EP0476084B1 - Kraftstoffeinspritzventil - Google Patents

Kraftstoffeinspritzventil Download PDF

Info

Publication number
EP0476084B1
EP0476084B1 EP91905794A EP91905794A EP0476084B1 EP 0476084 B1 EP0476084 B1 EP 0476084B1 EP 91905794 A EP91905794 A EP 91905794A EP 91905794 A EP91905794 A EP 91905794A EP 0476084 B1 EP0476084 B1 EP 0476084B1
Authority
EP
European Patent Office
Prior art keywords
valve
nozzle body
injection valve
voltage potential
annular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91905794A
Other languages
English (en)
French (fr)
Other versions
EP0476084A1 (de
Inventor
Günter Schirmer
Walter Lehr
Arnold Kelly
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0476084A1 publication Critical patent/EP0476084A1/de
Application granted granted Critical
Publication of EP0476084B1 publication Critical patent/EP0476084B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M53/00Fuel-injection apparatus characterised by having heating, cooling or thermally-insulating means
    • F02M53/04Injectors with heating, cooling, or thermally-insulating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/053Arrangements for supplying power, e.g. charging power
    • B05B5/0533Electrodes specially adapted therefor; Arrangements of electrodes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M27/00Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like
    • F02M27/04Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like by electric means, ionisation, polarisation or magnetism
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0635Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a plate-shaped or undulated armature not entering the winding
    • F02M51/0642Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a plate-shaped or undulated armature not entering the winding the armature having a valve attached thereto
    • F02M51/0653Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a plate-shaped or undulated armature not entering the winding the armature having a valve attached thereto the valve being an elongated body, e.g. a needle valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • F02M51/0671Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto
    • F02M51/0675Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto the valve body having cylindrical guiding or metering portions, e.g. with fuel passages
    • F02M51/0678Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto the valve body having cylindrical guiding or metering portions, e.g. with fuel passages all portions having fuel passages, e.g. flats, grooves, diameter reductions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M57/00Fuel-injectors combined or associated with other devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/08Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series the valves opening in direction of fuel flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/166Selection of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for

Definitions

  • the invention relates to a fuel injection valve for fuel injection systems of internal combustion engines of the type defined in the preamble of claim 1.
  • Such fuel injection valves also called fuel injection nozzles, are known for example from DE 35 40 660 A1 or DE 37 05 848 A1.
  • the valve member is actuated by an actuator, which generally consists of an electromagnet and a closing spring, which act on the valve member with opposing forces. Due to the duration of the excitation of the electromagnet, the amount of fuel injected by means of the fuel injection valve into an intake pipe or directly into the combustion chamber of the internal combustion engine can be metered with high precision. For a high utilization of the fuel is an optimal one Combustion is a prerequisite and this requires very good fuel atomization when injecting. One tries to achieve this by suitably designing the nozzle opening and high injection pressure.
  • an electrostatic atomization device for the electrostatic atomization of flowing media which has a housing through which the medium flows, in which two electrodes are arranged at a distance from one another, which are at a high voltage of, for example, 100 V to 30 kV .
  • At least one electrode is made of a material suitable for field emission of electrical charge carriers. Such a material has many fine tips and / or edges, so that on the one hand the strong electric fields necessary for field emission are generated on the one hand and on the other hand a sufficiently large current flows to achieve sufficient charging of the liquid even at high flow rates.
  • a suitable material reference is made to a eutectic mixture of uranium oxide and tungsten, with the tungsten being embedded in the uranium oxide in the form of fine fibers.
  • the second electrode is preferably made of platinum, nickel or stainless steel. Emitted charges are carried along by the medium conducted through the electrical field in the interelectrode space, and the medium is thereby electrically charged. This charging causes the medium to atomize after leaving the device. Areas of application of the electrostatic atomization device are indicated: burners for oil heaters, spray devices for insecticides in agriculture, spray devices for applying paints, oils, plastics to objects, injection devices for fuel in internal combustion engines.
  • the fuel injection valve according to the invention with the characterizing features of claim 1 has the advantage that an electrical charging and the metering of the fuel is carried out in the fuel injection valve itself. Due to the unipolar electrical charging of the fuel, it atomizes due to the forces acting between the charges. This electrostatic atomization can improve the atomization quality of the injection valve by causing a smaller droplet size and a narrow droplet size distribution.
  • the electrostatic atomization is independent of the design-related metering and atomizing function of the fuel injector.
  • the energy required for electrostatic atomization is low and is typically 50 to 100 mW. Due to the electrical charging of the droplets, the fuel spray automatically widens after leaving the nozzle opening.
  • the spray mist can be influenced by electrical and / or magnetic fields, so that the spray mist can be guided or its shape can be changed. Because of the mutual repulsion of the droplets of the same name, the drop coagulation is reduced. The charge on the burning droplets or fuel molecules has a positive effect on the combustion process. In addition, a reduction in soot development is to be expected, since the charged soot primary particles coagulate more poorly and thus burn better.
  • a DC voltage is preferably used as the high voltage for the electrodes, the negative potential advantageously being at the emitter electrode.
  • the use of AC voltage is possible, in which case both electrodes Can emit charge carriers.
  • the polarity and magnitude of the applied high voltage can be changed over time, the change compared to the duration of the injection cycle being carried out slowly or quickly or being synchronized with the injection cycle.
  • tips, edges, spheres, plates, rings, tori, coaxial ring electrodes or other geometric shapes come into question as electrode shapes.
  • the emitter electrode is arranged on the end face of the valve needle facing the nozzle opening .
  • the emitter electrode can be insulated and inserted coaxially into the valve needle in such a way that it protrudes from the end with a cone.
  • the high-voltage supply line to the emitter electrode takes place centrally through the valve needle, the electrical supply line being insulated from the valve needle.
  • the counter electrode is formed by the nozzle body, which is connected to a voltage potential that is positive relative to the emitter electrode, preferably to ground.
  • the emitter electrode can also be made from a ring attached to the end face of the valve needle suitable material are formed, the ring wall tapers towards the free end and ends in an annular ridge.
  • the counter electrode is formed by an annular surface surrounding the nozzle opening, which is connected to a positive high-voltage potential, while the valve needle is connected to a voltage potential that is negative relative to the counter electrode, preferably to ground.
  • This embodiment variant has the advantage that the high-voltage supply through the nozzle body is easier to implement than an adequately insulated high-voltage line to be inserted into the movable and typically narrow valve needle.
  • the emitter electrode is integrated in the insulated tip of the valve needle and projects from it with an annular surface.
  • the emitter electrode is connected to high voltage potential.
  • the nozzle body again serves as the counterelectrode, but here in particular a perforated plate inserted into the nozzle opening.
  • the electrical high-voltage lead to the emitter electrode is advantageously divided into two lead sections, one of which is connected to the emitter electrode and ends in the outer jacket of a sliding section of the valve needle, with which the valve needle can be displaced on the inner wall of the nozzle body is led.
  • the other lead section is due to the negative high voltage potential and ends in the inner wall of the nozzle body.
  • the two end points of the two line sections are positioned relative to one another in such a way that they contact one another when the valve needle is lifted off the valve seat and are separated from one another when the valve needle lies on the valve seat.
  • the valve needle is frustoconical on the end face and carries an insulating cylinder on its end frustoconical surface which projects through the nozzle opening.
  • the emitter electrode is designed as an annular surface on the insulating cylinder and is connected to a negative high-voltage potential via an electrical feed line which is insulated through the valve needle.
  • the counter electrode is formed by the nozzle body, which is connected to a voltage potential that is positive relative to the emitter electrode, preferably to ground. It is advantageous in this construction that the electrode spacing does not change during the movement of the valve needle and that the applied voltage does not have to be compensated for.
  • the annular exit surface of the emitter electrode allows the surface field strength of the emerging fuel to be controlled.
  • the exit or surface of the ring-shaped emitter electrode can advantageously be designed as a pointed ring edge.
  • the emitter electrode is formed by a region of the nozzle body which contains the nozzle opening and which consists of a region for Field emission of electrical charge carriers suitable material and is electrically isolated from the rest of the nozzle body. This area is due to the negative high-voltage potential, while the valve needle, which has a cone tip at its front end facing the nozzle opening, forms the counter electrode and is connected to ground potential.
  • the electrostatic injection valve has the advantage that all the components required for the electrical charging are structurally simply inserted into the injection valve.
  • the emitter electrode is arranged as an insulated ring surface in the valve chamber directly in front of the valve seat and is connected to high voltage potential.
  • the nozzle body and above all the valve needle serve as the counter electrode. Due to this design, the charging zone of the fuel lies in front of the valve seat. This is favorable because the electrodes are not exposed to the outside atmosphere and therefore do not become dirty. With this arrangement, a spark discharge cannot occur between the electrodes because no gas atmosphere can enter the interelectrode region.
  • the nozzle opening can be closed off by a non-metallic body, preferably a ceramic body, which has a blind hole coaxial with the nozzle opening and at least one fuel outlet bore which runs at an angle to the axis of the nozzle body and which opens into the blind hole.
  • a non-metallic body preferably a ceramic body, which has a blind hole coaxial with the nozzle opening and at least one fuel outlet bore which runs at an angle to the axis of the nozzle body and which opens into the blind hole.
  • a ceramic body prevents the electrical charges injected into the fuel from flowing out via the nozzle body before they exit the fuel injection valve.
  • the emitter electrode is in turn formed by an annular surface which is insulated on the nozzle body immediately in front of the valve seat.
  • the emitter electrode is preferably formed by an annular disk which is inserted into the nozzle body in an electrically insulated manner transversely to the axis of the nozzle body in such a way that its inner, preferably tapering ring edge protrudes slightly from the inner wall of the nozzle body or is flush with it.
  • the electrical high voltage is supplied via the nozzle body.
  • the absence of a dead volume is advantageous here. This is advantageous inasmuch as the amount of fuel in a dead volume can sometimes only leave the injection valve poorly or not atomized.
  • a pin-shaped extension is attached to the free end face of the valve member facing away from the valve seat and / or a coaxial ring electrode is placed insulated at the end of the nozzle body.
  • These electrodes in the outer space allow the generation of electric fields to influence the loaded fuel after leaving the fuel injection valve. For example, such an external electric field can prevent droplets from being drawn out of the spray mist back to the outside of the nozzle and adversely affecting the atomization process.
  • a possible extension pin can be insulated on the valve member and connected to a suitable electrical potential, which the Possibility of variation for the electrical fields in the outdoor area increased.
  • the fuel injector shown in detail in longitudinal section in FIG. 1 is essentially known, so that only the essential for the invention is shown here.
  • a fuel injection valve is shown and described as a top feed valve in DE 35 40 660 and as a side feed valve in DE 37 05 848 A1.
  • It generally has a valve housing made of ferromagnetic material, not shown here, which receives in its lower end a hollow metallic nozzle body designated by 10 in FIG. 1.
  • the nozzle body 10 encloses a fuel-filled valve chamber 11, which is connected via radial bores 12 to a fuel-filled housing space, which in turn is supplied with fuel via a connecting piece of the valve housing.
  • the nozzle body 10 is frustoconical and has a coaxial nozzle opening 13 in its free end face.
  • the inner wall of the frustoconical area is at a distance from the Nozzle opening 13, a valve seat 14 is formed which interacts with a valve closing surface 15 on a valve needle 16 for opening and closing the injection valve, sometimes also called an injection nozzle.
  • the valve needle 16 is guided in an axially displaceable manner in the valve chamber 11, for which purpose it has two larger-diameter sliding sections 17, 18 which rest on the inner wall of the nozzle body 10. As indicated in FIG. 1, the sliding sections 17, 18 are flattened, so that a fuel flow from the radial bores 12 to the valve seat 14 is possible.
  • the valve needle 16 is actuated by an electromagnet (not shown here) arranged in the upper part of the valve housing or, in the case of diesel injection pumps, by the pump pressure. By means of a closing spring, not shown here, the closing surface 15 of the valve needle 16 is pressed onto the valve seat 12 and the valve is closed.
  • the electromagnet For injection, the electromagnet is excited for a predetermined duration, the armature of which is connected to the valve needle 16. The armature is attracted and the valve needle 16 is lifted off the valve seat 12 against the closing spring. The injection valve is open for a predetermined injection period, and fuel exits through the nozzle opening 13.
  • two electrodes 21, 22 are integrated into the fuel injection valve and are connected to a high voltage supplied by a high voltage source 20.
  • At least one of the electrodes 21, 22, the so-called emitter electrode consists of one for field emission of electrical charge carriers suitable material, while the other electrode forms the counter electrode.
  • An example of such a material is a eutectic mixture of uranium oxide and tungsten, the tungsten being embedded in the uranium oxide in the form of fine fibers.
  • the material has enough fine tips or edges so that sufficiently high electric fields are generated on the material surface for field emission.
  • the two electrodes 21, 22 are arranged in such a way that, seen in the direction of flow of the fuel, an electric field passing through the fuel is formed directly in front of or behind the valve seat 14.
  • the electric field is generated behind the valve seat 14 in the space 19.
  • the emitter electrode 21 is arranged on the end face of the valve needle 16, which delimits the intermediate space 19 towards the nozzle opening 13.
  • the emitter electrode 21 is designed as a pin 23 which carries a conical tip 231 on the end face.
  • the pin 23 is inserted into the valve needle 16 in an insulated manner such that the cone tip 231 essentially protrudes and projects into the intermediate space 19.
  • the pin 23 is inserted in an insulating cylinder 24, which is inserted coaxially into a recess 25 made in the valve needle 16 from the end face.
  • the pin 23 is connected to an electrical connection line 26 which, surrounded by an insulating sleeve 27, is passed coaxially through the valve needle 16.
  • the emitter electrode 21 is connected to the negative high-voltage potential of the high-voltage source 20, while the nozzle body 10 must have a more positive potential and is connected to the ground potential of the high-voltage source 20.
  • the emitter electrode 21 is formed by an annular cylinder 28 attached to the end face of the valve needle 16, the annular wall of which tapers towards the free end and ends in an annular ridge 281.
  • the ring cylinder 28 is glued into an annular groove 29 on the end face of the valve needle 16.
  • the counter electrode 22 is formed by an annular surface 30 which surrounds the nozzle opening 13 and which is connected to the positive high-voltage potential of the high-voltage source 20.
  • this annular surface 30 is realized by an electrically conductive plate 31 which is inserted in the region of the nozzle opening 13 transversely to the axis of the nozzle body and carries a passage opening 32 which is congruent with the nozzle opening 13.
  • the bore wall in the plate 31 can be chamfered so that the annular surface 30 ends in an annular tip.
  • the plate 31 is connected to the positive high-voltage potential of the high-voltage source 20 and is electrically insulated from the nozzle body 10 by an insulating layer 33 that completely surrounds the plate 31.
  • the valve needle carrying the emitter electrode 21 16 is connected to the ground potential of the high voltage source 20.
  • the valve needle 16 has an insulating cone 34 on its front end delimiting the intermediate space 19, on which the emitter electrode 21 is designed as an annular surface 35.
  • the annular surface 35 is realized by means of a solid disc 36 which is inserted transversely to the valve needle axis in the insulating cone 34 in such a way that the disc edge forming the annular surface 35 protrudes slightly from the insulating cone 34.
  • the full disk 36 is connected to a first electrical feed line 37, which is partially passed through the valve needle 16 in an insulating sleeve 38 and ends in the outer jacket of the sliding section 17 of the valve needle 16.
  • a second electrical supply line 39 is connected to the negative high-voltage potential of the high-voltage source 20 and is guided by means of an insulating piece 40 through a radial bore 68 made in the nozzle body 10 in the region of the sliding section 17 of the valve needle 16.
  • the second feed line 39 ends flush with the inner wall of the nozzle body 10.
  • the mutually facing end surfaces 371 and 391 of the two feed lines 37, 39 are placed in such a way that they contact the valve needle 16 when the closing surface 15 is lifted off the valve seat 14, and on the valve seat 14 resting closing surface 15 are separated from each other. This ensures that the electrostatic field between the emitter electrode 21 and the counter electrode 22 is only present when the injection valve is open during the injection period.
  • a perforated plate 41 which is inserted into the nozzle opening 13 and is connected to the ground potential of the high-voltage source 20 via the nozzle body 10, serves as the counter electrode 22.
  • valve needle 16 is configured in the shape of a truncated cone at the end, the end of the truncated cone filling the entire interior of the nozzle body 10 up to the nozzle opening 13.
  • the closing surface 15 of the valve needle 16 is formed by part of the jacket of the truncated cone.
  • An insulating cylinder 42 is attached to the end of the truncated cone and protrudes through the nozzle opening 13 with play.
  • the emitter electrode 21 is formed as an annular surface 43 in the region of the nozzle opening 13 on the insulating cylinder 42, which is realized by a solid disc 44 which is inserted transversely to the valve needle axis in the insulating cylinder 42 in such a way that its disc circumference with the outer jacket forming the annular surface 43 of the insulating cylinder 42 is flush.
  • the disc 44 is connected to the negative high-voltage potential of the high-voltage source 20 via an electrical connecting line 45.
  • the connecting line 45 is surrounded by an insulating sleeve 46 and passed coaxially through the valve needle 16.
  • the nozzle body 10 forming the counter electrode 22 is connected to the ground potential of the high-voltage source.
  • the emitter electrode 21 is formed on the nozzle body 10 and the counter electrode 22 on the valve needle 16.
  • the area 47 of the nozzle body 10 containing the nozzle opening 13 is made of material suitable for field emission of electrical charge carriers and is electrically insulated from the rest of the nozzle body 10.
  • a lead lug 48, insulated from the nozzle body 10, leads to this area 47, via which the emitter electrode 21 is connected to the negative high-voltage potential of the high-voltage source 20.
  • the valve needle 16 carries the End 19 closing space 19 a small cone tip 49, which is arranged coaxially and extends to the nozzle opening 13 when the injection valve is closed.
  • the valve needle 16 forms the counter electrode 22 and is connected to the ground potential of the high voltage source 20 for this purpose.
  • the electric field is generated in front of the valve seat 14 in the valve chamber 11.
  • the emitter electrode 21 is arranged as an insulated annular surface 50 in the valve chamber 11, directly in front of the valve seat 14 in the fuel flow direction, and is connected to the negative or positive high voltage potential of the high voltage source.
  • an annular disk 51 is inserted into the nozzle body 10 in an electrically insulated manner transversely to the axis of the nozzle body in such a way that its inner ring edge forming the ring surface 50 protrudes slightly from the inner wall of the nozzle body 10 or is flush with it.
  • the inner ring edge of the ring disk 51 can be chamfered, so that the ring surface 50 tapers.
  • the annular disk 51 is connected to an electrical conductor 52 and is preferably connected via this to the negative high-voltage potential of a high-voltage source.
  • the electrical insulation of the washer 51 and conductor 52 is carried out by an insulating layer 53 which completely surrounds the washer 51 and the conductor 52.
  • the valve needle 16 is formed on the end face into a cone 54 which fills the entire lower space of the nozzle body 10 up to the nozzle opening 13 and, with the valve closed, protrudes with its tip through the nozzle opening 13.
  • the valve needle 16 forms the counter electrode 22 and is for this purpose connected to the ground potential of the high voltage source.
  • the nozzle opening 13 can be closed off by a non-metallic body, here a ceramic body 55, which is inserted at the end into the nozzle body 10 and carries a blind hole 55 which is caoxial to the nozzle opening 13. From the blind hole 55, one or more fuel outlet bores 57, 58 run outwards, which include an acute angle with the nozzle body axis and, depending on the application, also form a right angle.
  • the fuel injection valve which is shown in detail in FIG. 7 is an outward opening valve.
  • the valve opening 14 enclosed by the valve seat and the nozzle opening 13 are arranged directly next to one another, so that the space 19 present in the valves according to FIGS. 1-6 is eliminated, and thus also any dead volume.
  • the valve member is formed by a truncated cone 59 which is fastened on an actuating rod 60 which is connected to the armature of the electromagnet and which projects through the valve opening.
  • the closing surface 15 is formed by part of the cone shell.
  • the valve seat 14 is formed on the side of the valve opening on the nozzle body 10 facing away from the valve chamber 11.
  • the valve seat 14 is formed on the insulating layer 53, but can also be arranged on the nozzle body 10 itself.
  • the truncated cone 59 and the actuating rod 60 form the counter electrode 22 to the emitter electrode 21 on the nozzle body 10 and are connected to the ground potential of the high voltage source.
  • a ring electrode 61 is insulated and arranged coaxially with the nozzle opening 13.
  • the truncated cone 59 carries a coaxial pin 62 on its outer truncated cone surface.
  • the ring electrode 61 has a potential that lies between the the emitter electrode 21 and the counter electrode 22.
  • the pin 62 is electrically conductively connected to the truncated cone 59.
  • These electrodes formed by ring electrode 61 and pin 62, generate an electric field in the exterior, by means of which the fuel charged with charge carriers can be influenced and controlled after leaving nozzle opening 13.
  • the pin 62 can also be insulated from the truncated cone 59 and be provided with a suitable electrical potential, which increases the possibility of variation for the generation of electrical fields in the exterior.
  • the valve needle 16 as in FIG. 7, is formed on the end face into a cone 63 which, seen from the valve chamber 11, lies beyond the valve seat 14 and projects into the intermediate space 19, which is formed by a blind hole 64 and has a connection to the outside via the fuel outlet bores 65 forming the nozzle opening 13.
  • Emitter material is introduced into the cone 63 or the cone is made entirely of it and forms the emitter electrode 21.
  • the valve needle 16 is flushed with fuel in the lower region of the valve chamber 11 upstream of the valve seat 14 and in the upper region of the valve chamber 11 a sliding portion 66 guided axially.
  • An insulating layer 67 is applied to the sliding section 66 or on the inner wall of the valve chamber 11 in the region of the displacement path of the sliding section 66.
  • the valve needle 16 is connected to a high voltage potential, while the nozzle body 10 is connected to ground as a counter electrode 22. As long as the valve needle 16 rests on the valve seat 14, there is electrical contact between the emitter electrode 21 and the counter electrode 22. As soon as the valve needle 16 lifts off the valve seat 14, the contact is interrupted and a voltage is built up.
  • This training of Fuel injection valve is structurally simple and particularly suitable for valves with very thin valve needles.
  • a DC voltage source is used as the high voltage source.
  • the use of an AC voltage source is also possible, although both electrodes are advantageously made of a material suitable for field emission of electrical charge carriers, that is, both electrodes emit charge carriers.
  • the magnitude of the applied high voltage can be changed over time, the change compared to the duration of the injection cycle being slow or fast or also synchronized with the injection cycle. This makes it possible to adapt to changing electrode distances when opening and closing the injection valve, the electrical charging process of the fuel can be controlled and a change in the atomization during the injection process can be achieved in terms of space and time. The droplet size and the spray spread can thus be adjusted in a controlled manner.
  • the parts intended for electrical insulation e.g. Insulating cylinders 24 and 42, insulating layers 33 and 53, insulating sleeves 38 and 46, insulating cones 34 and insulating piece 40 can consist of all suitable materials, such as plastic (eg FIG. 1), rubber, glass, ceramics (eg FIG. 6), etc.
  • the hatching These electrically insulating parts can thus only be seen as an example of a reference to a specific insulating material, but which can be replaced by any other insulating material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Ein Kraftstoffeinspritzventil für Kraftstoffeinspritzanlagen von Brennkraftmaschinen weist einen hohlen Düsenkörper (10) mit einer kraftstoffgefüllten Ventilkammer (11) und einer Düsenöffnung (13) für den Kraftstoffaustritt auf. Im Innern des Düsenkörpers (10) ist ein Ventilsitz (14) ausgebildet, der mit einem Ventilglied (16) zusammenwirkt. Zur Erzielung einer hochgradigen Zerstäubung bzw. Aufladung des aus der Düsenöffnung (13) austretenden Kraftstoffs sind zwei an einer Hochspannung liegende Elektroden (21, 22) vorgesehen, von denen mindestens eine aus einem für Feldemission von elektrischen Ladungsträgern geeignetem Material besteht. Die eine Elektrode (21 bzw. 22) ist an dem Ventilglied (16) und die andere Elektrode (21 bzw. 22) an dem Düsenkörper (10) so angeordnet, daß unmittelbar vor oder hinter dem Ventilsitz (14) ein den Kraftstofffluß durchsetzendes elektrisches Feld ausgebildet ist.

Description

    Stand der Technik
  • Die Erfindung geht aus von einem Kraftstoffeinspritzventil für Kraftstoffeinspritzanlagen von Brennkraftmaschinen der im Oberbegriff des Anspruchs 1 definierten Gattung.
  • Solche Kraftstoffeinspritzventile, auch Kraftstoffeinspritzdüsen genannt, sind beispielsweise aus der DE 35 40 660 A1 oder DE 37 05 848 A1 bekannt. Die Betätigung des Ventilglieds erfolgt durch einen Aktuator, der im allgemeinen aus einem Elektromagneten und einer Schließfeder besteht, die mit einander entgegengesetzten Kräften auf das Ventilglied einwirken. Durch die Dauer der Erregung des Elektromagneten kann die mittels des Kraftstoffeinspritzventils in ein Ansaugrohr oder unmittelbar in die Brennkammer der Brennkraftmaschine eingespritzte Kraftstoffmenge hochgenau dosiert werden. Für eine hohe Ausnutzung des Kraftstoffs ist eine optimale Verbrennung Voraussetzung und hierfür ist wiederum eine sehr gute Kraftstoffzerstäubung beim Einspritzen erforderlich. Eine solche versucht man durch geeignete Ausbildung der Düsenöffnung und hohen Einspritzdruck zu erreichen.
  • Aus der DE 28 50 116 A1 ist eine elektrostatische Zerstäubungsvorrichtung zur elektrostatischen Zerstäubung von fließenden Medien bekannt, die ein von dem Medium durchflossenes Gehäuse aufweist, in welchem zwei Elektroden im Abstand voneinander angeordnet sind, die an einer Hochspannung von beispielsweise 100 V bis 30 kV liegen. Mindestens eine Elektrode ist aus einem für Feldemission von elektrischen Ladungsträgern geeigneten Material hergestellt. Ein solches Material hat viele feine Spitzen und/oder Kanten, so daß zum einen an der Elektrodenoberfläche die zur Feldemission notwendigen starken elektrischen Felder erzeugt werden und zum andern ein ausreichend großer Strom fließt, um auch bei hohen Fließraten eine ausreichende Aufladung der Flüssigkeit zu erzielen. Als Beispiel für ein geeignetes Material wird auf ein eutektisches Gemisch aus Uranoxid und Wolfram hingewiesen, wobei hier das Wolfram in Form feiner Fasern in das Uranoxid eingelagert ist. Die zweite Elektrode wird bevorzugt aus Platin, Nickel oder rostfreiem Stahl hergestellt. Von dem durch das elektrische Feld im Zwischenelektrodenraum geführten Medium werden emittierte Ladungen mitgenommen, und das Medium wird dadurch elektrisch aufgeladen. Diese Aufladung bewirkt, daß nach Verlassen der Vorrichtung das Medium zerstäubt. Als Anwendungsgebiete der elektrostatischen Zerstäubungsvorrichtung werden angegeben: Brenner für Ölheizungen, Spritzeinrichtungen für Insektizide in der Landwirtschaft, Sprüheinrichtungen zum Auftragen von Farben, Ölen, Kunststoffen auf Gegenstände, Injektionseinrichtungen für Kraftstoff in Verbrennungsmotoren.
  • Vorteile der Erfindung
  • Das erfindungsgemäße Kraftstoffeinspritzventil mit den kennzeichnenden Merkmalen des Anspruchs 1 hat den Vorteil, daß eine elektrische Aufladung und die Zumessung des Kraftstoffs im Kraftstoffeinspritzventil selbst durchgeführt wird. Durch die unipolare elektrische Aufladung des Kraftstoffs zerstäubt dieser aufgrund der zwischen den Ladungen wirkenden Kräfte. Diese elektrostatische Zerstäubung kann die Zerstäubungsqualität des Einspritzventils verbessern, indem eine geringere Tröpfchengröße und eine schmale Tropfengrößenverteilung bewirkt werden. Die elektrostatische Zerstäubung ist unabhängig von der konstruktiv bedingten Zumeß- und Zerstäubungsfunktion des Kraftstoffeinspritzventils. Der für die elektrostatische Zerstäubung erforderliche Energieaufwand ist gering und liegt typischerweise bei 50 bis 100 mW. Aufgrund der elektrischen Aufladung der Tröpfchen weitet sich der Kraftstoffsprühnebel nach Verlassen der Düsenöffnung selbsttätig auf. Der Sprühnebel läßt sich durch elektrische und/oder magnetische Felder beeinflußen, so daß der Sprühnebel geführt bzw. in seiner Gestalt verändert werden kann. Wegen der gegenseitigen Abstoßung der gleichnamig geladenen Tröpfchen wird die Tropfenkoagulation vermindert. Die Ladung auf den verbrennenden Tröpfchen bzw. Kraftstoffmolekülen beeinflußt den Verbrennungsablauf positiv. Daneben ist eine Verringerung der Rußentwicklung zu erwarten, da die geladenen Rußprimärpartikel schlechter koagulieren und somit besser verbrennen.
  • Als Hochspannung für die Elektroden wird bevorzugt eine Gleichspannung verwendet, wobei vorteilhaft das negative Potential an der Emitter-Elektrode liegt. Die Verwendung von Wechselspannung ist möglich, wobei dann beide Elektroden Ladungsträger emittieren können. Die angelegte Hochspannung kann nach Polarität und Betrag zeitlich verändert werden, wobei die Veränderung im Vergleich zur Dauer des Einspritzzyklus langsam oder schnell vorgenommen oder mit dem Einspritzzyklus synchronisiert werden kann. Als Elektrodenformen kommen grundsätzlich Spitzen, Kanten, Kugeln, Platten, Ringe, Tori, koaxiale Ringelektroden oder andere geometrische Formen in Frage.
  • Durch die in den weiteren Ansprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im Anspruch 1 angegebenen Kraftstoffeinspritzventils möglich.
  • Durch das Vorsehen einer auf Spannung liegenden dritten Elektrode in Fließrichtung des Kraftstoffs gesehen nach der Düsenöffnung kann im Außenraum ein elektrische Feld geformt und damit der Kraftstoffsprühnebel beeinflußt werden.
  • In einer bevorzugten Ausführungsform der Erfindung, bei welcher das Ventilglied als eine in der Ventilkammer axial geführte Ventilnadel ausgebildet ist, die endseitig eine mit dem der Düsenöffnung vorgelagerten Ventilsitz zusammenwirkende ringförmige Schließfläche trägt, ist die Emitter-Elektrode an der der Düsenöffnung zugekehrten Stirnseite der Ventilnadel angeordnet. Dabei kann einmal die Emitter-Elektrode isoliert in die Ventilnadel koaxial so eingesetzt werden, daß sie mit einem Kegel stirnseitig aus dieser vorsteht. Die Hochspannungszuleitung zu der Emitter-Elektrode erfolgt zentral durch die Ventilnadel hindurch, wobei die elektrische Zuleitung gegenüber der Ventilnadel isoliert ist. Die Gegenelektrode wird von dem Düsenkörper gebildet, der an einem relativ zur Emitter-Elektrode positiven Spannungspotential, vorzugsweise an Masse, liegt. Andererseits kann die Emitter-Elektrode auch von einem an der Stirnseite der Ventilnadel befestigten Ring aus geeignetem Material gebildet werden, dessen Ringwand sich zum freien Ende hin verjüngt und in einen ringförmigen Grat ausläuft. In diesem Fall ist die Gegenelektrode von einer die Düsenöffnung umgebenden Ringfläche gebildet, die an einem positiven Hochspannungspotential liegt, während die Ventilnadel an einem relativ zur Gegenelektrode negativen Spannungspotential, vorzugsweise an Masse, angeschlossen ist. Diese Ausführungsvariante hat den Vorteil, daß die Hochspannungszuführung durch den Düsenkörper einfacher zu realisieren ist als eine in die bewegliche und typischerweise schmale Ventilnadel einzufügende, ausreichend zu isolierende Hochspannungsleitung.
  • Bei einer weiteren Ausführungsform der Erfindung ist die Emitter-Elektrode in die isoliert ausgebildete Spitze der Ventilnadel integriert und steht mit einer Ringfläche aus dieser vor. Die Emitter-Elektrode ist an Hochspannungspotential gelegt. Als Gegenelektrode dient wiederum der Düsenkörper, hier aber insbesondere eine in die Düsenöffnung eingesetzte Lochplatte. Dies hat den Vorteil, daß bei vorgegebener Düsenquerschnittsfläche der Durchmesser der einzelnen austretenden Kraftstoffäden durch die Düsenöffnungen variiert werden kann. Damit kann die elektrische Feldstärke an der Außenseite der austretenden Kraftstoffäden gesteuert werden, was vorteilhaft ist, da bei zu hohen Feldstärken Koronaentladungen an der Kraftstoffoberfläche auftreten, die den Ladezustand des Kraftstoffs erniedrigen und die Zerstäubungsqualität herabsetzen.
  • Die elektrische Hochspannungszuleitung zu der Emitter-Elektrode ist vorteilhaft in zwei Zuleitungsabschnitte unterteilt, von denen der eine an der Emitter-Elektrode angeschlossen ist und in dem Außenmantel eines Gleitabschnittes der Ventilnadel endet, mit welchem die Ventilnadel an der Innenwand des Düsenkörpers verschieblich geführt ist. Der andere Zuleitungsabschnitt liegt an dem negativen Hochspannungspotential und endet in der Innenwand des Düsenkörpers. Die beiden Endungsstellen der beiden Leitungsabschnitte sind relativ zueinander so gelegt, daß sie bei vom Ventilsitz abgehobener Ventilnadel sich kontaktieren und bei auf dem Ventilsitz aufliegender Ventilnadel voneinander getrennt sind. Durch diese Art der Hochspannungszuführung liegt die Emitter-Elektrode nur bei abgehobener Ventilnadel, also nur während des Einspritzvorgangs, an Spannung und emittiert Ladungen.
  • Bei einer weiteren Ausführungsform der Erfindung ist die Ventilnadel stirnseitig kegelstumpfförmig ausgebildet und trägt auf ihrer endseitigen Kegelstumpffläche einen Isolierzylinder, der durch die Düsenöffnung hindurchragt. Die Emitter-Elektrode ist als Ringfläche auf dem Isolierzylinder ausgebildet und über eine durch die Ventilnadel isoliert hindurchgeführte elektrische Zuleitung an einem negativen Hochspannungspotential angeschlossen. Die Gegenelektrode wird von dem Düsenkörper gebildet, der an einem relativ zu der Emitter-Elektrode positiven Spannungspotential, vorzugsweise an Masse, liegt. Vorteilhaft ist bei dieser Konstruktion, daß sich der Elektrodenabstand während der Bewegung der Ventilnadel nicht verändert und eine ausgleichende Anpassung der angelegten Spannung nicht vorgenommen werden muß. Die ringförmige Austrittsfläche der Emitter-Elektrode erlaubt eine Steuerbarkeit der Oberflächenfeldstärke des austretenden Kraftstoffs. Die Austritts- oder Oberfläche der ringförmigen Emitter-Elektrode kann vorteilhaft als spitze Ringkante ausgebildet werden.
  • Bei einer weiteren Ausführungsform der Erfindung wird die Emitter-Elektrode von einem die Düsenöffnung enthaltenden Bereich des Düsenkörpers gebildet, der aus einem für Feldemission von elektrischen Ladungsträgern geeigneten Material besteht und gegenüber dem übrigen Düsenkörper elektrisch isoliert ist. Dieser Bereich liegt am negativen Hochspannungspotential, während die Ventilnadel, die an ihrem der Düsenöffnung zugekehrten Stirnende eine Kegelspitze trägt, die Gegenelektrode bildet und an Massepotential gelegt ist. Eine solche Realisierung des elektrostatischen Einspritzventils hat den Vorteil, daß alle für die elektrische Aufladung erforderlichen Bauteile konstruktiv einfach in das Einspritzventil eingefügt sind.
  • Bei einer weiteren Ausführungsform der Erfindung ist die Emitter-Elektrode als Ringfläche isoliert in der Ventilkammer unmittelbar vor dem Ventilsitz angeordnet und an Hochspannungspotential gelegt. Als Gegenelektrode dienen der Düsenkörper und vor allem die Ventilnadel. Durch diese konstruktive Gestaltung liegt die Aufladezone des Kraftstoffs vor dem Ventilsitz. Dies ist günstig, da dadurch die Elektroden nicht der äußeren Atmosphäre ausgesetzt sind und somit nicht verschmutzen. Bei dieser Anordnung kann zwischen den Elektroden eine Funkenentladung deshalb nicht auftreten, weil keine Gasatmosphäre in den Zwischenelektrodenbereich eintreten kann. Zusätzlich kann zur Ausbildung eines Mehrstrahleinspritzventils die Düsenöffnung von einem nicht metallischen Körper, vorzugsweise einem Keramikkörper, abgeschlossen sein, der ein zur Düsenöffnung koaxiales Sackloch und mindestens eine unter einem Winkel zur Düsenkörperachse verlaufenden Kraftstoffaustrittsbohrung aufweist, die im Sackloch mündet. Ein solcher Keramikkörper verhindert, daß die in den Kraftstoff injizierten elektrischen Ladungen vor Austritt aus dem Kraftstoffeinspritzventil über den Düsenkörper abfließen.
  • Bei einem nach außen öffnenden Kraftstoffeinspritzventil, bei welchem das Ventilglied von einem Kegelstumpf gebildet wird, der an einer durch die vom Ventilsitz umschlossenen Öffnung hindurchragenden Betätigungsstange befestigt ist, und bei welcher der Ventilsitz auf der von der Ventilkammer abgekehrten Seite der Öffnung am Ventilkörper ausgebildet ist, ist die Emitter-Elektrode wiederum von einer Ringfläche gebildet, die isoliert am Düsenkörper unmittelbar vor dem Ventilsitz angeordnet ist. Vorzugsweise wird die Emitter-Elektrode von einer Ringscheibe gebildet, die elektrisch isoliert quer zur Düsenkörperachse in den Düsenkörper so eingesetzt ist, daß ihr innerer, vorzugsweise spitz zulaufende Ringrand geringfügig aus der Innenwand des Düsenkörpers vorsteht oder mit dieser bündig abschließt. Die elektrische Hochspannung wird über den Düsenkörper zugeführt. Vorteilhaft ist hier neben der Anordnung der Elektroden vor dem Ventilsitz das Fehlen eines Totvolumens. Dies ist insofern günstig, da die in einem Totvolumen befindliche Kraftstoffmenge mitunter nur schlecht bzw. nicht zerstäubt das Einspritzventil verlassen kann.
  • Gemäß einer weiteren Ausführungsform der Erfindung ist auf der freien, vom Ventilsitz abgekehrten Stirnfläche des Ventilglieds eine stiftförmige Verlängerung befestigt und/oder am Ende des Düsenkörpers eine koaxiale Ringelektrode isoliert aufgesetzt. Diese Elektroden im Außenraum gestatten die Erzeugung elektrischer Felder zur Beeinflussung des geladenen Kraftstoffs nach Verlassen des Kraftstoffeinspritzventils. Beispielsweise kann durch ein solches externes elektrisches Feld verhindert werden, daß Tröpfchen aus dem Sprühnebel zurück zur Düsenaußenseite gezogen werden und den Zerstäubungsvorgang negativ beeinflussen. Ein möglicher Verlängerungsstift kann isoliert an dem Ventilglied befestigt und an ein geeignetes elektrisches Potential angeschlossen werden, was die Variationsmöglichkeit für die elektrischen Felder im Außenraum erhöht.
  • Zeichnung
  • Die Erfindung ist anhand von in der Zeichnung dargestellten Ausführungsbeispielen in der nachfolgenden Beschreibung näher erläutert. Es zeigen:
  • Fig. 1 bis 8
    jeweils ausschnittsweise einen Längsschnitt eines Einspritzventils für Kraftstoffeinspritzanlagen gemäß mehreren Ausführungsbeispielen.
    Fig. 9
    eine vergrößerte Darstellung der Ausschnitts IX in Fig. 8.
    Beschreibung der Ausführungsbeispiele
  • Das in Fig. 1 im Längsschnitt ausschnittweise dargestellte Kraftstoffeinspritzventil ist im Wesentlichen bekannt, so daß hier nur das für die Erfindung wesentliche dargestellt ist. Ein solche Kraftstoffeinspritzventil findet sich als top-feed-Ventil in der DE 35 40 660 und als side-feed-Ventil in der DE 37 05 848 A1 dargestellt und beschrieben. Es weist im allgemeinen ein hier nicht dargestelltes Ventilgehäuse aus ferromagnetischem Material auf, das in seinem unteren Ende einen in Fig. 1 mit 10 bezeichneten hohlen metallischen Düsenkörper aufnimmt. Der Düsenkörper 10 umschließt eine kraftstoffgefüllte Ventilkammer 11, die über radiale Bohrungen 12 mit einem kraftstoffgefüllten Gehäuseraum in Verbindung steht, der seinerseits über einen Anschlußstutzen des Ventilgehäuses mit Kraftstoff versorgt wird. An seinem unteren Ende ist der Düsenkörper 10 kegelstumpfförmig ausgebildet und trägt in seiner freien Stirnfläche eine koaxiale Düsenöffnung 13. An der Innenwand des kegelstumpfförmigen Bereiches ist mit Abstand von der Düsenöffnung 13 ein Ventilsitz 14 ausgebildet, der mit einer Ventilschließfläche 15 an einer Ventilnadel 16 zum Öffnen und Schließen des Einspritzventils, mitunter auch Einspritzdüse genannt, zusammenwirkt. Der Ventilsitz 14 mit aufliegender Ventilnadel 16 begrenzt zusammen mit den die Düsenöffnung 13 enthaltenden unteren Wandbereich des Düsenkörpers 10 einen Zwischenraum 19, den der Kraftstoff bei geöffnetem Ventil durchströmt, um dann aus der Düsenöffnung 13 auszutreten. Die Ventilnadel 16 ist in der Ventilkammer 11 axial verschieblich geführt, wozu sie zwei durchmessergrößere Gleitabschnitte 17,18 aufweist, die an der Innenwand des Düsenkörpers 10 anliegen. Wie in Fig. 1 angedeutet, sind die Gleitabschnitte 17,18 abgeflacht, so daß ein Kraftstoffluß von den Radialbohrungen 12 zu dem Ventilsitz 14 möglich ist. Die Ventilnadel 16 wird von einem hier nicht dargestellten, im oberen Teil des Ventilgehäuses angeordneten Elektromagneten oder bei Dieseleinspritzpumpen vom Pumpendruck betätigt. Mittels einer hier nicht dargestellten Schließfeder wird die Schließfläche 15 der Ventilnadel 16 auf den Ventilsitz 12 aufgepreßt und das Ventil geschlossen. Zur Einspritzung wird für eine vorgegebene Dauer der Elektromagnet erregt, dessen Anker mit der Ventilnadel 16 verbunden ist. Der Anker wird angezogen und die Ventilnadel 16 gegen die Schließfeder vom Ventilsitz 12 abgehoben. Das Einspritzventil ist für eine vorgegebene Einspritzdauer geöffnet, und Kraftstoff tritt über die Düsenöffnung 13 aus.
  • Zur Erzielung einer guten Zerstäubung des austretenden Kraftstoffs in Form eines Sprühnebels sind in das Kraftstoffeinspritzventil zwei Elektroden 21,22 integriert, die an einer von einer Hochspannungsquelle 20 gelieferten Hochspannung angeschlossen sind. Mindestens eine der Elektroden 21,22, die sog. Emitter-Elektrode, besteht aus einem für Feldemission von elektrischen Ladungsträgern geeignetem Material, während die andere Elektrode die Gegenelektrode bildet. Ein Beispiel eines solchen Materials ist ein eutektisches Gemisch aus Uranoxid und Wolram, wobei das Wolfram in Form feiner Fasern in das Uranoxid eingelagert ist. Das Material hat genügend viele feine Spitzen oder Kanten, so daß an der Materialoberfläche zur Feldemission ausreichend hohe elektrische Felder erzeugt werden. Die beiden Elektroden 21,22 sind dabei so angeordnet, daß in Fließrichtung des Kraftstoffs gesehen unmittelbar vor oder hinter dem Ventilsitz 14 ein den Kraftstoff durchsetzendes elektrisches Feld ausgebildet ist.
  • Bei dem in Fig. 1 dargestellten Ausführungsbeispiel wird das elektrische Feld hinter dem Ventilsitz 14 im Zwischenraum 19 erzeugt. Hierzu ist die Emitter-Elektrode 21 an der Stirnseite der Ventilnadel 16 angeordnet, die den Zwischenraum 19 zur Düsenöffnung 13 hin begrenzt. Die Emitter-Elektrode 21 ist als Zapfen 23 ausgebildet, der stirnseitig eine Kegelspitze 231 trägt. Der Zapfen 23 ist isoliert in die Ventilnadel 16 derart eingesetzt, das im wesentlichen die Kegelspitze 231 vorsteht und in den Zwischenraum 19 hineinragt. Hierzu ist der Zapfen 23 in einem Isolierzylinder 24 eingesetzt, der koaxial in eine von der Stirnseite her eingebrachte Ausnehmung 25 in der Ventilnadel 16 eingesetzt ist. Am flachen Ende ist der Zapfen 23 mit einer elektrischen Anschlußleitung 26 verbunden, die, von einer Isolierhülle 27 umgeben, koaxial durch die Ventilnadel 16 hindurchgeführt ist. Die Emitter-Elektrode 21 ist an dem negativen Hochspannungspotential der Hochspannungsquelle 20 angeschlossen, während der Düsenkörper 10 ein demgegenüber positiveres Potential aufweisen muß und hierzu an dem Massepotential der Hochspannungsquelle 20 liegt. Bei geöffnetem Ventil wird der Kraftstoffstrom durch das im Zwischenraum 19 ausgebildete elektrostatische Feld geführt, wobei Ladungen vom Kraftstoff mitgenommen werden und der Kraftstoff den Zwischenraum 19 elektrisch unipolar aufgeladen durch die Düsenöffnung 13 verläßt. Aufgrund der so erreichten Aufladung zerstäubt der Kraftstoff infolge der zwischen den Ladungen wirkenden elektrischen Abstoßungskräfte nach Austritt aus der Düsenöffnung 13.
  • Bei den in den weiteren Fig. 2 - 7 der Zeichnung dargestellten Ausführungsbeispielen eines Kraftstoffeinspritzventils sind diejenigen Bauteile, die mit denen in Fig. 1 übereinstimmen, mit gleichen Bezugszeichen versehen. Diese Kraftstoffeinspritzventile werden auch nur insoweit beschrieben, als Unterschiede gegenüber dem zu Fig. 1 beschriebenen Kraftstoffeinspritzventil bestehen.
  • Bei dem in Fig. 2 ausschnittweise und im Längsschnitt dargestellten Kraftstoffeinspritzventil ist die Emitter-Elektrode 21 von einem an der Stirnseite der Ventilnadel 16 befestigten Ringzylinder 28 gebildet, dessen Ringwand sich zum freien Ende hin verjüngt und in einen ringförmigen Grat 281 ausläuft. Der Ringzylinder 28 ist in einer Ringnut 29 an der Stirnseite der Ventilnadel 16 eingeklebt. Die Gegenelektrode 22 wird von einer die Düsenöffnung 13 umgebenden Ringfläche 30 gebildet, die an dem positiven Hochspannungspotential der Hochspannungsquelle 20 liegt. Konstruktiv wird diese Ringfläche 30 durch eine elektrisch leitende Platte 31 realisiert die im Bereich der Düsenöffnung 13 quer zur Düsenkörperachse eingeschoben ist und eine mit der Düsenöffnung 13 kongruente Durchtrittsöffnung 32 trägt. Die Bohrungswand in der Platte 31 kann abgeschrägt werden, so daß die Ringfläche 30 in einer ringförmigen Spitze ausläuft. Die Platte 31 ist mit dem positiven Hochspannungspotential der Hochspannungsquelle 20 verbunden und gegenüber dem Düsenkörper 10 durch eine die Platte 31 voll umschließende Isolierschicht 33 elektrisch isoliert. Die die Emitter-Elektrode 21 tragende Ventilnadel 16 ist an dem Massepotential der Hochspannungsquelle 20 angeschlossen.
  • Bei dem in Fig. 3 ausschnittweise im Längsschnitt dargestellten Kraftstoffeinspritzventil trägt die Ventilnadel 16 an ihrem den Zwischenraum 19 begrenzenden Stirnende einen Isolierkegel 34, an dem die Emitter-Elektrode 21 als Ringfläche 35 ausgebildet ist. Die Ringfläche 35 wird mittels einer Vollscheibe 36 realisiert, die quer zur Ventilnadelachse in den Isolierkegel 34 derart eingesetzt ist, daß ihr die Ringfläche 35 bildender Scheibenrand aus dem Isolierkegel 34 geringfügig vorsteht. Die Vollscheibe 36 ist mit einer ersten elektrischen Zuleitung 37 verbunden, die in einer Isolierhülse 38 teilweise durch die Ventilnadel 16 hindurchgeführt ist und im Außenmantel des Gleitabschnitts 17 der Ventilnadel 16 endet. Eine zweite elektrische Zuleitung 39 ist an dem negativen Hochspannungspotential der Hochspannungsquelle 20 angeschlossen und mittels eines Isolierstücks 40 durch eine in den Düsenkörper 10 im Bereich des Gleitabschnittes 17 der Ventilnadel 16 eingebrachte Radialbohrung 68 hindurchgeführt. Die zweite Zuleitung 39 endet bündig mit der Innenwand des Düsenkörpers 10. Die einander zugekehrten Endflächen 371 und 391 der beiden Zuleitungen 37,39 sind dabei so gelegt, daß sie bei vom Ventilsitz 14 abgehobener Schließfläche 15 der Ventilnadel 16 sich kontaktieren und bei auf dem Ventilsitz 14 aufliegender Schließfläche 15 voneinander getrennt sind. Dadurch ist sichergestellt, daß das elektrostatische Feld zwischen der Emitter-Elektrode 21 und der Gegenelektrode 22 nur bei geöffnetem Einspritzventil während der Einspritzdauer vorhanden ist. Als Gegenelektrode 22 dient eine in die Düsenöffnung 13 eingesetzte Lochplatte 41, die über den Düsenkörper 10 mit dem Massepotential der Hochspannungsquelle 20 verbunden ist.
  • Bei dem in Fig. 4 dargestellten Ausführungsbeispiel eines Kraftstoffeinspritzventils ist die Ventilnadel 16 stirnseitig kegelstumpfförmig ausgebildet, wobei der stirnseitige Kegelstumpf das gesamte Innere des Düsenkörpers 10 bis hin zur Düsenöffnung 13 ausfüllt. Die Schließfläche 15 der Ventilnadel 16 wird von einem Teil des Mantels des Kegelstumpfes gebildet. An der endseitigen Kegelstumpffläche ist ein Isolierzylinder 42 befestigt, der durch die Düsenöffnung 13 mit Spiel hindurchragt. Die Emitter-Elektrode 21 ist als Ringfläche 43 im Bereich der Düsenöffnung 13 auf dem Isolierzylinder 42 ausgebildet, was durch eine Vollscheibe 44 realisiert wird, die quer zur Ventinadelachse in den Isolierzylinder 42 derart eingesetzt ist, daß ihr die Ringfläche 43 bildender Scheibenumfang mit dem Außenmantel des Isolierzylinders 42 bündig ist. Die Scheibe 44 ist über eine elektrische Anschlußleitung 45 mit dem negativen Hochspannungspotential der Hochspannungsquelle 20 verbunden. Die Anschlußleitung 45 ist von einer Isolierhülle 46 umgeben und koaxial durch die Ventilnadel 16 hindurchgeführt. Der die Gegenelektrode 22 bildende Düsenkörper 10 ist an dem Massepotential der Hochspannungsquelle angeschlossen.
  • Bei dem in Fig. 5 ausschnittsweise dargestellten weiteren Ausführungsbeispiel eines Kraftstoffeinspritzventils ist die Emitter-Elektrode 21 am Düsenkörper 10 und die Gegenelektrode 22 an der Ventilnadel 16 ausgebildet. Hierzu ist der die Düsenöffnung 13 enthaltende Bereich 47 des Düsenkörpers 10 aus für Feldemission von elektrischen Ladungsträgern geeignetem Material hergestellt und gegenüber dem übrigen Düsenkörper 10 elektrisch isoliert. Zu diesem Bereich 47 führt eine gegenüber dem Düsenkörper 10 isolierte Anschlußfahne 48, über die die Emitter-Elektrode 21 an dem negativen Hochspannungspotential der Hochspannungsquelle 20 angeschlossen ist. Die Ventilnadel 16 trägt an ihrer den Zwischenraum 19 abschließenden Stirnseite eine kleine Kegelspitze 49, die koaxial angeordnet ist und bei geschlossenem Einspritzventil bis hin zur Düsenöffnung 13 reicht. Die Ventilnadel 16 bildet die Gegenelektrode 22 und ist hierzu an das Massepotential der Hochspannungsquelle 20 gelegt.
  • Bei den in Fig. 6 und 7 ausschnittweise im Längsschnitt dargestellten Kraftstoffeinspritzventilen wird das elektrische Feld vor dem Ventilsitz 14 in der Ventilkammer 11 erzeugt. Hierzu ist die Emitter-Elektrode 21 als isolierte Ringfläche 50 in der Ventilkammer 11 in Kraftstoffließrichtung gesehen unmittelbar vor dem Ventilsitz 14 angeordnet und liegt am negativen oder positiven Hochspannungspotential der Hochspannungsquelle. Zur praktischen Realisierung dieser Emitter-Elektrode 21 ist eine Ringscheibe 51 quer zur Düsenkörperachse elektrisch isoliert in den Düsenkörper 10 so eingesetzt, daß ihr innerer, die Ringfläche 50 bildender Ringrand geringfügig aus der Innenwand des Düsenkörpers 10 vorsteht oder mit dieser bündig abschließt. Der innere Ringrand der Ringscheibe 51 kann abgeschrägt sein, so daß die Ringfläche 50 spitz zuläuft. Die Ringscheibe 51 ist mit einem elektrischen Leiter 52 verbunden und über diesen vorzugsweise am negativen Hochspannungspotential einer Hochspannungsquelle angeschlossen. Die elektrische Isolierung von Ringscheibe 51 und Leiter 52 erfolgt durch eine Isolierschicht 53, die die Ringscheibe 51 und den Leiter 52 vollständig umschließt.
  • Bei dem Kraftstoffeinspritzventil gemäß Fig. 6 ist die Ventilnadel 16 stirnseitig zu einem Kegel 54 ausgeformt, der den gesamten unteren Raum des Düsenkörpers 10 bis hin zur Düsenöffnung 13 ausfüllt und bei geschlossenem Ventil mit seiner Spitze durch die Düsenöffnung 13 hindurchragt. Die Ventilnadel 16 bildet die Gegenelektrode 22 und ist hierzu an das Massepotential der Hochspannungsquelle gelegt. Die Düsenöffnung 13 kann von einem nichtmetallischen Körper, hier einem Keramikkörper 55, abgeschlossen sein, der endseitig in den Düsenkörper 10 eingesetzt ist und ein zur Düsenöffnung 13 kaoxiales Sackloch 55 trägt. Vom Sackloch 55 aus verlaufen ein oder mehrere Kraftstoffaustrittsbohrungen 57,58 nach außen, die mit der Düsenkörperachse einen spitzen, je nach Anwendungsfall auch einen rechten Winkel einschließen.
  • Im Gegensatz zu den Kraftstoffeinspritzventilen gemäß Fig. 1 - 6 ist das in Fig. 7 ausschnittweise zu sehende Kraftstoffeinspritzventil ein nach außen öffnendes Ventil. Die vom Ventilsitz 14 umschlossene Ventilöffnung und die Düsenöffnung 13 sind unmittelbar aneinander angeordnet, so daß der bei den Ventilen gemäß Fig. 1 - 6 vorhandene Zwischenraum 19 entfällt, somit auch jegliches Totvolumen. Das Ventilglied wird von einem Kegelstumpf 59 gebildet, der auf einer mit dem Anker des Elektromagneten verbundenen Betätigungsstange 60 befestigt ist, die durch die Ventilöffnung hindurchragt. Die Schließfläche 15 wird von einem Teil des Kegelmantels gebildet. Der Ventilsitz 14 ist auf der von der Ventilkammer 11 abgekehrten Seite der Ventilöffnung am Düsenkörper 10 ausgebildet. Im dargestellten Beispiel ist der Ventilsitz 14 an der Isolierschicht 53 ausgebildet, kann jedoch auch am Düsenkörper 10 selbst angeordnet sein. Der Kegelstumpf 59 und die Betätigungsstange 60 bilden die Gegenelektrode 22 zur Emitter-Elektrode 21 am Düsenkörper 10 und sind an dem Massepotential der Hochspannungsquelle angeschlossen. Auf der freien Stirnseite des Düsenkörpers 10 ist eine Ringelektrode 61 isoliert und koaxial zur Düsenöffnung 13 angeordnet. Außerdem trägt der Kegelstumpf 59 auf seiner äußeren Kegelstumpffläche einen koaxialen Stift 62. Die Ringelektrode 61 weist ein Potential auf, das zwischen dem der Emitter-Elektrode 21 und der Gegenelektrode 22 liegt. Der Stift 62 ist elektrisch leitend mit dem Kegelstumpf 59 verbunden. Durch diese von Ringelektrode 61 und Stift 62 gebildeten Elektroden wird im Außenraum ein elektrisches Feld erzeugt, durch welches der mit Ladungsträgern geladene Kraftstoff nach Verlassen der Düsenöffnung 13 beeinflußt und gesteuert werden kann. Der Stift 62 kann auch gegenüber dem Kegelstumpf 59 isoliert und mit einem geeigneten elektrischen Potential belegt sein, was die Variationsmöglichkeit für die Erzeugung elektrischer Felder im Außenraum erhöht.
  • Bei dem Kraftstoffeinspritzventil gemäß Fig. 8 und 9 ist die Ventilnadel 16 wie bei Fig. 7 stirnseitig zu einem Kegel 63 ausgeformt, der von der Ventilkammer 11 aus gesehen jenseits des Ventilsitzes 14 liegt und in den Zwischenraum 19 hineinragt, der von einer Sacklochbohrung 64 gebildet ist und über die Düsenöffnung 13 bildende Kraftstoffaustrittsbohrungen 65 eine Verbindung nach außen hat. In dem Kegel 63 ist Emittermaterial eingebracht bzw. ist der Kegel vollständig aus diesem gefertigt und bildet die Emitter-Elektrode 21. Die Ventilnadel 16 ist im unteren, dem Ventilsitz 14 vorgelagerten Bereich der Ventilkammer 11 vom Kraftstoff umspült und im oberen Bereich der Ventilkammer 11 mit einem Gleitabschnitt 66 axial verschieblich geführt. Auf dem Gleitabschnitt 66 oder auf der Innenwand der Ventilkammer 11 im Bereich des Verschiebewegs des Gleitabschnitts 66 ist eine Isolierschicht 67 aufgebracht. Die Ventilnadel 16 ist an einem Hochspannungspotential angeschlossen, während der Düsenkörper 10 als Gegenelektrode 22 an Masse liegt. Solange die Ventilnadel 16 auf dem Ventilsitz 14 aufliegt, besteht elektrischer Kontakt zwischen Emitter-Elektrode 21 und Gegenelektrode 22. Sobald sich die Ventilnadel 16 vom Ventilsitz 14 abhebt, wird der Kontakt unterbrochen und eine Spannung aufgebaut. Diese Ausbildung des Kraftstoffeinspritzventils ist konstruktiv einfach und besonders für Ventile mit sehr dünnen Ventilnadeln geeignet.
  • Bei allen beschriebenen Kraftstoffeinspritzventilen ist als Hochspannungsquelle eine Gleichspannungsquelle verwendet. Die Verwendung einer Wechselspannungsquelle ist ebenfalls möglich, wobei jedoch vorteilhaft beide Elektroden aus einem für Feldemission von elektrischen Ladungsträger geeigneten Material hergestellt sind, also beide Elektroden Ladungsträger emittieren. Die angelegte Hochspannung kann im Betrag zeitlich verändert werden, wobei die Veränderung im Vergleich zur Dauer des Einspritzzykluses langsam oder schnell oder auch mit dem Einspritzzyklus synchronisiert sein kann. Damit wird eine Anpassung an veränderliche Elektrodenabstände beim Öffnen und Schließen des Einspritzventils möglich, der elektrische Aufladevorgang des Kraftstoffs wird kontrollierbar und eine Veränderung der Zerstäubung während des Einspritzvorgangs räumlich und zeitlich erreichbar. Die Tröpfchengröße und die Sprühstrahlausbreitung können damit kontrolliert eingestellt werden.
  • Die zur elektrischen Isolierung vorgesehenen Teile wie z.B. Isolierzylinder 24 und 42, Isolierschicht 33 und 53, Isolierhülle 38 und 46, Isolierkegel 34 sowie Isolierstück 40 können aus allen hierfür geeigneten Materialien bestehen, wie Kunststoff (z.B. Figur 1), Gummi, Glas, Keramik (z.B. Figur 6) u.a.. Die Schraffur dieser elektrisch isolierenden Teile ist somit nur beispielhaft als Hinweis auf ein bestimmtes isolierendes Material zu sehen, das aber durch jedes andere isolierende Material ersetzbar ist.

Claims (28)

  1. Kraftstoffeinspritzventil für Kraftstoffeinspritzanlagen von Brennkraftmaschinen mit einem hohlen Düsenkörper, der eine kraftstoffgefüllte Ventilkammer einschließt und endseitig eine Düsenöffnung für den Kraftstoffaustritt trägt, mit einem am Düsenkörper ausgebildeten Ventilsitz und mit einem zusammen mit dem Ventilsitz die Ventilkammer abschließenden Ventilglied, das zum Abheben vom und Aufpressen auf den Ventilsitz axial verschiebbar ist, dadurch gekennzeichnet, daß mindestens zwei an einer Hochspannung liegende Elektroden (21,22) vorgesehen sind, von denen mindestens eine Elektrode bzw. Emitter-Elektrode (21) aus einem für Feldemission von elektrischen Ladungsträgern geeigneten Material besteht, daß die eine Elektrode (21 bzw. 22) an dem Ventilglied (16) und die andere Elektrode (22 bzw. 21) an dem Düsenkörper (10) so angeordnet ist, daß unmittelbar vor, hinter oder in dem Ventilsitz (14) ein den Kraftstoffluß durchsetzendes elektrisches Feld ausgebildet ist, und daß die an dem Hochspannungspotential liegende Elektrode (21 bzw. 22) mindestens für die Dauer der Ventilöffnung gegenüber dem Ventilglied (16) bzw. dem Düsenkörper (10) isoliert ist.
  2. Einspritzventil nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Düsenöffnung (13) mindestens eine weitere Elektrode (61,62) in Fließrichtung des Kraftstoffs gesehen nachgeordnet ist.
  3. Einspritzventil nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Ventilglied als eine in der Ventilkammer (11) axial verschieblich geführte Ventilnadel (16) ausgebildet ist, die endseitig eine mit dem Ventilsitz (14) zusammenwirkende ringförmige Schließfläche (15) trägt, daß der Ventilsitz (14) der Ventilkammer (11) zugekehrt und mit Abstand vor der Düsenöffnung (13) angeordnet ist, so daß zwischen dieser und der auf dem Ventilsitz (14) aufliegenden Ventilnadel (16) ein Zwischenraum (19) vorhanden ist, und daß die Emitter-Elektrode (21) an der den Zwischenraum (19) begrenzenden Stirnseite der Ventilnadel (16) liegt.
  4. Einspritzventil nach Anspruch 3, dadurch gekennzeichnet, daß die Emitter-Elektrode (21) in die Ventilnadel (16) koaxial eingesetzt ist und mit einem Kegel (231) stirnseitig aus dieser in den Zwischenraum (19) vorsteht.
  5. Einspritzventil nach Anspruch 4, dadurch gekennzeichnet, daß die Emitter-Elektrode (21) gegenüber der Ventilnadel (16) isoliert ist und mittels einer zentral durch die Ventilnadel (16) isoliert hindurchgeführten Anschlußleitung (26) an einem vorzugsweisen negativen Hochspannungspotential liegt und daß die Gegenelektrode (22) von dem Düsenkörper (10) gebildet ist, der an einem zum Hochspannungspotential unterschiedlichen Spannungspotential, vorzugsweise an Masse, liegt (Fig. 1).
  6. Einspritzventil nach Anspruch 3, dadurch gekennzeichnet, daß die Emitter-Elektrode (21) von einem an der Stirnseite der Ventilnadel (16) befestigten Ringzylinder (28) gebildet ist, dessen Ringwand sich zum freien Ende hin verjüngt und in einen ringförmigen Grat (281) ausläuft.
  7. Einspritzventil nach Anspruch 6, dadurch gekennzeichnet, daß die Gegenelektrode (22) von einer die Düsenöffnung (13) umgebenden Ringfläche (30) gebildet ist.
  8. Einspritzventil nach Anspruch 7, dadurch gekennzeichnet, daß die Ringfläche (30) mittels einer in dem Düsenkörper (10) im Bereich der Düsenöffnung (13) quer zur Düsenkörperachse isoliert eingeschobenen elektrisch leitenden Platte (31) realisiert ist, die eine mit der Düsenöffnung (13) konkruente Durchtrittsbohrung (32) aufweist und an einem vorzugsweisen positiven Hochspannungspotential liegt, und daß die Ventilnadel (16) an einem zum Hochspannungspotential unterschiedlichen Spannungspotential, vorzugsweise an Masse, liegt (Fig. 2).
  9. Einspritzventil nach Anspruch 3, dadurch gekennzeichnet, daß die Emitter-Elektrode (21) von einer Ringfläche (35) auf einem an der Stirnseite der Ventilnadel (16) befestigten Isolierkegel (34) gebildet ist, die mittels einer durch die Ventilnadel (16) isoliert hindurchgeführten elektrischen Zuleitung (37,39) an einem vorzugsweisen negativen Hochspannungspotential liegt, und daß die Gegenelektrode (22) von dem an einem davon abweichenden Spannungspotential, vorzugsweise an Masse, liegenden Düsenkörper (10) gebildet ist.
  10. Einspritzventil nach Anspruch 9, dadurch gekennzeichnet, daß in der Düsenöffnung (13) des Düsenkörpers (10) eine Lochplatte (41) eingesetzt ist (Fig. 3).
  11. Einspritzventil nach Anspruch 9 oder 10, dadurch gekennzeichnet, daß die Ringfläche (35) mittels einer Scheibe (36) realisiert ist, die quer zur Ventilnadelachse in dem Isolierkegel (34) derart eingesetzt ist, daß ihr Scheibenrand aus dem Isolierkegel (34) geringfügig vorsteht. (Fig. 3).
  12. Einspritzventil nach einem der Ansprüche 9 bis 11, dadurch gekennzeichnet, daß die Ventilnadel (16) mit mindestens einem im Durchmesser größeren Gleitabschnitt (17,18) an der Innenwand des Düsenkörpers (10) geführt ist, daß die elektrische Zuleitung (37,39) zu der Elektroden-Ringfläche (35) in zwei Zuleitungsabschnitte (37,39) unterteilt ist, von denen der eine Zuleitungsabschnitt (37) an der Ringfläche (35) angeschlossen ist und in dem Außenmantel des Gleitabschnitts (17) der Ventilnadel (16) endet und der andere Zuleitungsabschnitt (39) an dem Hochpotential liegt und in der Innenwand des Düsenkörpers (10) endet, und daß die Endungsstellen (371,391) der beiden Leitungsabschnitte (37,39) relativ zueinander so gelegt sind, daß sie bei vom Ventilsitz (14) abgehobener Schließfläche (15) der Ventilnadel (16) sich kontaktieren und bei auf dem Ventilsitz (14) aufliegender Schließfläche (15) der Ventilnadel (16) voneinander getrennt sind (Fig. 3).
  13. Einspritzventil nach Anspruch 3, dadurch gekennzeichnet, daß die Ventilnadel (16) stirnseitig kegelstumpfförmig ausgebildet ist und auf der endseitigen Kegelstumpffläche einen Isolierzylinder (42) trägt, der durch die Düsenöffnung (13) hindurchragt, daß die Emitter-Elektrode (21) als Ringfläche (43) auf dem Isolierzylinder (42), vorzugsweise im Bereich der Düsenöffnung, ausgebildet und über eine durch die Ventilnadel (16) isoliert hindurchgeführte elektrische Zuleitung (45) an einem vorzugsweisen negativen Hochspannungspotential liegt und daß die Gegenelektrode (22) von dem Düsenkörper (10) gebildet ist, der an einem dazu unterschiedlichen Spannungspotential, vorzugsweise an Masse, liegt (Fig. 4).
  14. Einspritzventil nach Anspruch 13, dadurch gekennzeichnet, daß die Ringfläche (43) mittels einer Scheibe (44) realisiert ist, die quer zur Ventilnadelachse in den Isolierzylinder (42) derart eingesetzt ist, daß ihr Scheibenumfang mit dem Außenmantel des Isolierzylinders (42) bündig ist (Fig. 4).
  15. Einspritzventil nach Anspruch 3, dadurch gekennzeichnet, daß die Emitter-Elektrode (21) von einem auf der Stirnseite der Ventilnadel (16) angeordneten Kegel (63) gebildet ist (Fig. 8).
  16. Einspritzventil nach Anspruch 15, dadurch gekennzeichnet, daß die Ventilnadel (16) mit mindestens einem Gleitabschnitt (66) an der Innenwand des Düsenkörpers (10) geführt ist, daß zwischen dem Gleitabschnitt (66) und der Innenwand des Düsenkörpers (10) eine Isolierschicht (67) angeordnet ist und daß die Ventilnadel (16) oder der Düsenkörper (10) an einem Hochspannungspotential liegen (Fig. 8).
  17. Einspritzventil nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Emitter-Elektrode (21) von einem die Düsenöffnung (13) enthaltenden Bereich (47) des Düsenkörpers (10) gebildet ist (Fig. 5).
  18. Einspritzventil nach Anspruch 17, dadurch gekennzeichnet, daß der die Emitter-Elektrode (21) bildende Bereich (47) des Düsenkörpers (10) gegenüber dem übrigen Düsenkörper (10) elektrisch isoliert ist und an Hochspannungspotential liegt (Fig. 5).
  19. Einspritzventil nach Anspruch 18, dadurch gekennzeichnet, daß das Ventilglied als eine in der Ventilkammer (11) axial verschieblich geführte Ventilnadel (16) ausgebildet ist, die endseitig eine mit dem Ventisitz (14) zusammenwirkende Schließfläche (15) trägt, daß der Ventilsitz (15) der Ventilkammer (11) zugekehrt und mit Abstand vor der Düsenöffnung (13) angeordnet ist, so daß zwischen dieser und der auf dem Ventilsitz (14) aufliegenden Ventilnadel (16) ein Zwischenraum (19) vorhanden ist, und daß die Ventilnadel (16) stirnseitig eine in den Zwischenraum (19) hineinragende Kegelspitze (49) trägt und an einem zum Hochspannungspotential unterschiedlichen Spannungspotential, vorzugsweise an Masse, liegt (Fig. 5).
  20. Einspritzventil nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Emitter-Elektrode (21) als Ringfläche (50) in der Ventilkammer (11) unmittelbar vor dem Ventilsitz (14) angeordnet ist.
  21. Einspritzventil nach Anspruch 20, dadurch gekennzeichnet, daß die Ringfläche (50) isoliert am Düsenkörper (10) angebracht ist und an Hochspannungspotential liegt und das Ventilglied die einem dazu unterschiedlichen Spannungspotential, vorzugsweise an Masse, liegt.
  22. Einspritzventil nach Anspruch 21, dadurch gekennzeichnet, daß die Ringfläche (50) von einer Ringscheibe (51) realisiert ist, die elektrisch isoliert quer zur Düsenkörperachse in den Düsenkörper (10) so eingesetzt ist, daß ihr innerer Ringrand geringfügig aus der Innenwand des Düsenkörpers (10) vorsteht oder mit dieser bündig abschließt (Fig. 5 und 6).
  23. Einspritzventil nach Anspruch 22, dadurch gekennzeichnet, daß der Innenrand der Ringscheibe (51) sich in Radialrichtung zu einer ringförmigen Spitze verjüngt.
  24. Einspritzventil nach einem der Ansprüche 20 - 23, dadurch gekennzeichnet, daß das Ventilglied als eine in der Ventilkammer (11) axial verschieblich geführte Ventilnadel (16) mit endseitigem Kegel (54) ausgebildet ist, dessen Kegelmantel zumindest teilweise eine mit dem Ventilsitz (14) zusammenwirkende Schließfläche (15) bildet und der vorzugsweise durch die Düsenöffnung (13) hindurchragt.
  25. Einspritzventil nach Anspruch 24, dadurch gekennzeichnet, daß die Düsenöffnung (13) von einem Körper (55) aus einem Material mit gegenüber dem Düsenkörper (10) gleicher oder unterschiedlicher elektrischer Leitfähigkeit abgeschlossen ist, der ein zur Düsenöffnung (13) koaxiales Sackloch (56) und mindestens eine unter einem Winkel zur Düsenkörperachse verlaufende, im Sackloch (56) mündende Kraftstoffaustrittsbohrung (57,58) aufweist (Fig. 6).
  26. Einspritzventil nach einem der Ansprüche 21 - 23, dadurch gekennzeichnet, daß das Ventilglied von einem Kegelstumpf (59) gebildet wird, dessen Kegelmantel zumindest teilweise eine mit dem Ventilsitz (14) zusammenwirkende Schließfläche (15) bildet, daß der Kegelstumpf (59) an einer durch die vom Ventilsitz (14) umschlossenen Öffnung hindurchragenden Betätigungsstange (60) befestigt und der Ventilsitz (14) auf der von der Ventilkammer (11) abgekehrten Seite der Öffnung am Düsenkörper (10) ausgebildet ist (Fig. 7).
  27. Einspritzventil nach Anspruch 26, dadurch gekennzeichnet, daß der Kegelstumpf (59) auf seiner im Durchmesser größeren freien Kegelstumpffläche eine stiftförmige Verlängerung (62) trägt und/oder daß am Ende des Düsenkörpers (10) eine Ringelektrode (61) koaxial zur Düsenöffnung (13) isoliert aufgesetzt ist.
  28. Einspritzventil nach Anspruch 27, dadurch gekennzeichnet, daß die stiftförmige Verlängerung (62) gegenüber dem Kegelstumpf (59) isoliert ist und an einem relativ zur Ringelektrode (61) positiven oder negativen Spannungspotential liegt.
EP91905794A 1990-04-07 1991-03-27 Kraftstoffeinspritzventil Expired - Lifetime EP0476084B1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE4011372 1990-04-07
DE4011372 1990-04-07
DE4029056 1990-09-13
DE4029056A DE4029056A1 (de) 1990-04-07 1990-09-13 Kraftstoffeinspritzventil
PCT/DE1991/000270 WO1991015673A1 (de) 1990-04-07 1991-03-27 Kraftstoffeinspritzventil

Publications (2)

Publication Number Publication Date
EP0476084A1 EP0476084A1 (de) 1992-03-25
EP0476084B1 true EP0476084B1 (de) 1994-11-09

Family

ID=25892005

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91905794A Expired - Lifetime EP0476084B1 (de) 1990-04-07 1991-03-27 Kraftstoffeinspritzventil

Country Status (10)

Country Link
US (1) US5234170A (de)
EP (1) EP0476084B1 (de)
JP (1) JP2962827B2 (de)
KR (1) KR100221905B1 (de)
AU (1) AU625928B2 (de)
BR (1) BR9105681A (de)
DE (2) DE4029056A1 (de)
ES (1) ES2065015T3 (de)
RU (1) RU2060402C1 (de)
WO (1) WO1991015673A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19629171C2 (de) * 1996-07-19 2002-10-24 Audi Ag Zündanordnung für einen fremdgezündeten Verbrennungsmotor

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5093602A (en) * 1989-11-17 1992-03-03 Charged Injection Corporation Methods and apparatus for dispersing a fluent material utilizing an electron beam
US5171487A (en) * 1992-03-05 1992-12-15 Hudz Paul H Thermo-magnetic vaporizer carburetor
US5515681A (en) * 1993-05-26 1996-05-14 Simmonds Precision Engine Systems Commonly housed electrostatic fuel atomizer and igniter apparatus for combustors
US5725151A (en) * 1996-10-03 1998-03-10 Ford Global Technologies, Inc. Electrospray fuel injection
US5671716A (en) * 1996-10-03 1997-09-30 Ford Global Technologies, Inc. Fuel injection system and strategy
DE19646201A1 (de) * 1996-11-08 1998-05-14 Audi Ag Zündanordnung
DE10049204A1 (de) * 2000-10-05 2002-04-11 Alstom Switzerland Ltd Vorrichtung und Verfahren zur elektrostatischen Zerstäubung eines flüssigen Mediums
GB0025668D0 (en) * 2000-10-19 2000-12-06 Epicam Ltd Fuel injection assembly
DE10123860A1 (de) * 2001-05-16 2002-11-28 Bosch Gmbh Robert Brennstoffeinspritzventil
KR20030034612A (ko) * 2001-10-26 2003-05-09 현대자동차주식회사 직접 분사식 디젤엔진의 분사연료 액적간의 간섭회피를위한 정전식 인젝터
DE10219834A1 (de) * 2002-05-03 2003-11-20 Daimler Chrysler Ag Kraftstoffeinspritzinjektor für Verbrennungskraftmaschinen
US6763811B1 (en) * 2003-01-10 2004-07-20 Ronnell Company, Inc. Method and apparatus to enhance combustion of a fuel
US6851413B1 (en) * 2003-01-10 2005-02-08 Ronnell Company, Inc. Method and apparatus to increase combustion efficiency and to reduce exhaust gas pollutants from combustion of a fuel
GB0421387D0 (en) * 2004-09-25 2004-10-27 Scion Sprays Ltd Pulsed electrostatic atomiser
MX2007007339A (es) 2004-12-15 2007-10-04 Univ Temple Metodo para la reduccion de viscosidad de petroleo crudo.
US9316184B2 (en) * 2006-10-31 2016-04-19 Temple University Of The Commonwealth System Of Higher Education Electric-field assisted fuel atomization system and methods of use
US8245951B2 (en) * 2008-04-22 2012-08-21 Applied Nanotech Holdings, Inc. Electrostatic atomizing fuel injector using carbon nanotubes
CN103080524B (zh) 2010-08-10 2015-09-02 罗内尔股份有限公司 偶极摩擦电喷射器喷嘴
DE102012214522B3 (de) * 2012-08-15 2014-03-27 Ford Global Technologies, Llc Einspritzventil
US9151252B2 (en) 2012-09-28 2015-10-06 General Electric Company Systems and methods for improved combustion
US8746197B2 (en) * 2012-11-02 2014-06-10 Mcalister Technologies, Llc Fuel injection systems with enhanced corona burst
GB201521184D0 (en) * 2015-12-01 2016-01-13 Delphi Internat Operations Luxembourg S À R L Gaseous fuel injectors
US9976518B2 (en) 2015-12-07 2018-05-22 Caterpillar Inc. Feedback controlled system for ignition promoter droplet generation
US9869255B2 (en) 2015-12-07 2018-01-16 Caterpillar Inc. Feedback controlled system for charged ignition promoter droplet distribution
DE102015226769A1 (de) * 2015-12-29 2017-06-29 Robert Bosch Gmbh Brennstoffeinspritzventil
CN107151824A (zh) * 2017-06-30 2017-09-12 天津工业大学 一种基于实心针喷丝装置的静电喷丝***
CN113993629B (zh) * 2019-05-31 2022-07-01 花王株式会社 静电喷涂装置、盒式组件和覆盖件
RU2719762C1 (ru) * 2019-10-14 2020-04-23 Сергей Викторович Ивченко Способ электрической обработки топлива

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2517682C3 (de) * 1975-04-22 1980-09-11 Daimler-Benz Ag, 7000 Stuttgart Einspritzventil für Brennkraftmaschinen
US4051826A (en) * 1975-07-10 1977-10-04 Richards Clyde N Means and method of injecting charged fuel into internal combustion engines
DE2724213A1 (de) * 1976-05-29 1977-12-15 Nissan Motor Verfahren zum betreiben einer kraftstoff-einspritzeinrichtung
DE2936370A1 (de) * 1979-09-08 1981-04-02 Robert Bosch Gmbh, 7000 Stuttgart Kraftstoff-einspritzduese fuer dieselmotoren
US4581675A (en) * 1980-09-02 1986-04-08 Exxon Research And Engineering Co. Electrostatic atomizing device
US4364342A (en) * 1980-10-01 1982-12-21 Ford Motor Company Ignition system employing plasma spray
JPS57193757A (en) * 1981-05-25 1982-11-29 Mitsubishi Electric Corp Fuel injection unit of internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19629171C2 (de) * 1996-07-19 2002-10-24 Audi Ag Zündanordnung für einen fremdgezündeten Verbrennungsmotor

Also Published As

Publication number Publication date
KR920701652A (ko) 1992-08-12
US5234170A (en) 1993-08-10
JP2962827B2 (ja) 1999-10-12
AU7462791A (en) 1991-10-30
KR100221905B1 (en) 1999-09-15
ES2065015T3 (es) 1995-02-01
JPH04507127A (ja) 1992-12-10
RU2060402C1 (ru) 1996-05-20
DE59103483D1 (de) 1994-12-15
EP0476084A1 (de) 1992-03-25
AU625928B2 (en) 1992-07-16
WO1991015673A1 (de) 1991-10-17
BR9105681A (pt) 1992-08-04
DE4029056A1 (de) 1991-10-17

Similar Documents

Publication Publication Date Title
EP0476084B1 (de) Kraftstoffeinspritzventil
DE4106564C2 (de) Vorrichtung zur elektrostatischen Zerstäubung von Flüssigkeiten
DE3731211C2 (de)
DE2850116A1 (de) Elektrostatische aufladungs- und zerstaeubungsvorrichtung und verfahren zur elektrostatischen aufladung eines nicht leitenden mediums
DE4106563A1 (de) Vorrichtung zur elektrostatischen zerstaeubung von fluessigkeiten
DE3716402A1 (de) Kraftstoffeinspritzduese
DE1476951B2 (de) Kraftstoffeinspritz- und zuendvorrichtung fuer brennkraftmaschinen mit direkter einspritzung
DE2517682A1 (de) Einspritzventil fuer brennkraftmaschinen
DE19954102B4 (de) Kraftstoffinjektor
DE10118164B4 (de) Brennstoffeinspritzventil
DE2449848C3 (de)
DE10124748A1 (de) Brennstoffeinspritzventil
DE10231583A1 (de) Kraftstoffeinspritzdüse einer Brennkraftmaschine mit Direkteinspritzdüse
DE102011089240A1 (de) Brennstoffeinspritzventil und Verfahren zur Ausformung von Abspritzöffnungen
DE2807345A1 (de) Wirbel-einspritzventil
DE2508191A1 (de) Zerstaeuber
EP1633973B1 (de) Brennstoffeinspritzventil
DE916365C (de) Druckluft-Einspritzbrennkraftmaschine mit Fremdzuendung
EP1137880B1 (de) Verfahren zum zumessen von brennstoff mit einem brennstoffeinspritzventil
DE10050752B4 (de) Brennstoffeinspritzventil mit einem drallerzeugenden Element
EP0493390B1 (de) Vorrichtung zur einspritzung eines kraftstoff-luft-gemisches für mehrzylindrige brennkraftmaschinen
DE10354467A1 (de) Brennstoffeinspritzventil
DE2401047A1 (de) Einrichtung zur erzeugung eines luft/ kraftstoffgemisches
EP1439302B1 (de) Kraftstoffinjektor und Zündeinrichtung für eine Brennkraftmaschine
DE69418139T2 (de) Luftunterstütztes Einstrahlkraftstoffeinspritzventil

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19911113

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

17Q First examination report despatched

Effective date: 19940322

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59103483

Country of ref document: DE

Date of ref document: 19941215

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2065015

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950113

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970312

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970319

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19970331

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19980331

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980327

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990607

Year of fee payment: 9

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20000403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050327