Fig. 2 bzw.
  • Fig. 3 ist dies an allen vier Berandungen der Struktur 4 der Fall, wodurch sich der Vorteil einer besonders hohen Wirksamkeit im Sinne der Erfindung ergibt. Die Scheibe 2 ist im Beispiel der Fig.2 und Fig.3 in die Karosserie 3 in der heute üblichen Weise eingesetzt und mittels des Scheibenklebers 13, der als Kleberaupe parallel zur äußeren Scheibenkante aufgebracht ist, mit der Karosserie mechanisch verbunden.
  • Die elektrisch niederohmige Verbindung für die Frequenzen des Funkdienstes kann in vielen Fällen dann besonders einfach und daher vorteilhaft, wie im Beispiel der Fig. 2 und 3 angenommen, über die sich flächig gegenüberliegenden Ränder der Karosserie und der Berandung der Struktur 4 über die Kleberaupe erfolgen.
  • Die erforderliche Niederohmigkeit der Verbindung kann z.B. ideal mittels eines silberhaltigen und daher gut leitfähigen Klebers 13 erreicht werden kann. Auf diese Weise wird bewirkt, daß die Struktur 4 auf dem Potential der Karosserie liegt. Die niederohmige Verbindung zur Karosserie 3 kann bei erfindungsgemäßen Antennen grundsätzlich auf unterschiedliche Weise erfolgen. Die oben angegebene Verwendung eines leitfähigen Klebers ist elektrisch ideal, jedoch sind die hohen Kosten derartiger Kleber nachteilig.
  • Aus konstruktiven Gründen ist zwischen der Fahrzeugscheibe 2 und der Karosserie 3 bei modernen Fahrzeugen mit eingeklebten Scheiben immer eine Überlappungszone von typisch 1 bis 2 cm Breite entlang des Scheibenrandes vorhanden. Wegen des vergleichsweise geringen Abstands von typisch 3 bis 4 mm, bedingt durch die Kleberaupe, zwischen der Struktur 4 und der gegenüberliegenden Fläche der Karosserie 3, ergibt sich damit eine nicht geringe kapazitive Verkopplung, die wegen der großflächigen Anordnung eine ausreichend niederohmige kapazitive Verbindung darstellt, wenn der in diesem Bereich angeordnete Scheibenkleber eine Dielektrizitätskonstante deutlich größer als 1 aufweist. Dies ist bei den derzeit verwendeten Scheibenklebern mit εr-Werten von typisch größer 5 der Fall.
  • Da die Funkdienste, für die die erfindungsgemäßen Antennenanordnungen vorzugsweise eingesetzt werden, in der Regel bei Frequenzen des UHF-Bereichs oder höher angeordnet sind, reicht die so gebildete Kapazität für die Ausbildung einer ausreichend niederohmigen Verbindung zwischen der Struktur 4 und der Karosserie 3 sicher aus.
  • Derzeit verwendete Scheibenkleber weisen teils geringe Verluste bei hohen Frequenzen auf, andere wiederum sind wegen eines hohen Rußanteils stark verlustbehaftet, so daß sich zusätzlich zur kapazitiven Verbindung noch eine hohe ohmsche Leitfähigkeit ergibt. Auch bei Verwendung derartiger Scheibenkleber ist daher eine niederohmige Verbindung zwischen Karosserie und Struktur 4 für die Frequenzen der Funkdienste sicher gegeben.
  • Die für erfindungsgemäße Antennenanordnungen erforderliche niederohmige Verbindung zwischen Struktur 4 und Karosserie 3 kann jedoch auch punktförmig erfolgen. Diese Möglichkeit zeigt Fig.6 im Schnitt und Fig. 7 in der Draufsicht. In diesem Beispiel ist angenommen, daß die Scheibe, wie früher üblich, mit einer Gummidichtung in die Karosserie eingesetzt ist. Eine ausreichend niederohmige Verbindung zur Karosserie 3 ist damit wegen der sich nur stirnseitig gegenüberliegenden Kanten von Struktur 4 und Karosserie 3 nicht in jedem Fall gegeben. Ist die Verbindung nicht niederohmig genug, was durch eine Messung der Impedanz zwischen Struktur 4 und Karosserie 3 festgestellt werden kann, so kann ausschließlich oder unterstützend mittels einer oder mehrerer Drahtbrücken von der Struktur 4 zur Karosserie 3 die niederohmige Verbindung sichergestellt werden.
  • Wegen der Eigeninduktivität von ca. 10 nH/cm ist selbst bei einer kurzen Drahtbrücke allerdings für die Frequenzbereiche, in denen die betrachteten Funksysteme betrieben werden, also im wesentlichen oberhalb etwa 400 MHz, die Niederohmigkeit einer Drahtbrücke noch nicht ausreichend, da eine Drahtbrücke mit einer schwer zu unterschreitenden Länge von ca. 10 cm im Frequenzbereich des C-Netzes bereits eine induktive Impedanz von ca. 280 Ohm ergibt. Durch Kompensation der Eigeninduktivität des Drahtes mittels einer in Serie geschalteten Kapazität 12 kann dann die Niederohmigkeit für die Frequenzen des Funkdienstes wieder hergestellt werden. Im angegebenen Beispiel ist hierzu eine Kapazität von ca. 1,2 pF erforderlich.
  • Auf diese Weise ergibt sich so eine zwischen den Anschlußpunkten 25 auf der Struktur 4 und 33 auf der Karosserie wirksame niederohmige Verbindung.
  • Die Lage dieses Anschlußpunkts 25 auf der Struktur 4 wird vorzugsweise dort gewählt, wo die größten Rückströme zum Antennenfußpunkt 10 fließen, weil sich so elektrisch die größte vorteilhafte Wirkung ergibt. Im Beispiel der Fig. 6 ist dies die Symmetrieachse der Scheibe am oberen Rand, also in unmittelbarer Nähe zum Antennenfußpunkt 10. Der Anschlußpunkt 33 wird vorzugsweise in möglichst geringem Abstand zum Anschlußpunkt 25 auf der Karosserie gewählt. Der elektrische Charakter dieser Verbindung ist der einer Serienresonanz.
  • Nachteilig bei dieser Ausführung der niederohmigen Verbindung mittels einer Drahtbrücke sind die Montage- und Kontaktierungskosten. Elektrisch äquivalent und daher von der Funktion her gleichwertig kann die bezüglich des Anschlußpunktes 25 wirksame niederohmige Verbindung zwischen Karosserie 3 und Struktur 4 auch mittels einer Leitungstransformation erreicht werden. Dadurch entfallen vorteilhafterweise die Montagekosten für die Drahtbrücke.
  • Eine derartige erfindungsgemäße Ausführungsform zeigt Fig. 8. Der Leitungscharakter ergibt sich in diesem Beispiel zwischen der oberen Berandung der Struktur 4a und der gegenüberliegenden metallischen Karosserie 3, wobei an der linken und rechten Seite der Struktur 4a diese leerläuft. Der jeweilige Leerlauf transformiert sich entsprechend der Länge 36 bzw. 37 in eine Impedanz, die zwischen der Struktur 4a und der Karosserie 3 in der vertikalen Symmetrielinie 38 wirksam wird und die bei geeignet gewählter Abmessung 36 bzw. 37 einen Wechselstromkurzschluß mit Serienresonanzcharakter ergibt. Vorteilhaft wird die Struktur 4a und damit auch die Abmessungen 36 bzw. 37 für den links und für den rechts der Symmetrieachse 38 liegenden Bereich der Struktur 4a spiegelbildlich gleich ausgeführt. Die gesamte Horizontalabmessung der Struktur 4 ergibt sich damit zu 27 als der Summe der Abmesungen 36 und 37. Die Abmessungen 36 bzw. 37 werden für die Erfüllung dieser Aufgabe typisch so ausgeführt, daß sich eine Lambda-Viertel-Transformation oder eine Transformation mit entsprechender ähnlicher Charakteristik (durch ein ungradzahlig ganzzahliges Vielfaches von Lambda-Viertel) ergibt. Die exakt erforderliche Abmessung 36 bzw. 37 werden dabei vorzugsweise über die Messung der Impedanz zwischen Struktur 4 und der Karosserie auf der Symmetrieachse 38 bestimmt, da die Felder der Leitung, über die sich die Leitungstransformation ergibt, teils auch im Glas der Scheibe 2 vorhanden sind, wodurch sich eine von der Freiraumwellenlänge abweichende etwa kürzere wirksam Wellenlänge ergibt.
  • Das Ergebnis einer erfindungsgemäßen Antennenanordnung ist dann derart, daß die elektrischen Feldlinien, von der Außenantenne 1 her kommend, auf der Struktur 4 enden und nicht mehr oder nur mehr stark abgeschwächt in den Innenraum eindringen. Gleiches gilt für die magnetischen Felder. Auf diese Weise ist der Innenraum des Fahrzeugs von den Feldern der Funkantenne weitgehend frei.
  • Die größte Wirksamkeit mit dem Vorteil einer besonders großen Reduktion der Felder im Innenraum des Fahrzeugs ergibt sich naturgemäß bei einer erfindungsgemäßen Antennenanordnung, wenn sich die Struktur 4 über die gesamte Oberfläche der Scheibenöffnung erstreckt. Für die Praxis kann jedoch eine ausreichende, weil nur geringfügig reduzierte Wirksamkeit bereits dadurch erreicht werden, daß sich die Struktur 4 auf den besonders wichtigen Bereichen der Scheibe erstreckt.
  • Diese besonders wichtigen Bereiche zur Erzeilung erfindungsgemäßer Vorteile ergeben sind zum einen aus der Nähe zum Fußpunts der Außenantenne 1, im Beispiel der Fig. 2 also im oberen mittleren Bereich der Fahrzeugscheibe 2. Dort tritt bekanntlich die höchste Feldkonzentration auf. In entsprechender Weise ist im Falle einer Außenantenne 1, die als Klebeantenne ausgeführt ist (Fig.4 und 5), der Bereich um den Fußpunt 10 der Antenne besonders wichtig.
  • Zum anderen ist zu berücksichtigen, wie dicht Körperteile von Fahrgästen sich den jeweiligen Bereichen der Scheibe 2 annähern können. In jedem Fall ist daher der obere Bereich der Scheiben sehr wichtig, da die Köpfe der Fondpassagiere dort der Scheibe 2 sehr nahe kommen können. Im Gegensatz dazu ist der untere Bereich der Scheibe 2 wesentlich weiter vom Körper der Fondpassagiere entfernt. Dies gilt in besonders hohem Ausmaß, wenn die Scheibe 2 relativ flach angeordnet ist.
  • Daher ist die Wirksamkeit der Struktur 4 in der Regel im oberen Bereich der Scheibe und dort wiederum in der Mitte besonders groß, wenn auch die Außenantenne 1 dort in der Mitte auf der Scheibe 2 oder in der Nähe auf der Karosserie 3 angebracht ist. Aus den gleichen Gründen kann dann ohne für die Praxis relevante Nachteile darauf verzichtet werden, die Struktur 4 bis in den unteren Bereich der Scheibe 2 auszudehnen oder sie kann zumindest mit geringerem technischen Aufwand in diesen Bereichen ausgeführt werden.
  • Fig. 4 zeigt eine erfindungsgemäße Antennenanordnung für eine Klebeantenne 1 in einer Schnittdarstellung, bei der diese Gesichtspunkte berücksichtigt sind. Fig.5 gibt die gleiche Anordnung in der Draufsicht wieder. 10 bezeichnet wieder den Antennenfuß, also auch den Bereich auf der Scheibe, auf den die Klebeantenne 1 aufgeklebt ist. Dieser Montagepunkt 10 liegt dabei bei erfindungsgemäßen Antennenanordnungen vorzugsweise im Inneren des von der Struktur 4 bedeckten Bereichs, da im Bereich des Fußpunkts 10 der Antenne 1 wieder besonders hohe Feldkonzentrationen auftreten.
  • Die der Scheibe zugewandte Fläche der Klebeantenne 1, über die auch die mechanische Verbindung zur Scheibe hergestellt wird, ist bei derartigen Antennen typisch metallisch leitend so ausgeführt, daß eine kapazitiv ausreichend niederohmige Verbindung durch die Scheibe hindurch zu einer metallischen Gegenfläche 14 auf der Scheibeninnenseite gegeben ist. An dieser Gegenfläche 14 ist der Innenleiter einer koaxialen Leitung 18 angeschlossen, die die Signalverbindung zum Funkgerät herstellt. Der Außenleiter der koaxialen Leitung 18 ist bei erfindungsgemäßen Antennen in der Nähe der Gegenfläche 14 an der Struktur 4 angeschlossen. Wegen der abschirmenden Wirkung der Struktur 4 sind auch keine Mantelwellen auf der koaxialen Leitung 18 vorhanden.
  • Im Beispiel der Fig.4 bzw. Fig.5 überdeckt die Struktur 4 wieder die gesamte Scheibenoberfläche mit Ausnahme des Bereichs, in dem die Signaleinkopplung von der koaxiale Leitung 15 zur Klebeantenne 1 durch die Scheibe erfolgt. Die Dichte der aufgedruckten Leiter 7 ist jedoch in verschiedenen Bereichen der Struktur 4 unterschiedlich ausgeführt, nämlich mit hoher Dichte im oberen Bereich der Scheibe 2 und dort wiederum vor allem in der Mitte, im unteren Bereich und dort wiederum an den Rändern ist die Leiterdichte deutlich geringer.
  • Für die Geometrien der Gegenfläche 14 und den Ausschnitt in der Struktur 4 für diese Gegenfläche bieten sich konzentisch angeordnete Kreise (Fig.5) oder Rechtecke oder Quadrate an. Die notwendige Größe der Gegenfläche 14 und der Fläche am Fußpunkt der Klebeantenne 1 ist von im Handel erhältlichen Antennentypen bekannt und beträgt typisch 2 bis 4 cm2, wenn z.B. die Frequenzen des C- oder D-Netz Funktelefons betrachtet werden.
  • Selbstverständlich kann die Signalzuführung zur Klebeantenne 1 für erfindungsgemäße Antennenanordnungen bei Aufrechterhaltung der Vorteile auch von außen her erfolgen, also nicht nur, wie in Fig.4 und Fig.5 angenommen, kapazitiv durch die Scheibe hindurch. Wegen der dann problematischen Kabelverlegung wird diese Technik bei Klebeantennen in der Praxis jedoch kaum angewandt.
  • Die zweidimensionale, optisch transparente, jedoch für Funkwellen im Frequenzbereich des Funkdienstes weitgehend undurchlässige Struktur 4 kann auf verschiedene Weise realisiert sein. Neben der bereits erwähnten Bedampfung der Scheibenoberfläche mit einer dünnen metallischen Schicht ist für die Praxis besonders die Realisierung durch drahtförmige Leiter von Interesse, die im Siebdruckverfahren aufgebracht werden.
  • Für die Ausbildung des für erfindungsgemäße Antennen erforderlichen niedrigen Oberflächenwiderstandes im Frequenzbereich des Funkdienstes ist die spezielle Konfiguration der Felder zu berücksichtigen, deren Eindringen in den Fahrzeuginnenraum verhindert werden soll. Eine sehr gute Eignung zur Ausbildung der Struktur 4 weisen flächige Strukturen mit einer Dicke auf, die größer als die Eindringtiefe bei der Betriebsfrequenz des Funkdienstes ist. Ein engmaschiges Drahtgitter, wie dies Fig.5 zeigt, ist in der Wirkung gleichwertig. Unterschiede zu einer flächig aufgedampften Struktur ergeben sich nur in serh geringem Abstand von der Struktur 4, also im Bereich weniger Zentimeter. Üblicherweise versteht man unter engmaschig dabei eine Maschenweite, die nicht wesentlich größer als 1/10 der mittleren Betriebswellenlänge des Funkdienstes ist. Dies gilt auch im Zusammenhang mit erfindungsgemäßen Antennenanordnungen. Für den Frequenzbereich des C-Netz-Mobiltelefons ergibt sich damit eine Maschenweite um 7 cm, für das D-Netz von ca. 3 cm. Größere Maschenweiten sind jedoch nicht unwirksam, sondern weisen nur eine geringere Wirksamkeit speziell in der Nähe des Gitters auf. Maschenweiten wesentlich über 1/4 der mittleren Betriebswellenlänge des Funkdienstes eigen sich für erfindungsgemäße Antennenanordnungen nur mehr sehr bedingt.
  • Aus den oben erwähnten Gründen ist es besonders wichtig, die Wirksamkeit in der Nähe des Antennenfußpunktes 10 groß und damit die Maschenweite ausreichend eng zu wählen. In größerer Entfernung vom Antennenfußpunkt 10 kann dann die Maschenweite zunehmen oder die Zahl der Leiter abnehmen, z.B. in der Weise, wie dies Fig. 5 zeigt, ohne daß dadurch insgesamt die Vorteile der Erfindung beeinträchtigt würden.
  • Eine andere vorteilhafte Ausführung einer Struktur 4 zeigt Fig. 10, bei der durch sternförmig auf den Antennenfußpunkt 10 zulaufende Leiter die Rückströme zum Antennenfußpunkt wirksam erfaßt werden. Bereits diese flächenmäßig nicht sehr ausgedehnte Struktur 4a reduziert die Felder im Inneren beträchtlich. In Fig.8 ist eine flächenmäßig ähnlich große Struktur wie in Fig. 10 dargestellt, die sich im wesentlichen auf der Scheibe 2 in der Nähe des Antennenfußpunktes 10 erstreckt.
  • Die Wirksamkeit einer Struktur zur Lösung der erfindungsgemäßen Aufgabe nimmt ab, wenn die von der Struktur 4 bedeckte Fläche kleiner gemacht wird. Da die Feldstärken in der Nähe des Fußpunktes jedoch am größten sind und schnell mit wachsender Entfernung von ihm kleiner werden, sind auch vergleichsweise kleinflächige Strukturen 4 in der Lage, die Feldstärken im Inneren des Fahrzeugs deutlich reduzieren. Die erforderliche flächenmäßige Ausdehnung der Struktur 4 ist damit auch von der maximal verwendeten Sendeleistung abhängig, da bei kleinen Sendeleistungen auch nur eine geringe Reduktion der Felder erforderlich ist.
  • Erfindungsgemäße Antennenanordnungen beziehen sich auf Funkgeräte mit mindestens mittlerer Ausgangsleistung. Darunter werden HF-Ausgangsleistungen verstanden, die im Bereich oberhalb von etwa 5 W liegen, mit denen nämlich die Feldstärken im Fahrgastraum ohne erfindungsgmäße Gestaltung zumindest in Bereichen des Innenraums die Grenzwerte nach DIN-Entwurf 0848 überschreiten.
  • Bei einer HF-Ausgangsleistung von z.B. 5 W kann naturgemäß die von der Struktur 4 bedeckte Fläche der Scheibe 2 geringer sein als z.B. bei der maximal im C-Netz im Fahrzeug verwendeten Leistung von etwa 25 W. Als untere Grenze für die sinnvolle Verwendung einer erfindungsgemäßen Antennenanordnung für eine Leistung von etwa 5 W in Kombination mit einer Antennenform, die ausgeprägte Felder in der Nähe des Fußpunktes 10 erzeugt, kann bezüglich der Abmessungen der Struktur 4 auf Grund von Messungen angegeben werden, daß die Abmessungen 36 und 37 sowie 35 (Fig.8) jeweils nicht wesentlich geringer sein dürfen als etwa 1/4 der mittleren Betriebswellenlänge im Freqenzbereich des Funkdienstes. Bei höheren Frequenzen, bei denen die Bewiebswellenlänge sehr klein wird, ist es erforderlich, die Abmessungen nicht kleiner zu machen als etwa 10 cm im Falle der Abmessungen 27 ud 35. 27 ist dabei die Summe der Abmessungen 36 und 37.
  • In der Praxis sind auf der Scheibe 2, zumindest wenn es sich um die Heckscheibe eines Fahrzeugs handelt, meist weitere Strukturen vorhanden, z.B. Heizfelder 20 oder auch Strukturen 34 für Rundfünkempfangsantennen.
  • Beispiele erfindungsgemäßer Antennenanordnungen in Kombination mit Heizfeldern 20 zeigen die Fig.7, 8 und 10.
  • Im Beispiel der Fig.7 ist davon ausgegangen, daß das Heizfeld 20 bezüglich der Ausführung und der elektrischen Beschaltung im Frequenzbereich des Funkdienstes nicht die kennzeichnenden Merkmale einer Struktur 4 aufweist, also z.B. nicht niederohmig mit der Karosserie 3 verbunden ist. Daher werden die elektromagnetischen Felder, die die Funkantenne abstrahlt, nicht oder nur geringfügig vom Heizfeld 20 abgeschwächt. Da aus den oben angesprochenen Gründen im unteren Bereich der Scheibe, in der das Heizfeld 20 angeordnet ist, jedoch die Felder der Außenantenne 1 geringer sind als im oberen Bereich der Scheibe und außerdem die Annäherung von Körperteilen an den unteren Teil der Scheibe in der Praxis kaum möglich ist, ist es häufig entsprechend Fig. 7 ausreichend, nur im oberen Bereich der Scheibe die Struktur 4 anzuordnen.
  • Im Beispiel einer erfindungsgemäßen Antennenanordnung, wie sie in Fig. 8 dargestellt ist, wurde davon ausgegangen, daß auch im unteren Bereich der Fahrzeugscheibe 2 eine Schirmung erforderlich ist. Hierzu wird die niederohmige Verbindung zwischen der Struktur des Heizfelds 20 und der Karosserie 3 z.B. wieder über die dem Karosserieblech direkt gegenüberliegenden Sammelschienen 30 des Heizfeldes 20 und über die Kleberraupe erreicht. Auf diese Weise wird das Heizfeld 20 gleichzeitig zur Struktur 4, Teilbereich 4b, und erfüllt damit die erfindungsgemäßen Aufgaben bezüglich einer Reduktion der elekktromagnetischen Felder im Fahrzeuginneren.
  • Um im Beispiel der Fig. 8 einen Gleichstromschluß zwischen den Sammelschienen 30 und der Karosserie durch den Kleber zu vermeiden, ist in diesem Fall ein Kleber mit guter dielektrischer, jedoch geringer ohmscher Leitfähigkeit vorteilhaft.
  • Im Beispiel der Fig. 10 ist das Heizfeld 20 ebenfalls niederohmig mit der Karosserie im Bereich der Sammelschienen verbunden und damit ebenfalls ein Bestandteil der Struktur 4. Besteht das Heizfeld, wie in vielen Fällen, im Bereich der Scheibenöffnung nur aus horizontalen Leitern, so ist die abschirmende Wirkung zwar vorhanden, jedoch gegebenenfalls noch nicht ausreichend. Die abschirmende Wirkung des als Struktur 4 wirkenden Heizfeldes 20 kann jedoch durch Zusatzmaßnahmen in der Wirksamkeit im Sinne der Erfindung noch verbessert werden kann. Hierzu sind im Beispiel der Fig. 10 in der Mitte drei nahezu senkrecht angeordnete zusätzliche Leiter 31 vorgesehen, die Ströme in Richtung auf den Antennenfußpunkt 10 führen können und die bezüglich der Heizleiter auf Äquipotentiallinien angeordnet sind, so daß kein Heizstrom in Querrichtung fließt. Eine weitere Verbesserung der Wirkung ergibt sich durch die Interdigitalstruktur 32, über die die Struktur 4b mit der Struktur 4a kapazitiv verkoppelt ist.
  • Als Außenantennen sind unterschiedliche Antennentypen gebräuchlich. Weit verbreitet sind Antennen, die eine niederohmige Fußpunktsimpedanz gegenüber der Grundfläche aufweisen, wie Lambda/4, 5/8 Lambda oder 3/4 Lambda-Strahler, die eine Funßpunktsimpedanz in der Nähe des Wellenwiderstands von 50 Ohm üblicher Koaxialkabel aufweisen und deren Vorteil in der einfachen Anpassung an die Speisekabel liegt. Die Verwendung dieser Antennenformen geht allerdings einher mit großen Rückströmen auf der Grundfläche. In Abhängigkeit von den elektrischen Eigenschaften der Grundfläche, also von deren Oberflächenimpedanz, ergeben sich daher eventuell Verluste, die den Wirkungsgrad der Außenantenne 1 in unerwünschter Weise reduzieren.
  • Dies stellt kein technisches Problem dar, wenn die Außenantenne z.B. in Dachmitte eines Fahzeugs angeordnet ist, weil die Karosserie eine sehr niedrige und verlustarme Oberflächenimpedanz darstellt.
  • Bei erfindungsgemäßen Antennen ist die Außenantenne 1 hingegen in der Nähe einer durch einer Fahrzeugscheibe 2 gebildeten Scheibenöffnung angebracht. Ist auf die Fahrzeugscheibe 2 dann vollständig oder teilweise eine Struktur 4 aus leitenden Material mit niedrigem Oberflächenwiderstand im Frequenzbereich des Funkdienstes aufgebracht, so fließt zumindest ein Teil der Ströme zum Antennenfußpunkt zurück über Teile der Struktur 4. Für die Lösung der er-findungsgemaßen Aufgabe, nämlich die Felder im Fahrgastraum deutlich abzusenken, ist es ausreichend, wenn der Oberflächenwiderstand der Struktur niederohmig ist im Vergleich zum Feldwellenwiderstand des freien Raums, also 377 Ohm. Ein betragsmäßig mindestens 5 fach niederohmigerer Wert kann als ausreichend angesehen werden, um eine deutliche Reduktion der Felder im Innenraum, z.B. um 6 dB, zu erreichen.
  • Bezüglich der Einkopplung von Verlusten in den Antennen stromkreis mit der Folge eines reduzierten Wirkungsgrads sind jedoch gegebenenfalls noch weitergehende Anforderungen an die Oberflächenimpedanz zu stellen, die vom jeweiligen Antennentyp abhängen. Im Falle der oben aufgeführten Antennen mit vergleichsweise großen Fußpunktsströmen ist daher anzustreben, die Oberflächenimpedanz der Struktur möglichst so leitfähig zu machen wie z.B. die metallische Karosserie. Dies erfordert z.B. eine flächige Beschichtung mit einer entsprechend hohen spezifischen Leitfähigkeit oder einer entsprechend hohe Dicke, wodurch gegebenenfalls die optische Transparenz unzulässig zurückgeht.
  • Soll gleichzeitig diese Struktur 4 auch die Funktion einer Scheibenheizung übernehmen, sind weitergehende Anforderungen bezüglich der ohmschen Leitfähigkeit für Gleichstrom zu erfüllen. Der Auswahl einer geeigneten Beschichtungstyp kommt daher eine wichtige Rolle bei erfindungsgemäßen Antennenanordnungen speziell bei zu Außenantennen 1 mit großen Fußpunktsströmen zu. Da heute jedoch Beschichtungen mit sehr unterschiedlichen elektrischen Eigenschaften verfügbar sind, ergibt sich daraus keine Einschränkung der Anwendbarkeit erfindungsgemäßer Antennenanordnungen.
  • Im Falle aufgedruckter Leiterstrukturen kann über die Abstände der Leiter untereinander der Oberflächenwiderstand verändert werden. Darüberhinaus kann z.B. durch eine galvanisch aufgebrachte sehr dünne Schicht der Oberflächenwiderstand für die Frequenzen des Funkdienstes sogar in weiten Grenzen unabhängig vom Widerstand für Gleichstrom (Heizfeld) eingestellt werden, da die Eindringtiefe bei hohen Frequenzen äußerst gering ist, während bei Gleichstrom der gesamte Querschnitt stromerfüllt ist.
  • Bei anderen Antennentypen ergibt sich bezüglich der Anforderungen an die Oberflächenimpedanz der Struktur 4 eine andere Situation. Derartige Antennenformen sind gekennzeichnet durch einen geringen Strom im Antennenfußpunkt mit der Folge auch geringer Ströme auf einer benachbarten Grundfläche oder Struktur 4. Daraus resultiert dann als besonderer Vorteil keine über die aus der Aufgabe der Erfindung hinausgehende Forderung nach Niederohmigkeit gegenüber 377 Ohm.
  • Derartige Antennenformen sind z.B. unten gespeiste Lambda/2-Dipole, die allerdings nur aufwendig an Koaxialkabel üblichen Wellenwiderstand angepaßt werden können. Besonders vorteilhaft für erfindungsgemäße Antennenanordnungen ist die Verwendung von durch den Fußpunkt hindurch koaxial gespeisten Antennen nach DE 40 07 824 A1 (Fig. 9), die sich vorzüglich für Klebeantennen eignen.
  • Wegen der typischen Feldkonfiguration mit Feldlinien, die sich im wesentlichen zwischen den Dipolhälften schließen, ergeben sich nur sehr geringe Rückströme auf der Struktur 4. Diese muß daher nicht die Funktion eines Gegengewichts übernehmen, so daß auch keine nennenswerten Verluste in der Struktur 4 auftreten, wenn die Struktur die erfindungsgemäße Aufgabe der Verhinderung der Einkopplung von elektrischer Energie von der Funkantenne in der Fahrgastraum erfüllt. Die geringen Ströme auf der Struktur 4 resultieren aus vergleichsweise wenigen Feldlinien, die auf der Struktur 4 auftreffen. Daher ist bei diesem Antennentyp die Belastung des Fahrgastraums mit elektrischer Energie grundsätzlich bereits vergleichsweise gering. Das erforderliche Ausmaß der Reduktion der Felder im Fahrgastraum ist demzufolge ebenfalls geringer als bei Antennen mit großen Speiseströmen im Fußpunkt. Der Anteil der Fläche der Scheibe 2, der mit der Struktur 4 versehen werden muß, um eine Gefährdung der Insassen ausschließen zu können, ist daher ebenfalls geringer als bei Außenantennen mit großen Fußpunktsströmen.
  • In modernen Fahrzeugen werden vermehrt Scheibenantennen für den Rundfunkempfang eingesetzt. Diese Antennen verwenden teils das Heizfeld, teils auch separate Strukturen 34 als Antennenelemente. Erfindungsgemäße Antennenanordnungen können vorteilhaft mit den bekannten Antennenstrukturen 34 für Rundfunkempfang kombiniert werden. Ein Beispiel dafür zeigt Fig. 11. Die Struktur 4 ist in diesem Beispiel aus mehreren Bereichen ausgebildet. Der Bereich 4a, der sich in der unmittelbaren Umgebung des Antennenfußpunktes 10 erstreckt, ist z.B. niederohmig über die Kleberraupe mit der Karosserie 3 an der oberen Berandung der Struktur 4a verbunden. Das Heizfeld 20 ist auf Grund der niederohmigen Verbindung im Bereich der Sammelschienen ein Bestandteil der Struktur 4, nämlich der Bereich 4b. Die Strukturen 34 dienen in bekannter Weise als Antennenelemente für den Rundfunkempfang, z.B. besonders vorteilhaft in der ausführungsform einer aktiven Antenne. Zum Bestandteil der Struktur 4 werden die Antennenstrukturen 34, indem sie niederohmig über für die Frequenzen des Funkdienstes kompensierte Drahtbrücken, die dadurch den Charakter von Serienresonanzkreisen mit einer Ersatzinduktivität 28 und einer in Serie geschalteten Kapazität 12 aufweisen, mit der Karosserie verbunden sind. Wegen des nur sehr kleinen Wertes der Kapazität 12 ergibt sich für tiefere Frequenzen, z.B. des LMK- und UKW-Rundfünkbereichs dann nur eine vernachlässigbare kapazitive Belastung der Strukturen 34, wodurch die Leistungsfähigkeit der Rundfunkempfangsantenne nicht unzulässig beeinträchtigt ist.

Claims (20)

  1. Antennenanordnung für Kraftfahrzeuge, bestehend aus einer Funk-Außenantenne (1) zur Abstrahlung elektromagnetischer Signale und einer Fahrzeugscheibe (2) in einer metallischen Karosserie (3), wobei die Funk-Außenantenne (1) in der Nähe der durch die Fahrzeugscheibe (2) gebildeten Scheibenöffnung des Fahrzeugs auf der Karosserie oder auf der Fahrzeugscheibe (2) angebracht ist,
    dadurch gekennzeichnet, daß
    auf die Fahrzeugscheibe (2) zumindest in Teilbereichen derselben und in der Nähe der Funk-Außenantenne (1) eine optisch weitgehend transparente, jedoch für Funkwellen im Frequenzbereich des Funkdienstes im Hinblick auf die durch die Scheibenöffnung hindurch tretende elektromagnetische Strahlung weitgehend undurchlässige flächige Struktur (4) aus leitendem Material mit niedrigem Oberflächenwiderstand im Frequenzbereich des Funkdienstes aufgebracht ist und diese flächige Struktur (4) für den Frequenzbereich des Funkdienstes zumindest auf einer Seite der Berandung der flächigen Struktur (4), niederohmig mit der metallischen Karosserie (3) verbunden ist und die Abmessungen der flächigen Struktur (4) derart gewählt sind, daß die von der Außenantenne (1) erzeugte elektromagnetische Strahlung im Fahrzeuginneren ausreichend abgeschirmt ist.
  2. Antennenanordnung nach Anspruch 1,
    dadurch gekennzeichnet, daß
    die Horizontalabmessung (27) der Struktur (4) mindestens die Hälfte der mittleren Betriebswellenlänge des Funkdienstes, jedoch nicht weniger als 10 cm, und die Vertikalabmessung (35) der Struktur (4) mindestens ein Viertel der mittleren Betriebswellenlänge des Funkdienstes, jedoch ebenfalls nicht weniger als 10 cm, beträgt.
  3. Antennenanordnung nach einem der Ansprüche 1 und 2,
    dadurch gekennzeichnet, daß
    die Außenantenne (1) auf der Fahrzeugscheibe (2) als Klebeantenne angebracht ist und der Montagepunkt (10) der Klebeantenne im Inneren des von der Struktur (4) bedeckten Bereichs liegt.
  4. Antennenanordnung nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet, daß
    die Struktur (4) als flächige Beschichtung (5) ausgeführt ist.
  5. Antennenanordnung nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet, daß
    die Struktur (4) als Anordnung (6) von zueinander parallel geführten oder aus Gitterstrukturen bestehenden aufgedruckten oder zwischen Glasscheiben eingelegten drahtförmigen Leitern (7) ausgeführt ist.
  6. Antennenanordnung nach Anspruch 5,
    dadurch gekennzeichnet, daß
    die Abstände der drahtförmigen Leiter (7) in der Nähe des Antennenfußpunktes 10 untereinander geringer sind als 1/10 der mittleren Freiraumwellenlänge des Funkdienstes.
  7. Antennenanordnung nach einem der Ansprüche 1 bis 6,
    dadurch gekennzeichnet, daß
    die niederohmige Verbindung für den Frequenzbereich des Funkdienstes zwischen der Struktur (4) und der metallischen Karosserie (3) über den Scheibenkleber erfolgt.
  8. Antennenanordnung nach einem der Ansprüche 1 bis 6,
    dadurch gekennzeichnet, daß
    die niederohmige Verbindung für den Frequenzbereich des Funkdienstes zwischen der Struktur (4) und der metallischen Karosserie (3) elektrisch den Charakter eines Serienresonanzkreises aufweist mit einer Resonanzfrequenz, die etwa der Mittenfrequenz des Funkdienstes entspricht.
  9. Antennenanordnung nach Anspruch 8
    dadurch gekennzeichnet, daß
    der Charakter des Serienresonanzkreises sich ergibt durch eine induktiv wirkende Drahtverbindung (11) und einen dazu in Serie geschalteten Kondensator (12) mit einem entsprechend gewählten Wert, und diese Verbindung zwischen einem Anschlußpunkt (13) auf der Scheibe und einem Anschlußpunkt (14) auf der Karosserie elektrisch wirksam ist und der Anschlußpunkt (13) der Drahtverbindung auf der Struktur (4) in der Nähe des Montagepunktes der Außenantenne (1) am Rand der Struktur (4) gegenüber der Karosserie (3) und der Anschlußpunkt (14) in geringem Abstand zum Anschlußpunkt (13) gegenüber auf der Karosserie (3) angeordnet ist.
  10. Antennenanordnung nach Anspruch 8
    dadurch gekennzeichnet, daß
    der Charakter des Serienresonanzkreises sich ergibt über eine Leitungstransformation zwischen der oberen Berandung der Struktur (4) und der gegenüberliegenden Kante der Karosserie (3) derart, daß sich zwischen einem gedachten Anschlußpunkt (13) am Rand der Struktur (4) in der Nähe des Montagepunktes (10) der Klebeantenne (1) gegenüber der in geringem Abstand gegenüber liegenden Karosserie (3) die niederohmige Verbindung mit der metallischen Karosserie (3) ergibt und daß die horizontalen Abmessungen der Struktur entsprechend gewählt sind.
  11. Antennenanordnung nach einem der Ansprüche 1 bis 10,
    dadurch gekennzeichnet, daß
    die Struktur (4) auf der gesamten Scheibenoberfläche, mit Ausnahme des Bereichs der Signaleinkopplung der Antenne, angebracht ist und sich damit an allen vier Berandungen bis an den Rand der Scheibenöffnung erstreckt.
  12. Antennenanordnung nach einem der Ansprüche 1 bis 10,
    dadurch gekennzeichnet, daß
    die Struktur (4) nur in Teilbereichen (9) der Scheibenoberfläche angebracht ist, und die Struktur (4) sich an drei Berandungen bis an den Rand der Scheibenöffnung erstreckt.
  13. Antennenanordnung nach einem der Ansprüche 1 bis 10,
    dadurch gekennzeichnet, daß
    die Struktur (4) nur in Teilbereichen der Scheibenoberfläche angebracht ist, und die Struktur (4) sich nur an einer Berandung bis an den Rand der Scheibenöffnung erstreckt.
  14. Antennenanordnung nach einem der Ansprüche 1 bis 13,
    dadurch gekennzeichnet, daß
    die Außenantenne (1) ein Antennentyp mit hohen Fußpunktströmen und daher hohen Rückströmen zum Antennenfußpunkt (10) ist.
  15. Antennenanordnung nach einem der Ansprüche 1 bis 13,
    dadurch gekennzeichnet, daß
    die Außenantenne (1) ein Antennentyp mit geringen Rückströmen zum Antennenfußpunkt (10) ist.
  16. Antennenanordnung nach Anspruch 15,
    dadurch gekennzeichnet, daß
    die Außenantenne (1) eine Klebeantenne ist und die Signaleinkopplung für diese Klebeantenne (1) kapazitiv durch die Scheibe hindurch erfolgt.
  17. Antennenanordnung nach einem der Ansprüche 1 bis 16 mit Ausnahme von 13,
    dadurch gekennzeichnet, daß
    die Struktur (4) aus zwei Teilbereichen (4a) und (4b) besteht und der Teil (4b) gleichzeitig als Heizfeld (20) zur Beheizung dieses Teils der Scheibe (20) verwendet ist.
  18. Antennenanordnung nach einem der Ansprüche 1 bis 17,
    dadurch gekennzeichnet, daß
    andere Fahrzeugscheiben in der Nähe der Außenantenne ebenfalls mit einer Struktur (4) versehen sind.
  19. Antennenanordnung nach einem der Ansprüche 1 bis 17,
    dadurch gekennzeichnet, daß
    auf der Fahrzeugscheibe auch Antennenstrukturen (34) für den Empfang von Rundfunksignalen vorhanden sind.
  20. Antennenanordnung nach Anspruch 19,
    dadurch gekennzeichnet, daß
    die Antennenstrukturen (34) Bestandteile der Struktur (4) sind.
EP93908820A 1992-05-18 1993-04-27 Funkantennenanordnung in der nähe von fahrzeug-fensterscheiben Expired - Lifetime EP0594809B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4216377 1992-05-18
DE4216377A DE4216377A1 (de) 1992-05-18 1992-05-18 Funkantennenanordnung in der Nähe von Fahrzeugfensterscheiben
PCT/DE1993/000369 WO1993023890A1 (de) 1992-05-18 1993-04-27 Funkantennenanordnung in der nähe von fahrzeug-fensterscheiben

Publications (2)

Publication Number Publication Date
EP0594809A1 EP0594809A1 (de) 1994-05-04
EP0594809B1 true EP0594809B1 (de) 1997-07-09

Family

ID=6459145

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93908820A Expired - Lifetime EP0594809B1 (de) 1992-05-18 1993-04-27 Funkantennenanordnung in der nähe von fahrzeug-fensterscheiben

Country Status (6)

Country Link
US (1) US5589839A (de)
EP (1) EP0594809B1 (de)
JP (1) JP3342487B2 (de)
DE (2) DE4216377A1 (de)
ES (1) ES2105245T3 (de)
WO (1) WO1993023890A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7193572B2 (en) 2002-05-16 2007-03-20 Kathrein-Werke Kg Roof antenna for motor vehicles

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4318869C2 (de) * 1993-06-07 1997-01-16 Lindenmeier Heinz Funkantennen-Anordnung auf der Fensterscheibe eines Kraftfahrzeugs und Verfahren zur Ermittlung ihrer Beschaltung
DE4339162A1 (de) * 1993-11-16 1995-05-18 Lindenmeier Heinz Funkantennenanordnung für den Dezimeterwellenbereich auf einem Kraftfahrzeug
DE4410542B4 (de) * 1994-03-26 2004-07-22 Fuba Automotive Gmbh & Co. Kg Anordnung für den Betrieb von Funkgeräten
DE4420121A1 (de) * 1994-06-09 1995-12-14 Klaus Kuschmierski Funkgerät, insbesondere tragbares Funktelefon, und Vorrichtung zur Abschirmung eines Funkgeräts
GB2290417A (en) * 1994-06-14 1995-12-20 Pilkington Plc Antenna assembly
DE4443596B4 (de) * 1994-12-07 2004-12-16 Heinz Prof. Dr.-Ing. Lindenmeier Funkantenne auf der Fensterscheibe eines Kraftfahrzeugs
DE19503892C1 (de) * 1995-02-07 1996-10-24 Sekurit Saint Gobain Deutsch Mit einer elektrischen Leitschicht versehene Autoglasscheibe
SE9501982L (sv) * 1995-05-30 1996-12-01 Allgon Ab Antenn på glasruta
DE19740254A1 (de) * 1996-10-16 1998-04-23 Lindenmeier Heinz Funkantennen-Anordnung und Patchantenne auf der Fensterscheibe eines Kraftfahrzeuges
DE19730173A1 (de) 1997-07-15 1999-01-21 Fuba Automotive Gmbh Kraftfahrzeug-Karosserie aus Kunststoff mit Antennen
DE10040307A1 (de) * 2000-08-14 2002-03-07 Comsys Comm Systems Service Gm Passiver Repeater für Mobilfunkanwendungen
JP2002204112A (ja) * 2000-12-28 2002-07-19 Asahi Glass Co Ltd 車両用アンテナ装置
US6933891B2 (en) * 2002-01-29 2005-08-23 Calamp Corp. High-efficiency transparent microwave antennas
DE10340022A1 (de) * 2003-08-28 2005-03-24 Webasto Ag Fahrzeugdach
GB0406094D0 (en) * 2004-03-17 2004-04-21 Koninkl Philips Electronics Nv Making time-of-flight measurements in master/slave and ad hoc networks by evesdropping on messages
DE102006039357B4 (de) * 2005-09-12 2018-06-28 Heinz Lindenmeier Antennendiversityanlage zum Funkempfang für Fahrzeuge
DE102007017478A1 (de) * 2007-04-13 2008-10-16 Lindenmeier, Heinz, Prof. Dr. Ing. Empfangsanlage mit einer Schaltungsanordnung zur Unterdrückung von Umschaltstörungen bei Antennendiversity
EP2037593A3 (de) * 2007-07-10 2016-10-12 Delphi Delco Electronics Europe GmbH Antennendiversityanlage für den relativ breitbandigen Funkempfang in Fahrzeugen
DE102007039914A1 (de) * 2007-08-01 2009-02-05 Lindenmeier, Heinz, Prof. Dr. Ing. Antennendiversityanlage mit zwei Antennen für den Funkempfang in Fahrzeugen
DE102008003532A1 (de) * 2007-09-06 2009-03-12 Lindenmeier, Heinz, Prof. Dr. Ing. Antenne für den Satellitenempfang
FR2931589B1 (fr) * 2008-05-26 2010-05-28 Airbus France Antenne pour aeronef.
DE102008039125A1 (de) 2008-08-21 2010-03-04 Kathrein-Werke Kg Strahlformungseinrichtung für Außen- und/oder Dachantennen an Fahrzeugen sowie zugehörige Antenne
US7868835B2 (en) 2008-09-02 2011-01-11 Kathrein-Werke Kg Beam shaping means for external and/or roof antennas on vehicles, and associated antenna
PT2209221T (pt) * 2009-01-19 2018-12-27 Fuba Automotive Electronics Gmbh Sistema de recepção para a soma de sinais de antena em fase
US20100201584A1 (en) * 2009-02-09 2010-08-12 Gm Global Technology Operations, Inc. Method for automobile roof edge mounted antenna pattern control using a finite frequency selective surface
DE102009011542A1 (de) * 2009-03-03 2010-09-09 Heinz Prof. Dr.-Ing. Lindenmeier Antenne für den Empfang zirkular in einer Drehrichtung der Polarisation ausgestrahlter Satellitenfunksignale
DE102009023514A1 (de) * 2009-05-30 2010-12-02 Heinz Prof. Dr.-Ing. Lindenmeier Antenne für zirkulare Polarisation mit einer leitenden Grundfläche
EP2400591A1 (de) 2010-06-14 2011-12-28 Saint-Gobain Glass France Antennenaufbau mit verbessertem Signal/Rauschverhältnis
WO2012079040A1 (en) 2010-12-09 2012-06-14 Agc Automotive Americas R&D, Inc. Window assembly having a transparent layer with a slot for a transparent antenna element
DE102011100865A1 (de) * 2011-05-07 2012-11-08 Volkswagen Ag Kraftfahrzeug mit transparentem Dach und Sendeantenne
KR101962499B1 (ko) 2011-10-28 2019-03-26 코닝 인코포레이티드 적외선 반사도를 갖는 유리 제품 및 이의 제조방법
DE102012010694A1 (de) * 2012-05-30 2012-11-08 Daimler Ag Antennenanordnung für ein Fahrzeug und Fahrzeug mit zumindest einer solchen Antennenanordnung
DE102012111571A1 (de) * 2012-11-29 2014-06-05 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Antennenanordnung
US10547372B2 (en) 2014-11-07 2020-01-28 New York University System, device, and method for high-frequency millimeter-wave wireless communication using interface points
CN107531562B (zh) 2015-04-30 2021-05-28 康宁股份有限公司 具有离散的金属银层的导电制品及其制造方法
EP3450231B1 (de) * 2016-04-27 2023-03-29 Agc Inc. Fensterelement für fahrzeug oder gebäude
JP2019134287A (ja) * 2018-01-31 2019-08-08 株式会社ヨコオ アンテナシステム、車両及びスポイラー
CN114976574A (zh) * 2022-06-07 2022-08-30 福耀玻璃工业集团股份有限公司 一种车载玻璃及其制作方法以及智能网联汽车

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2160458C3 (de) * 1970-12-08 1980-04-10 Saint-Gobain Industries, Neuilly- Sur-Seine (Frankreich) Auf oder in einer Sichtscheibe angeordnete Antenne, insbesondere für Kraftfahrzeuge
USRE33743E (en) * 1985-03-06 1991-11-12 On-glass antenna
JPS63196106U (de) * 1987-01-20 1988-12-16
US4779098A (en) * 1987-01-22 1988-10-18 Blaese Herbert R Modified on-glass antenna with decoupling members
JP2555737B2 (ja) * 1988-09-01 1996-11-20 旭硝子株式会社 自動車用窓ガラス
DE68917549T2 (de) * 1988-09-01 1995-03-16 Asahi Glass Co Ltd Glas für Automobilscheibe.
JP2537390B2 (ja) * 1988-12-23 1996-09-25 原田工業株式会社 プレ―ンアンテナ
JPH04249407A (ja) * 1991-02-05 1992-09-04 Harada Ind Co Ltd 自動車用ガラスアンテナ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7193572B2 (en) 2002-05-16 2007-03-20 Kathrein-Werke Kg Roof antenna for motor vehicles

Also Published As

Publication number Publication date
EP0594809A1 (de) 1994-05-04
US5589839A (en) 1996-12-31
ES2105245T3 (es) 1997-10-16
JPH07500466A (ja) 1995-01-12
JP3342487B2 (ja) 2002-11-11
DE4216377A1 (de) 1993-11-25
DE59306872D1 (de) 1997-08-14
WO1993023890A1 (de) 1993-11-25

Similar Documents

Publication Publication Date Title
EP0594809B1 (de) Funkantennenanordnung in der nähe von fahrzeug-fensterscheiben
EP0760537B1 (de) Glasantenne für Fahrzeugscheibe
DE3721934C3 (de) Kraftfahrzeug-Glasfenster-Antenne
DE102017109746B4 (de) Flexible dualband-antenne mit segmentierter oberflächenbehandlung
EP0155647B1 (de) Antennenanordnung in der Heckscheibe eines Kraftfahrzeugs
DE3820229C1 (de)
DE69307365T2 (de) Transparente Scheibenantenne
DE10030489B4 (de) Kapazitives Erdungssystem für VHF- und UHF-Antennen
DE4318869C2 (de) Funkantennen-Anordnung auf der Fensterscheibe eines Kraftfahrzeugs und Verfahren zur Ermittlung ihrer Beschaltung
EP2580807B1 (de) Antennenanordnung mit verbessertem signal/rauschverhältnis
EP0396033A2 (de) Kraftfahrzeugscheibenantenne für Frequenzen oberhalb des Hochfrequenzbereiches
EP2784874B1 (de) Breitband-Monopolantenne für zwei durch eine Frequenzlücke getrennte Frequenzbänder im Dezimeterwellenbereich für Fahrzeuge
EP0557794A1 (de) In die Fensteröffnung einer metallischen Kraftfahrzeugkarosserie einzusetzende Antennenscheibe
DE60226050T2 (de) Doppelte auf-glas-schlitzantenne
WO1996031918A1 (de) Antennenanordnung auf einem fenster mit hoher wärmetransmissionsdämpfung
EP2572403B1 (de) Bandbreitenoptimierte antenne durch hybriden aufbau aus flächen- und linienstrahler
EP1179221A1 (de) Antenne mit wenigstens einem vertikalstrahler
EP0825666A2 (de) Fensterscheibenantenne mit einer transparenten leitfähigen Schicht
DE102020207749A1 (de) Heckklappe und heckscheibe
EP0679318B1 (de) Funkantennen-anordnung für den dezimeterwellenbereich auf einem kraftfahrzeug
DE69724920T2 (de) Scheibenantenne für ein Automobil
DE4443596B4 (de) Funkantenne auf der Fensterscheibe eines Kraftfahrzeugs
DE112020003539T5 (de) Glasvorrichtung für ein Fahrzeug
DE10314094A1 (de) Antennenscheibe
DE60007254T2 (de) Planare Antenne für Motorfahrzeuge

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940117

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FUBA AUTOMOTIVE GMBH

17Q First examination report despatched

Effective date: 19960105

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

REF Corresponds to:

Ref document number: 59306872

Country of ref document: DE

Date of ref document: 19970814

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO TORTA S.R.L.

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2105245

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19971107

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: FUBA AUTOMOTIVE GMBH

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: CJ

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20040406

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20040416

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040421

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050428

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050428

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050427

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20050428

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120427

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120503

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120424

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59306872

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20130430