EP0471171B1 - Vorrichtung zur Leistungssteuerung und -begrenzung bei einer Heizfläche aus Glaskeramik oder einem vergleichbaren Material - Google Patents

Vorrichtung zur Leistungssteuerung und -begrenzung bei einer Heizfläche aus Glaskeramik oder einem vergleichbaren Material Download PDF

Info

Publication number
EP0471171B1
EP0471171B1 EP91110463A EP91110463A EP0471171B1 EP 0471171 B1 EP0471171 B1 EP 0471171B1 EP 91110463 A EP91110463 A EP 91110463A EP 91110463 A EP91110463 A EP 91110463A EP 0471171 B1 EP0471171 B1 EP 0471171B1
Authority
EP
European Patent Office
Prior art keywords
heating
temperature
glass ceramic
zone
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91110463A
Other languages
English (en)
French (fr)
Other versions
EP0471171A3 (en
EP0471171A2 (de
Inventor
Bernd Schultheis
Klaus Kristen
Martin Taplan
Herwig Scheidler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schott AG
Carl Zeiss AG
Original Assignee
Carl Zeiss AG
Schott Glaswerke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Zeiss AG, Schott Glaswerke AG filed Critical Carl Zeiss AG
Publication of EP0471171A2 publication Critical patent/EP0471171A2/de
Publication of EP0471171A3 publication Critical patent/EP0471171A3/de
Application granted granted Critical
Publication of EP0471171B1 publication Critical patent/EP0471171B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/68Heating arrangements specially adapted for cooking plates or analogous hot-plates
    • H05B3/74Non-metallic plates, e.g. vitroceramic, ceramic or glassceramic hobs, also including power or control circuits
    • H05B3/746Protection, e.g. overheat cutoff, hot plate indicator
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2213/00Aspects relating both to resistive heating and to induction heating, covered by H05B3/00 and H05B6/00
    • H05B2213/04Heating plates with overheat protection means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2213/00Aspects relating both to resistive heating and to induction heating, covered by H05B3/00 and H05B6/00
    • H05B2213/05Heating plates with pan detection means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2213/00Aspects relating both to resistive heating and to induction heating, covered by H05B3/00 and H05B6/00
    • H05B2213/07Heating plates with temperature control means

Definitions

  • the invention relates to a device for power control and limitation in a heating surface made of glass ceramic or a comparable material, in particular in a glass ceramic cooking surface with at least one heating zone with an associated heating device, in which several independent temperature sensors are arranged in the area of the heating zone on the heating surface so that they record all points essential for a load case, and the power supply to the heating device can be switched and controlled on the basis of the values determined by the temperature sensors.
  • Heating surfaces made of glass ceramic or a comparable material are used, for example, as wall or ceiling radiators, heat exchangers or other large-area heating devices which can be heated in any way.
  • the heating power for the heating devices is fixed by the user or electronically, electromechanically or, in the case of gas stoves via valves, purely mechanically by a selectable time program.
  • Corresponding controls are described for example in the patent specification DE-PS 3 639 186 A1.
  • DE-OS 33 14 501 A 1 describes a heating plate with two concentric heating circuits, in which the outer heating circuit is designed as an auxiliary heating circuit.
  • DE-PS 34 06 604 relates to a heating device in which the heating zone is heated by means of several high and normal temperature radiation heating elements.
  • the heating elements are arranged in such a way that the heating point is divided into two concentric zones, the inner zone being heated only by the high-temperature radiation heating elements which can preferably be used as auxiliary heating elements in the boiling phase and the outer zone by the normal-temperature radiation heating elements.
  • a comparable arrangement of several radiant heating elements in the area of a cooking zone can also be found in US Pat. No. 4,639,579.
  • a heating device with a gas burner which has two burner chambers which can be acted upon independently of one another and which, for example, can delimit zones which are concentric with one another in the cooking zone area, is described in US Pat. No. 4,083,355.
  • the maximum operating temperatures must be limited to 700 ° C to avoid damage to the cooking surface due to overheating.
  • the anomalous loading conditions described above can lead to damage to the glass ceramic cooktop on the one hand and on the other hand considerably reduce the efficiency of the cooking system.
  • So-called protective temperature limiters e.g. B. between the heating elements and the glass ceramic surface mostly along a diameter arranged rod expansion switches, which usually switch off the heater completely or reduce its performance when a certain limit temperature is exceeded.
  • German patent DE-PS 21 39 828 it is known that glass, glass ceramics or similar materials have an electrical resistance which is dependent on the temperature, so that by applying conductor tracks, e.g. from precious metals, temperature measuring resistors with a steep resistance-temperature characteristic, similar to that of the known NTC resistors, can be produced.
  • a device for power control and limitation of the type mentioned is known.
  • several independent temperature sensors should be arranged in the cooking zone of a glass ceramic cooktop in such a way that comprehensive temperature monitoring should be possible, taking into account the low heat conduction in the glass ceramic and the expected temperature distribution in the cooking zone in the event of abnormal thermal loads. In particular, this measure is intended to reliably detect temperature peaks that occur locally.
  • Bimetal switches, thermistors or thermocouples are to be used as temperature sensors.
  • a grid-like arrangement of the temperature sensors is proposed, or, in a preferred embodiment, the arrangement on the circumference of one or more circles which are concentric with one another in the cooking zone.
  • a disadvantage of this device is that, as in the cases described above, the heating output in the entire cooking zone is reduced even when only local temperature peaks occur, or else the heating output is switched off altogether.
  • the object of the invention is to develop the device for power control known from GB 2 060 329 A in such a way that not only area-wide temperature monitoring but also an adjustment of the power distribution to the locally different heat extraction is possible. This is to make it possible, in particular, to use the cooking system optimally even when using bad cookware, but at the same time to keep the thermal load on the heating surface low.
  • the heating device has at least two heating elements, each of which delimits areas assigned in the heating zone, that the temperature sensors are strip-shaped, delimited and contacted in the heating surface by parallel conductor tracks Glass ceramic temperature measuring resistors, and that each heating element is assigned at least one such temperature sensor, the geometric Arrangement of the conductor tracks of the temperature sensor in a region of the heating zone assigned to the heating element is adapted to the geometric shape of the heating element and to the expected temperature distribution in this region in the case of known anomalous thermal load cases, and that the heating elements are based on the temperature sensor (s) assigned by the (n) ) determined values can be switched and controlled independently of one another, the power distribution in the heating zone can largely be adapted to the locally different heat extraction.
  • the heating zones of a heating surface are each heated with a plurality of, but at least two heating elements or heating circuits which delimit areas assigned in the heating zone, and each of these heating elements is independent of one another via temperature measurement signals from temperature sensors arranged in the assigned areas switch and control that the power distribution and thus the area load of the heating zone is adapted to the locally different heat flow, which, for example, depends on the geometry of the contact surface of the pots placed on the hob.
  • the heating takes place z. B. even with poor pot quality with optimal heating output, while in places with little heat removal through reduction, e.g. Clocking, the heating power overheating can be avoided.
  • the conversion of the temperature measurement signals into control signals for the power supply of the heating elements is carried out with the help of control devices known per se.
  • the power supply for the heating elements is interrupted until the temperature in the assigned overheated cooking zone area is again below the threshold temperature.
  • the full heating output is then switched on again.
  • the power supply for the heating elements is reduced continuously or stepwise at intervals, for example to a level which is reduced by at least 10%, until the heating power of the heating elements is optimally matched to the maximum possible heat removal in the assigned area of the heating zone is adapted.
  • the temperature sensors known from DE-PS 21 39 828 and integrated into the heating surfaces are used as temperature sensors.
  • two parallel conductor tracks are applied to the heating surface in the area of the heating zones in a manner known per se, for example by means of screen printing or vapor deposition or other methods, and then baked.
  • the very strong temperature-dependent electrical resistance of the glass ceramic delimited between the conductor tracks represents the actual temperature sensor.
  • the geometrical arrangement of the conductor tracks in the region of a heating zone is expediently adapted to the geometrical arrangement of the heating elements and to the expected temperature distribution in the case of known anomalous thermal load cases.
  • the temperature sensors are arranged in such a way that they detect all essential parts of the areas of the heating zone assigned to the heating elements, so that local overheating is also detected. For example, heating coil loops or in the area of flame tips, e.g. B. with gas heating, higher temperatures occur at these points compared to neighboring points. These temperature peaks must be recorded, otherwise the heating surface can be damaged at these points.
  • Figures 1 and 2 show an example of a device according to the invention, in a hob with glass ceramic hob.
  • gold conductor tracks (2) are arranged within the cooking zone (1) of a glass ceramic hob on the underside of the glass ceramic.
  • the conductor track is selected such that the outer circle (3a) and the inner circle (3b) of a two-circuit heating element (4) are each covered with ring-shaped conductor tracks.
  • the connection areas (5) lie outside the cooking zone (1) for protection against thermal loads.
  • Figure 2 shows the arrangement consisting of the glass ceramic plate (6), the two-circuit heating element (4) with the heating coils (4a) and the printed conductors (2) printed on the underside of the glass ceramic and the connection areas (5) in section.
  • the invention is in no way limited to the use of the two-circuit heating elements shown in FIGS. 1 and 2.
  • any heating device can be used that is composed of several heating elements that can be switched and controlled independently of one another in the area of a cooking zone.
  • the invention can e.g. can also be used with gas burners, e.g. also in the gas burner known from US Pat. No. 4,083,355 with two burner chambers which can be acted upon independently of one another with fuel.
  • the heating elements can e.g. be arranged in a grid below the cooking zone.
  • the geometric arrangement of the heating elements is advantageously adapted to the geometry of the cookware or to the temperature distribution in the cooking zone area in the case of known anomalous thermal loads, so that effective control of the power distribution to the locally different heat extraction is possible.
  • the conductor tracks (2) cover only a small part of the cooking zone. Track widths of ⁇ 3 mm are preferred. In the present case, the conductor tracks are 1-2 mm wide, so that the total area of the conductor tracks is small in relation to the area of the heated zone. Influencing the This minimizes the total heat flow.
  • the sheet resistance of these interconnect layers is ⁇ 50 m ⁇ / ⁇ with layer thicknesses below 1 ⁇ m.
  • FIGS. 3a and 3b show corresponding arrangements for square and oval multi-circuit heating elements.
  • the parallel conductor tracks (2) within the cooking zone (1) delimit narrow circular or linear temperature measuring zones in which the glass ceramic volume delimited by the conductor tracks serves as a temperature-dependent resistor.
  • R is the specific resistance of the glass ceramic in Ohm * cm at the absolute temperature T in Kelvin.
  • a and b are constants dependent on the geometry of the conductor tracks and on the glass ceramic (a in ohm * cm and b in K).
  • the temperature coefficient of these measuring resistors is negative. It is strongly temperature-dependent and is e.g. for glass ceramics of the SiO2-Al2O3-Li2O system at 300 ° C 3.3% / ° C.
  • the constants a and b are constants dependent on the geometry of the conductor tracks and on the glass ceramic (a in Ohm * cm and b in Kelvin).
  • T i is the absolute temperature of each differential resistor in Kelvin.
  • the total electrical resistance is determined by the smallest resistance at the point of the highest temperature of the sensor zones, which results in an automatic display of the maximum temperature in the respective sensor zone. Locally occurring high temperatures cause one or more differential resistors to become low-ohmic in relation to the other differential resistors, which are in colder zones, so that the total resistance of a sensor according to Eq. 2 becomes very small.
  • FIG. 4 schematically shows a section of the opposite conductor tracks (2) for clarification.
  • the glass ceramic defined between them can be understood as a parallel connection of many temperature-dependent differential resistors.
  • this arrangement according to Eq. 2 and 3 have a very high resistance.
  • the resistance decreases by several orders of magnitude.
  • the resistance also decreases considerably if high temperatures occur only in a small area of the glass ceramic, for example in the offset pot. Temperature compensation between neighboring zones, which have different temperatures, hardly takes place due to the low heat conduction with glass, glass ceramic or similar material with a ⁇ of typically less than 2 W / mK.
  • the temperature-dependent change in conductivity of the glass ceramic can be converted into a measurement signal in a voltage divider supplied with AC voltage, in which a resistance is formed by the temperature-dependent resistance of the sensor surfaces.
  • the fixed resistors of the voltage divider must be selected so that at temperatures that exceed the permissible temperature / time load, sufficient signal changes can be picked up on the voltage divider for further processing.
  • the temperature range in which the largest signal swing occurs can be changed by adjusting the fixed resistors.
  • the fixed resistors also serve to limit the current.
  • the AC voltage is necessary to avoid polarization effects of the glass ceramic and the associated electrochemical decomposition due to the ion migration. Frequencies in the range between 50 Hz and 1000 Hz are preferred for the applied AC voltage.
  • FIG. 5a schematically shows the circuit arrangement according to the invention, a voltage divider (7) for each temperature sensor being shown in each case.
  • Both voltage dividers are supplied by an AC voltage source (8), shown here as a transformer. This ensures that direct current does not flow through the glass ceramic, shown here as a temperature-dependent resistor (9).
  • the two fixed resistors (10a) and (10b) were chosen so that a large signal change occurs in the range from 500 to 600 ° C. This temperature range is characteristic of the surface temperatures that occur in practice within the cooking zones (1) of glass ceramic hobs.
  • the AC voltage signal present at the voltage divider is rectified via a rectifier circuit and fed to a suitable electronic circuit.
  • a rectifier circuit can be operational amplifiers, which are connected as comparators, or other circuits and components known from electronics, such as ⁇ -processors or the like.
  • the signals supplied by the sensors are processed in these circuits in such a way that a signal is available at their output with which the individual heating circuits can be controlled via relays or power semiconductor components such as triac's or MOS-FET's.
  • the power control can take place, for example, by means of phase control, half or full wave packet control with different duty cycles, so that constant temperature controls are also possible.
  • the output signal of the control electronics can also be supplied to the semiconductor components described above via optocouplers or other circuits which serve for the electrical isolation between control electronics and power section. So-called zero voltage switches can also be implemented, which only switch the individual heating circuits of the heating elements in the zero voltage crossing.
  • the signal tapped at the voltage divider (7) is fed via a rectifier circuit (11) to the one input of an operational amplifier (12) connected as a comparator.
  • the comparator has the task of comparing the temperature-dependent signal originating from the sensor arrangement with a fixed voltage value, the threshold voltage Us in FIG. 5b. If the voltage from the sensor is above the threshold voltage, which would be the case in the present arrangement at relatively low temperatures, e.g. when using good dishes, the output of the comparator is switched through.
  • This signal is fed via a diode (13) and an optocoupler (14) to a semiconductor AC switch (triac) with an integrated zero voltage switch (15) which controls the heating coil (4a) of a heating circuit. It is particularly important that the present arrangement provides a galvanic separation between the electronic measuring circuit and the power section.
  • the output of the comparator (12) switches to negative potential.
  • the diode (13) blocks, so that the triac (15) also blocks.
  • the corresponding heating circuit is switched off.
  • the temperature of the glass ceramic decreases again, as a result of which the electrical resistance of the sensors increases again.
  • This increases the voltage at the output of the voltage divider back to.
  • the output of the comparator (12) switches back to positive potential, as a result of which the triac (15), which is now conductive again, ignites at zero crossing and thus the corresponding one Heating coil is switched on. With this arrangement, regulation is thus possible, separately for each heating circuit.
  • FIG. 6a shows the voltage curve over time for U i (inner circle) and U a (outer circle).
  • pots of good quality are provided with the full nominal output, which, based on the area of the cooking zone, can be significantly higher than that of the heating elements previously used in glass ceramic hobs. This significantly increases the performance of the cooking system.
  • the power distribution is changed so that the temperature / time load on the glass ceramic is reduced under the pan base.
  • an increased power density compared to conventional heating systems is maintained, while in areas with poor thermal contact the power is reduced accordingly.
  • the cooking time is reduced due to the higher average power offered in the case of parboiling with poor dishes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Control Of Resistance Heating (AREA)
  • Electric Stoves And Ranges (AREA)
  • Resistance Heating (AREA)
  • Control Of Temperature (AREA)
  • Glass Compositions (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Description

  • Die Erfindung betrifft eine Vorrichtung zur Leistungssteuerung und -begrenzung bei einer Heizfläche aus Glaskeramik oder einem vergleichbaren Material, insbesondere bei einer Glaskeramikkochfläche mit wenigstens einer Heizzone mit zugeordneter Heizeinrichtung, bei welcher im Bereich der Heizzone auf der Heizfläche mehrere voneinander unabhängige Temperatursensoren so angeordnet sind, daß sie alle für einen Belastungsfall wesentlichen Stellen erfassen, und die Leistungszufuhr zu der Heizeinrichtung aufgrund der von den Temperatursensoren ermittelten Werte schalt- und steuerbar ist.
  • Heizflächen aus Glaskeramik oder einem vergleichbaren Material finden beispielsweise Verwendung als Wand- oder Deckenstrahler, Wärmetauscher oder andere großflächige Beheizungseinrichtungen, die in beliebiger Weise beheizt werden können.
  • Von besonderem Interesse sind heutzutage elektrisch oder gasbeheizte Kochfelder oder Einzelkochstellen, deren Heizfläche aus Glaskeramik besteht. Kochfelder dieser Art sind allgemein bekannt und schon vielfach in der Patentliteratur beschrieben worden. Die Beheizung der Heizzonen dieser Kochfelder (ohne Beschränkung der Allgemeinheit werden die Heizzonen bei Kochfeldern im folgenden auch Kochzonen genannt) erfolgt mittels unterhalb der Glaskeramikkochfläche angeordneten Heizeinrichtungen, z.B. elektrisch betriebene Kontaktheizelemente, Strahlungsheizelemente oder Gasbrenner. Weiterhin sind noch Induktionskochfelder bekannt.
  • Bei den bekannten Haushaltskochfeldern wird die Heizleistung für die Heizeinrichtungen durch Vorgabe vom Benutzer fest eingestellt oder durch ein wählbares Zeitprogramm elektronisch, elektromechanisch oder, bei Gasherden über Ventile, rein mechanisch gesteuert. Entsprechende Steuerungen sind beispielsweise in der Patentschrift DE-PS 3 639 186 A1 beschrieben.
  • Es ist bekannt, Heizzonen eines Glaskeramikkochfeldes, die einen größeren Durchmesser aufweisen, zum Beispiel um Töpfe mit größerem Durchmesser und/oder unrunder, beispielsweise ovaler, Bodenfläche zu erhitzen, mit Heizelementen mit mehreren Heizkreisen zu beheizen. Es ist auch bekannt, neben den ständig in Betrieb befindlichen Dauerheizelementen sog. Zuschaltheizelemente einzusetzen, die nur in der Ankochphase mit Leistung beaufschlagt werden, um eine beschleunigte Aufheizung der Kochzone zu erzielen. Die geometrische Anordnung der Heizelemente bzw. Heizkreise unterhalb einer Heizzone ist dabei üblicherweise an die Geometrie des Kochgeschirrs angepaßt.
  • So wird zum Beispiel in der DE-OS 33 14 501 A 1 eine Heizplatte mit zwei zueinander konzentrischen Heizkreisen beschrieben, bei welcher der äußere Heizkreis als Zuschaltheizkreis ausgelegt ist.
  • Die DE-PS 34 06 604 betrifft eine Heizeinrichtung, bei der die Heizzone mittels mehrerer Hoch- und Normaltemperaturstrahlungsheizelementen beheizt wird. Die Heizelemente sind dabei so angeordnet, daß die Heizstelle in zwei zueinander konzentrische Zonen aufgeteilt ist, wobei die innere Zone ausschließlich durch die vorzugsweise als Zuschaltheizelemente in der Ankochphase einsetzbaren Hochtemperaturstrahlungsheizelemente beheizbar ist und die äußere Zone durch die Normaltemperaturstrahlungsheizelemente.
    Eine vergleichbare Anordnung von mehreren Strahlungsheizelementen im Bereich einer Kochzone ist auch in der US-PS 4 639 579 zu finden.
  • Eine Heizeinrichtung mit einem Gasbrenner, der zwei unabhängig voneinander mit Gas beaufschlagbare Brennerkammern aufweist, die z.B. zueinander konzentrische Zonen im Kochzonenbereich begrenzen können, wird in der US-PS 4 083 355 beschrieben.
  • Bei den üblicherweise eingesetzten Glaskeramiken sind die maximalen Betriebstemperaturen auf 700°C zu begrenzen, um Beschädigungen der Kochfläche durch Überhitzung zu vermeiden.
  • Die Praxis hat gezeigt, daß Überhitzungen, d. h. anomale thermische Belastungszustände bei Glaskeramikkochflächen ihre Ursache meist in der Verwendung schlechten Kochgeschirrs oder Fehlbedienungen haben.
  • So tritt z.B. bei Kochgeschirr mit unebener Auflagefläche ein örtlich unterschiedlicher Wärmeentzug in der Kochzone auf. Durch Unachtsamkeit kann leerkochendes Geschirr noch höhere Temperatur/Zeit-Belastungen für die Glaskeramik verursachen. Weitere Extrembelastungen verursachen Töpfe mit zu kleinen Durchmessern sowie versehentlich versetzt, d.h. nicht zentrisch aufgestellte Töpfe. In diesen Fällen wird die Kochzone in den vom Topf nicht abgedeckten Bereichen überhitzt. Die Oberflächentemperatur der Glaskeramik kann in solchen Fällen erheblich über den im Leerlauf, d. h. ohne Topf, gemessenen Temperaturen liegen. Temperaturerhöhungen von bis zu 200 K über der Oberflächentemperatur im Leerlauf sind möglich.
  • Diese anomalen thermischen Belastungen im Bereich der Kochzonen können sich im Laufe der Zeit zu hohen Temperatur/Zeit-Belastungen aufaddieren und die Zerstörung der Kochflächen zur Folge haben. Extrem hohe Temperaturen können das aufgesetzte Kochgeschirr und auch die Glaskeramikkochfläche beschädigen. Topfemaille kann beispielsweise bei versehentlich leerkochendem Stahlemaille-Geschirr anschmelzen. Ebenso kann leerkochendes Aluminium-Geschirr durch schmelzendes Aluminium die Glaskeramikoberfläche beschädigen.
  • Da in der Praxis sowohl schlechtes bzw. ungeeignetes Kochgeschirr verwendet wird als auch die o.g. Fehlbedienungen vorkommen, muß die maximale Oberflächentemperatur im Leerlauf begrenzt werden. Aus dem gleichen Grund ist die spezifische Leistungsdichte der Heizeinrichtungen, bezogen auf die Fläche der beheizten Zone, auf derzeit ca. 7 Watt/cm² begrenzt.
  • Die oben geschilderten anomalen Belastungszustände können einerseits zur Beschädigung der Glaskeramikkochfläche führen und andererseits den Wirkungsgrad des Kochsystems erheblich verschlechtern.
  • Zur Temperaturüberwachung bei einer Glaskeramikkochfläche werden in der Regel sogenannte Schutztemperaturbegrenzer, z. B. zwischen den Heizelementen und der Glaskeramikfläche meist längs eines Durchmessers angeordnete Stabausdehnungsschalter, eingesetzt, die üblicherweise bei Überschreiten einer bestimmten Grenztemperatur die Heizeinrichtung ganz abschalten oder in ihrer Leistung vermindern.
  • Diese Schutztemperaturbegrenzer haben den Nachteil, daß sie lediglich die Temperatur unterhalb und nicht in der Kochfläche erfassen. Aufgrund der schlechten Wärmeleitung in Glaskeramik wird die Temperatur auch nur in unmittelbarer Nähe des Stabausdehnungsschalters detektiert. Darüber hinaus führt die Anordnung längs des gesamten Durchmessers der Kochzone dazu, daß bei Auftreten einer vom Stabausdehnungsschalter detektierbaren Überhitzung, unabhängig davon, ob diese lokal sehr begrenzt ist, immer die gesamte Heizeinrichtung in der Kochzone abgeschaltet bzw. in ihrer Leistung vermindert wird.
  • Aus der deutschen Patentschrift DE-PS 21 39 828 ist bekannt, daß Glas, Glaskeramik oder ähnliche Materialien einen von der Temperatur abhängigen elektrischen Widerstand besitzen, so daß daraus durch Aufbringen von Leiterbahnen, z.B. aus Edelmetallen, Temperaturmeßwiderstände mit steiler Widerstands-Temperatur-Kennlinie, ähnlich dem der bekannten NTC-Widerstände, hergestellt werden können.
  • Diese Art von Temperatur-Sensoren werden in der US-PS 4 237 368 in Verbindung mit entsprechender Beschaltung dazu benutzt, den o.g. Schutztemperaturbegrenzer vollkommen zu ersetzen. Dazu werden in jeder Kochzone jeweils zwei zueinander parallele Leiterbahnen, die jeweils einen streifenförmigen Glaskeramiktemperaturmeßwiderstand begrenzen, ähnlich wie die oben erwähnten Stabausdehnungsschalter, längs des Durchmessers der Kochzone auf die Glaskeramikkochfläche aufgebracht.
  • Diese Temperatursensoren erlauben zwar die Messung der Temperatur der Glaskeramikkochfläche selbst, die übrigen oben beschriebenen Nachteile bestehen jedoch auch hier.
  • Aus der GB 2 060 329 A, die den Oberbegriff des Anspruchs 1 bildet, ist eine Vorrichtung zur Leistungssteuerung und -begrenzung der eingangs genannten Art bekannt. Nach der Druckschrift sollen in der Kochzone einer Glaskeramikkochfläche mehrere voneinander unabhängige Temperatursensoren so angeordnet werden, daß unter Berücksichtigung der geringen Wärmeleitung in der Glaskeramik sowie der erwarteten Temperaturverteilung in der Kochzone bei anomalen thermischen Belastungsfällen eine flächendeckende Temperaturüberwachung möglich sein soll. Insbesondere sollen durch diese Maßnahme lokal auftretende Temperaturspitzen zuverlässig erfaßt werden. Als Temperatursensoren sollen Bimetallschalter, Thermistoren oder Thermoelemente Verwendung finden. Es wird eine rasterförmige Anordnung der Temperatursensoren vorgeschlagen, oder aber in einer bevorzugten Ausführungsform die Anordnung auf dem Umfang eines oder mehrerer zueinander konzentrischer Kreise in der Kochzone.
  • Nachteilig an dieser Vorrichtung ist, daß, wie in den oben beschriebenen Fällen, auch bei Auftreten- nur lokaler Temperaturspitzen die Heizleistung in der gesamten Kochzone vermindert, oder aber die Heizleistung insgesamt abgeschaltet wird.
  • Aufgabe der Erfindung ist, die aus der GB 2 060 329 A bekannte Vorrichtung zur Leistungssteuerung so weiterzubilden, daß nicht nur eine flächendeckende Temperaturüberwachung, sondern auch eine Anpassung der Leistungsverteilung an den örtlich unterschiedlichen Wärmeentzug möglich ist. Damit soll insbesondere ermöglicht werden, auch bei Verwendung schlechten Kochgeschirrs das Kochsystem optimal zu nutzen, dabei aber die thermische Belastung der Heizfläche gleichzeitig gering gehalten werden soll.
  • Diese Aufgabe wird gelöst mit einer Vorrichtung nach dem Oberbegriff des Patentanspruchs 1, welche dadurch gekennzeichnet ist, daß die Heizeinrichtung wenigstens zwei Heizelemente aufweist, welche jeweils in der Heizzone zugeordnete Bereiche begrenzen, daß die Temperatursensoren streifenförmige, in der Heizfläche durch parallele Leiterbahnen begrenzte und kontaktierte Glaskeramiktemperaturmeßwiderstände sind, und daß jedem Heizelement wenigstens ein solcher Temperatursensor zugeordnet ist, wobei die geometrische Anordnung der Leiterbahnen des Temperatursensors in einem dem Heizelement zugeordneten Bereich der Heizzone an die geometrische Gestalt des Heizelementes sowie an die erwartete Temperaturverteilung in diesem Bereich bei bekannten anomalen thermischen Belastungsfällen angepaßt ist, und daß die Heizelemente aufgrund der von dem(n) zugeordneten Temperatursensor(en) ermittelten Werte unabhängig voneinander so schalt- und steuerbar sind, die Leistungsverteilung in der Heizzone weitgehend an den örtlich unterschiedlichen Wärmeentzug anpaßbar ist.
  • Nach der Erfindung ist somit vorgesehen, die Heizzonen einer Heizfläche jeweils mit mehreren, wenigstens aber zwei Heizelementen bzw. Heizkreisen zu beheizen, welche in der Heizzone zugeordnete Bereiche begrenzen, und diese Heizelemente jeweils über Temperaturmeßsignale von in den zugeordneten Bereichen angeordneten Temperatursensoren unabhängig voneinander derart zu schalten und zu steuern, daß die Leistungsverteilung und damit die Flächenbelastung der Heizzone an den örtlich unterschiedlichen Wärmefluß, der zum Beispiel bei Kochfeldern von der Geometrie der Auflagefläche der aufgesetzten Töpfe abhängig ist, angepaßt wird.
  • An Stellen des größten Energieentzugs erfolgt die Beheizung somit z. B. auch bei schlechter Topfqualität mit optimaler Heizleistung, während an Stellen mit geringem Wärmeentzug durch Verminderung, z.B. Takten, der Heizleistung Überhitzungen vermieden werden.
  • Die Umwandlung der Temperaturmeßsignale in Steuersignale für die Leistungsversorgung der Heizelemente erfolgt mit Hilfe an sich bekannter Steuer- und Regeleinrichtungen.
  • Im einfachsten Fall wird bei Überschreiten einer vorgegebenen Schwellentemperatur die Leistungszufuhr für die Heizelemente so lange unterbrochen, bis die Temperatur in dem zugeordneten überhitzten Kochzonenbereich wieder unterhalb der Schwellentemperatur liegt. Danach wird wieder die volle Heizleistung zugeschaltet.
  • Bei Kochfeldern werden kürzere Kochzeiten jedoch dann erzielt, wenn die Leistungszufuhr für die Heizelemente in zeitlichen Abständen stetig oder stufenweise, beispielsweise jeweils auf ein um wenigstens 10 % vermindertes Niveau, so lange reduziert wird bis die Heizleistung der Heizelemente optimal an den maximal möglichen Wärmeentzug in dem zugeordneten Bereich der Heizzone angepaßt ist.
  • Als Temperatursensoren werden erfindungsgemäß die aus der DE-PS 21 39 828 bekannten, in die Heizflächen integrierten Temperatursensoren verwendet. Dazu werden auf der Heizfläche im Bereich der Heizzonen in an sich bekannter Weise zwei parallele Leiterbahnen, beispielsweise mittels Siebdruck oder Aufdampfen oder anderer Methoden, aufgebracht und anschließend eingebrannt. Der sehr stark temperaturabhängige elektrische Widerstand der zwischen den Leiterbahnen eingegrenzten Glaskeramik stellt den eigentlichen Temperatursensor dar.
  • Mit dieser Methode lassen sich auf einfache Art großflächige Temperatursensoren mit beliebiger Gestalt realisieren, die eine flächendeckende Temperaturüberwachung zulassen. Damit lassen sich beispielsweise auch großflächige Wärmestrahler und Wärmeaustauscher mit Heizflächen aus Glaskeramik, Glas oder ähnlichen Materialien überwachen und steuern.
  • Die geometrische Anordnung der Leiterbahnen im Bereich einer Heizzone wird zweckmäßigerweise an die geometrische Anordnung der Heizelemente sowie an die erwartete Temperaturverteilung bei bekannten anomalen thermischen Belastungsfällen angepaßt.
  • Die Temperatursensoren werden so angeordnet, daß sie alle wesentlichen Teile der den Heizelementen zugeordneten Bereiche der Heizzone erfassen, so daß auch lokale Überhitzungen erfaßt werden. Beispielsweise können über Heizwendelschleifen oder im Bereich von Flammenspitzen, z. B. bei Gas-Beheizung, an diesen Stellen gegenüber benachbarten Stellen höhere Temperaturen auftreten. Diese Temperaturspitzen müssen erfaßt werden, da sonst an diesen Stellen die Heizfläche beschädigt werden kann.
  • Nachfolgend wird die Erfindung anhand der Figuren näher erläutert:
  • Es zeigen:
  • Figur 1
    in einer schematischen Darstellung eine erfindungsgemäße Vorrichtung bei einem Haushaltskochfeld mit Glaskeramikkochfläche, wobei zwei ringförmige, zueinander konzentrisch angeordnete Temperatursensoren entsprechend der Anordnung der Heizkreise eines Zweikreisheizelements den Mitten- und den Randbereich einer Kochzone überwachen;
    Figur 2
    die Vorrichtung aus Figur 1 in einer Längsschnittdarstellung;
    Figuren 3a und 3b
    eine Sensoranordnung für nichtrunde Mehrkreisheizelemente
    Figur 4
    zur Verdeutlichung der Funktionsweise eines Glaskeramiktemperaturmeßwiderstandes in einer schematischen Darstellung einen vergrößerten Ausschnitt aus einer Anordnung aus zwei parallel verlaufenden Leiterbahnen mit dazwischenliegendem Glaskeramikwiderstand;
    Figur 5a
    in einer schematischen Darstellung eine bekannte Schaltungsanordnung für die Sensoranordnung aus Figur 1 zur Einstellung des Temperaturbereichs mit größter Meßempfindlichkeit;
    Figur 5b
    in einer schematischen Darstellung eine bekannte Schaltungsanordnung für die Sensoranordnung aus Figur 1 zur Umwandlung der Temperaturmeßsignale in Steuersignale für die Leistungsversorgung der Heizkreise.
    Figur 6
    für eine mit einem Zweikreisheizelement beheizte Kochzone für vier verschiedene Belastungsfälle den Verlauf der Sensorsignale mit der Zeit bei einer Leistungssteuerung und -begrenzung gemäß der Erfindung.
  • Figuren 1 und 2 zeigen beispielhaft eine erfindungsgemäße Vorrichtung, bei einem Kochfeld mit Glaskeramikkochfläche.
  • In der vorliegenden Anordnung sind innerhalb der Kochzone (1) eines Glaskeramikkochfeldes auf der Glaskeramikunterseite Leiterbahnen (2) aus Gold angeordnet. Die Leiterbahnführung ist derart gewählt, daß der Außenkreis (3a) und der Innenkreis (3b) eines Zweikreis-Heizelements (4) jeweils mit ringförmig ausgebildeten Leiterbahnen abgedeckt sind. Die Anschlußbereiche (5) liegen zum Schutz gegen thermische Belastungen außerhalb der Kochzone (1).
  • Figur 2 zeigt die Anordnung, bestehend aus der Glaskeramikplatte (6), dem Zweikreis-Heizelement (4) mit den Heizwendeln (4a) und den auf der Unterseite der Glaskeramik aufgedruckten Leiterbahnen (2) sowie den Anschlußbereichen (5) im Schnitt.
  • Die Erfindung ist keineswegs auf die Verwendung der in den Figuren 1 und 2 dargestellten Zweikreis-Heizelemente beschränkt. Prinzipiell kann jede Heizeinrichtung verwendet werden, die sich im Bereich einer Kochzone aus mehreren unabhängig voneinander schalt- und steuerbaren Heizelementen zusammensetzt. Die Erfindung kann z.B. auch bei Gasbrennern zur Anwendung kommen, so z.B. auch bei dem aus der US-PS 4 083 355 bekannte Gasbrenner mit zwei voneinander unabhängig mit Brennstoff beaufschlagbaren Brennerkammern.
  • Die Heizelemente können z.B. in einem Raster unterhalb der Kochzone angeordnet sein. Vorteilhafterweise ist die geometrische Anordnung der Heizelemente jedoch an die Geometrie des Kochgeschirrs bzw. an die Temperaturverteilung im Kochzonenbereich bei bekannten anomalen thermischen Belastungsfällen angepaßt, so daß eine wirkungsvolle Steuerung der Leistungsverteilung an den örtlich unterschiedlichen Wärmeentzug möglich wird.
  • Bei den bei Kochfeldern mit Glaskeramikkochfläche möglichen Fehlbedienungen und/oder Unzulänglichkeiten des Kochgeschirrs tritt i.a. ein unterschiedlicher Wärmeentzug im Rand- und Mittenbereich der Kochzone auf. Die Verwendung von Mehrkreisheizelementen (mit und ohne Isolationsbarriere zwischen den Heizkreisen) - insbesondere Zweikreisheizelementen mit zwei zueinander konzentrischen Heizkreisen - die eine getrennte Beheizung von Rand- und Mittenbereich zulassen, ist daher für die Anwendung des erfindungsgemäßen Verfahrens besonders vorteilhaft. Es kann dabei je nach Anwendungsfall zweckmäßig sein, die einzelnen Heizkreise für unterschiedliche Flächenbelastungen auszulegen. Mit Hilfe einer ringförmigen Anordnung der Leiterbahnen über den Heizkreisen ist nicht nur eine wirkungsvolle Überwachung der den einzelnen Heizkreisen zugeordneten Bereiche der Kochzone möglich, es werden damit auch alle für einen Belastungsfall relevanten Stellen im Bereich der Kochzone erfaßt.
  • Die Leiterbahnen (2) decken nur einen geringen Teil der Kochzone ab. Bevorzugt sind Leiterbahnbreiten von < 3 mm. Im vorliegenden Fall sind die Leiterbahnen 1-2 mm breit, so daß die Gesamtfläche der Leiterbahnen in Bezug auf die Fläche der beheizten Zone klein ist. Eine Beeinflussung des Gesamtwärmeflusses wird dadurch minimiert. Der Flächenwiderstand dieser Leiterbahnschichten ist ≦ 50 mΩ/ bei Schichtdicken unter 1 µm.
  • Man erhält so zwei voneinander unabhängige Temperatursensoren, die die beiden Heizkreise (3a) und 3b) getrennt überwachen. Analog zu der oben beschriebenen Anordnung werden für andere, nichtrunde Heizelemente den jeweiligen Umrissen bzw. Geometrien angepaßte Leiterbahnanordnungen gewählt, mit denen die einzelnen Kochzonenbereiche getrennt überwacht werden. Figur 3a und 3b zeigen entsprechende Anordnungen für eckige und ovale Mehrkreis-Heizelemente.
  • Die parallel geführten Leiterbahnen (2) innerhalb der Kochzone (1) begrenzen schmale kreis- oder linienförmige Temperaturmeßzonen, in denen das von den Leiterbahnen eingegrenzte Glaskeramik-Volumen als temperaturabhängiger Widerstand dient. Die elektrische Leitung der Glaskeramik beruht, wie bei Gläsern, auf der Ionenleitung. Die Abhängigkeit wird durch das Gesetz von Rasch und Hinrichsen beschrieben: R = a * exp (b/T)
    Figure imgb0001
  • R ist der spezifische Widerstand der Glaskeramik in Ohm*cm bei der absoluten Temperatur T in Kelvin.
  • a und b sind von der Geometrie der Leiterbahnen und von der Glaskeramik abhängige Konstanten (a in Ohm*cm und b in K).
  • Der Temperaturkoeffizient dieser Meßwiderstände ist negativ. Er ist stark temperaturabhängig und beträgt z.B. für Glaskeramiken des Systems SiO₂-Al₂O₃-Li₂O bei 300°C 3.3 %/°C.
  • Der elektrische Gesamtwiderstand einer solchen Anordnung setzt sich aus beliebig vielen parallel geschalteten differentiellen Widerständen mit negativem Temperaturkoeffizienten zusammen und läßt sich durch die nachfolgende Gleichung ausdrücken: 1/R = 1/R₁ (T) + 1/R₂ (T) + ... + 1/R i (T) + ... 1/R n (T)
    Figure imgb0002
  • Der temperaturabhängige Widerstand jedes differentiellen Widerstands Ri(T) läßt sich durch die nachfolgende Gleichung ausdrücken R i (T i ) = l i /A i * a * exp (b/T i )
    Figure imgb0003

    worin li die Länge in cm und Ai die Querschnittsfläche in cm² eines jeden differentiellen Glaskeramik-Widerstands darstellen. Die Konstanten a und b sind von der Geometrie der Leiterbahnen und von der Glaskeramik abhängige Konstanten (a in Ohm*cm und b in Kelvin). Ti ist die absolute Temperatur eines jeden differentiellen Widerstands in Kelvin.
  • Der elektrische Gesamtwiderstand wird durch den kleinsten Widerstand an der Stelle der höchsten Temperatur der Sensorzonen bestimmt, woraus eine automatische Anzeige der Maximaltemperatur in der jeweiligen Sensorzone resultiert. Lokal auftretende hohe Temperaturen bewirken, daß ein oder mehrere differentielle Widerstände im Verhältnis zu den anderen differentiellen Widerständen, die in kälteren Zonen liegen, niederohmig werden, so daß der Gesamtwiderstand eines Sensors nach Gl. 2 sehr klein wird.
  • Figur 4 zeigt zur Verdeutlichung schematisch einen Ausschnitt von den gegenüber liegenden Leiterbahnen (2). Die dazwischen eingegrenzte Glaskeramik läßt sich als Parallelschaltung vieler temperaturabhängiger differentieller Widerstände auffassen.
  • Bei niedrigen Temperaturen besitzt diese Anordnung gemäß der Gl. 2 und 3 einen sehr hohen Widerstand. Bei höheren Temperaturen, beispielsweise den typischen Temperaturen, die im Leerlauf gemessen werden, nimmt der Widerstand um mehrere Größenordnungen ab. Ebenso nimmt der Widerstand erheblich ab, wenn nur in einem kleinen Bereich der Glaskeramik hohe Temperaturen auftreten, z.B. beim versetzten Topf. Ein Temperaturausgleich zwischen benachbarten Zonen, die unterschiedliche Temperaturen besitzen, findet aufgrund der geringen Wärmeleitung bei Glas, Glaskeramik oder ähnlichem Material mit einem λ von typisch kleiner 2 W/mK kaum statt.
  • Die Umsetzung der temperaturabhängigen Leitfähigkeitsänderung der Glaskeramik in ein Meßsignal läßt sich in einem mit Wechselspannung versorgten Spannungsteiler realisieren, in dem ein Widerstand durch den temperaturabhängigen Widerstand der Sensorflächen gebildet wird. Die Festwiderstände des Spannungsteilers müssen, abhängig von der Sensorgeometrie so gewählt werden, daß bei Temperaturen, die die zulässige Temperatur/Zeit-Belastung überschreiten, für die Weiterverarbeitung ausreichende Signaländerungen am Spannungsteiler abgegriffen werden können. Der Temperaturbereich, in dem der größte Signalhub auftritt, kann durch Anpassen der Festwiderstände geändert werden. Die Festwiderstände dienen gleichzeitig der Strombegrenzung.
  • Die Wechselspannung ist erforderlich, Polarisationseffekte der Glaskeramik und die damit verbundene elektrochemische Zersetzung aufgrund der Ionenwanderung zu vermeiden. Bevorzugt werden für die anliegende Wechselspannung Frequenzen, die im Bereich zwischen 50 Hz und 1000 Hz liegen.
  • Figur 5a zeigt schematisch die Schaltungsanordnung gemäß der Erfindung, wobei jeweils ein Spannungsteiler (7) für jeden Temperatursensor dargestellt ist. Beide Spannungsteiler werden von einer Wechselspannungsquelle (8), hier als Transformator dargestellt, versorgt. Damit ist sichergestellt, daß die Glaskeramik, hier als temperaturabhängiger Widerstand (9) dargestellt, nicht von Gleichstrom durchflossen wird. Die beiden Festwiderstände (10a) und (10b) wurden so gewählt, daß eine große Signaländerung im Bereich von 500 bis 600°C auftritt. Dieser Temperaturbereich ist charakteristisch für die in der Praxis vorkommenden Oberflächentemperaturen innerhalb der Kochzonen (1) von Glaskeramik-Kochfeldern.
  • Über eine Gleichrichterschaltung wird das am Spannungsteiler anstehende Wechselspannungssignal gleichrichtet und einer geeigneten elektronischen Schaltung zugeführt. Dies können Operationsverstärker, die als Komparatoren geschaltet sind, oder andere aus der Elektronik bekannte Schaltungen und Bauelemente, wie µ-Prozessoren oder dergleichen sein.
  • Die von den Sensoren gelieferten Signale werden in diesen Schaltungen derart verarbeitet, daß an deren Ausgang ein Signal zur Verfügung steht, mit dem sich die einzelnen Heizkreise über Relais oder Leistungs-Halbleiterbauelemente, wie Triac's oder MOS-FET's steuern lassen. Die Leistungssteuerung kann beispielsweise mittels Phasenanschnitt, Halb- oder Vollwellenpaketsteuerung mit unterschiedlichen Tastverhältnissen erfolgen, so daß auch stetige Temperaturregelungen möglich werden. Das Ausgangssignal der Steuerelektronik kann dabei auch über Optokoppler oder andere Schaltungen, die der galvanischen Trennung zwischen Steuerelektronik und Leistungsteil dienen, den oben beschriebenen Halbleiterbauelementen zugeführt werden. Ebenso lassen sich sogenannte Nullspannungsschalter realisieren, die die einzelnen Heizkreise der Heizelemente nur im Spannungsnulldurchgang schalten.
  • In der bestehenden Anordnung (Figur 5b) wird das am Spannungsteiler (7) abgegriffene Signal über eine Gleichrichterschaltung (11) dem einen Eingang eines als Komparator geschalteten Operationsverstärkers (12) zugeführt. Der Komparator hat die Aufgabe, das von der Sensoranordnung stammende temperaturabhängige Signal mit einem fest eingestellten Spannungswert, der Schwellenspannung Us in Figur 5b zu vergleichen. Liegt die Spannung vom Sensor über der Schwellenspannung, was in der vorliegenden Anordnung bei verhältnismäßig niedrigen Temperaturen der Fall wäre, z.B. bei Verwendung guten Geschirrs, wird der Ausgang des Komparators durchgeschaltet. Dieses Signal wird über eine Diode (13) und einen Optokoppler (14) einem Halbleiter-Wechselstromschalter (Triac) mit integriertem Nullspannungsschalter (15) zugeführt der die Heizwendel (4a) eines Heizkreises steuert. Besonders wichtig ist dabei, daß in der vorliegenden Anordnung eine galvanische Trennung zwischen elektronischer Meßschaltung und Leistungsteil gegeben ist.
  • Bei Unterschreiten der Schwellenspannung mit zunehmender Temperatur schaltet der Ausgang des Komparators (12) auf negatives Potential. Die Diode (13) sperrt, so daß der Triac (15) ebenfalls sperrt. Der entsprechende Heizkreis wird abgeschaltet. Die Temperatur der Glaskeramik nimmt infolgedessen wieder ab, wodurch sich der elektrische Widerstand der Sensoren wieder erhöht. Dadurch steigt die Spannung am Ausgang des Spannungsteilers wieder an. Sobald die gleichgerichtete Spannung Ui bzw. Ua wieder über der Schwellenspannung Us liegt, schaltet der Ausgang des Komparators (12) wieder auf positives Potential, wodurch über die nun wieder leitende Diode der Triac (15) im Nulldurchgang zündet und damit die entsprechende Heizwendel eingeschaltet wird. Mit dieser Anordnung wird somit, getrennt für jeden Heizkreis, eine Regelung ermöglicht.
  • Für die Praxis hat dies folgende Auswirkungen:
  • Bei Verwendung guten Geschirrs bleibt die Oberflächentemperatur der Glaskeramik sowohl im Außenkreis (3a) als auch im Innenkreis (3b) unterhalb einer der Schwellenspannung entsprechenden Temperatur. Die Ausgänge der beiden Komparatoren besitzen ein positives Potential, so daß beide Heizkreise eingeschaltet sind und somit ihre volle Nennleistung abgeben können. Figur 6a zeigt den zeitlichen Spannungsverlauf für Ui (Innenkreis) und Ua (Außenkreis).
  • Bei Kochgeschirr mit eingezogenem Boden erhitzt sich die Glaskeramik unter dem Topfboden aufgrund des schlechten Wärmeentzugs im Bereich des Innenkreises wesentlich stärker als im Außenbereich der Kochzone (1), da im Außenbereich die Glaskeramik in Kontakt mit dem Topfboden steht. Für den Innenkreis ist die Folge, daß die Schwellenspannung durch die höhere Temperatur unterschritten wird. Die Leistung des Innenkreises wird daher im zeitlichen Mittel so weit reduziert, daß ein Überschreiten der Temperatur/Zeit-Belastungsgrenze für die Glaskeramik ausgeschlossen ist. Figur 6b zeigt den typischen Verlauf für Ui und Ua. Deutlich ist für den Innenkreis das Takten bei Erreichen der Schwellenspannung Us zu erkennen. Die Hysteresis läßt sich durch geeignete Beschaltung des Komparators (12) einstellen. Im Falle eines Topfes mit nach außen gewölbtem Boden sind die Verhältnisse ähnlich, nur wird entsprechend der Lage der überhitzten Zone im Außenbereich der Kochzone nicht die Leistung für den inneren, sondern für den äußeren Heizkreis reduziert.
  • Bei den ebenfalls möglichen Belastungsfällen "versetzter Topf" oder "zu kleiner Topf", erhitzt sich der Außenbereich der Kochzone stärker als der Innenbereich, so daß die mittlere Leistung im Außenheizkreis entsprechend reduziert wird, Figur 6c.
  • Für den Fall, daß ein Topf leerkocht, steigt die Temperatur der Glaskeramik im Innen- und Außenbereich stark an. In diesem Fall wird bei beiden Heizkreisen die Leistung reduziert, Figur 6d.
  • Mit der oben beschriebenen Anordnung wird erreicht, daß die dem Topf zugeführte Leistung optimal an dessen Qualität angepaßt wird. Töpfen mit guter Qualität wird aufgrund des guten Wärmeentzugs die volle Nennleistung zur Verfügung gestellt, die, bezogen auf die Fläche der Kochzone, erheblich über der der bisher in Glaskeramikkochfeldern eingesetzten Heizelemente liegen kann. Dadurch wird die Leistungsfähigkeit des Kochsystems wesentlich gesteigert.
  • Bei Verwendung schlechter Topfqualitäten oder bei Fehlstellungen des Kochgeschirrs wird die Leistungsverteilung so geändert, daß unter dem Topfboden die Temperatur/Zeit-Belastung der Glaskeramik reduziert wird. In den Bereichen der Kochzone, in denen der Topf aufsteht und ein guter Wärmeentzug stattfindet, wird eine gegenüber herkömmlichen Beheizungssystemen erhöhte Leistungsdichte beibehalten, während in Bereichen mit schlechtem Wärmekontakt die Leistung entsprechend reduziert wird. Insgesamt wird damit bei Ankochvorgängen mit schlechtem Geschirr die Ankochdauer infolge der höheren angebotenen mittleren Leistung verringert.

Claims (6)

  1. Vorrichtung zur Leistungssteuerung und -begrenzung bei einer Heizfläche (6) aus Glaskeramik oder einem vergleichbaren Material, bei einer Glaskeramikkochfläche mit wenigstens einer Heizzone (1) mit zugeordneter Heizeinrichtung (4),
    bei welcher im Bereich der Heizzone (1) auf der Heizfläche (6) mehrere voneinander unabhängige Temperatursensoren so angeordnet sind, daß sie alle für einen Belastungsfall wesentlichen Stellen erfassen, und
    die Leistungszufuhr zu der Heizeinrichtung (4) aufgrund der von den Temperatursensoren ermittelten Werte schalt- und steuerbar ist,
    dadurch gekennzeichnet,
    daß die Heizeinrichtung (4) wenigstens zwei Heizelemente (3a,b) aufweist, welche jeweils in der Heizzone (1) zugeordnete Bereiche begrenzen,
    daß die Temperatursensoren streifenförmige, in der Heizfläche (6) durch parallele Leiterbahnen (2) begrenzte und kontaktierte Glaskeramiktemperaturmeßwiderstände sind,
    und daß jedem Heizelement (3a,b) wenigstens ein solcher Temperatursensor zugeordnet ist,
    wobei die geometrische Anordnung der Leiterbahnen (2) des Temperatursensors in einem dem Heizelement zugeordneten Bereich der Heizzone (1) an die geometrische Gestalt des Heizelementes (3a,b) sowie an die erwartete Temperaturverteilung in diesem Bereich bei bekannten anomalen thermischen Belastungsfällen angepaßt ist,
    und daß die Heizelemente (3a,b) aufgrund der von dem(n) zugeordneten Temperatursensor(en) ermittelten Werte unabhängig voneinander so schalt- und steuerbar sind,
    daß die Leistungsverteilung in der Heizzone weitgehend an den örtlich unterschiedlichen Wärmeentzug anpaßbar ist.
  2. Vorrichtung nach Anspruch 1,
    dadurch gekennzeichnet,
    daß die den einzelnen Heizelementen zugeführte Leistung in zeitlichen Abständen stufenweise oder stetig an den maximal möglichen Wärmeentzug in den den Heizelementen zugeordneten Bereichen der Heizzone angepaßt ist.
  3. Vorrichtung nach Anspruch 1 oder 2,
    dadurch gekennzeichnet,
    daß bei einer Glaskeramikkochfläche der Rand- und der Mittenbereich der Kochzone unabhängig voneinander beheiz- und überwachbar sind.
  4. Vorrichtung nach wenigstens einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet,
    daß die Heizeinrichtung ein Mehrkreisheizelement ist.
  5. Vorrichtung nach Anspruch 4,
    dadurch gekennzeichnet,
    daß die Heizeinrichtung ein Zweikreisheizelement ist.
  6. Vorrichtung nach Anspruch 4 oder 5,
    dadurch gekennzeichnet,
    daß die einzelnen Heizkreise jeweils für unterschiedliche Flächenbelastungen ausgelegt sind.
EP91110463A 1990-07-18 1991-06-25 Vorrichtung zur Leistungssteuerung und -begrenzung bei einer Heizfläche aus Glaskeramik oder einem vergleichbaren Material Expired - Lifetime EP0471171B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4022846A DE4022846C2 (de) 1990-07-18 1990-07-18 Vorrichtung zur Leistungssteuerung und -begrenzung bei einer Heizfläche aus Glaskeramik oder einem vergleichbaren Material
DE4022846 1990-07-18

Publications (3)

Publication Number Publication Date
EP0471171A2 EP0471171A2 (de) 1992-02-19
EP0471171A3 EP0471171A3 (en) 1992-08-05
EP0471171B1 true EP0471171B1 (de) 1995-01-11

Family

ID=6410522

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91110463A Expired - Lifetime EP0471171B1 (de) 1990-07-18 1991-06-25 Vorrichtung zur Leistungssteuerung und -begrenzung bei einer Heizfläche aus Glaskeramik oder einem vergleichbaren Material

Country Status (6)

Country Link
US (1) US5352864A (de)
EP (1) EP0471171B1 (de)
JP (1) JP2715193B2 (de)
AT (1) ATE117157T1 (de)
DE (2) DE4022846C2 (de)
ES (1) ES2066280T3 (de)

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4130337C2 (de) * 1991-09-12 2002-05-02 Ego Elektro Blanc & Fischer Verfahren zum Betrieb einer elektrischen Heizeinheit und elektrische Heizeinheit
GB2277145B (en) * 1993-04-13 1997-08-27 Redring Electric Ltd A hob
DE4336752C2 (de) * 1993-10-28 1999-06-24 Aeg Hausgeraete Gmbh Verfahren zum Zubereiten von Speisen in einem Kochgeschirr auf einem Kochfeld aus Keramik, insbesondere Glaskeramik
FR2726634B1 (fr) * 1994-11-04 1996-11-29 Europ Equip Menager Appareil de cuisson a induction
DE4445426A1 (de) 1994-12-20 1996-06-27 Schott Glaswerke Strahlungsbrenner mit einer gasdurchlässigen Brennerplatte
US5640947A (en) * 1995-02-15 1997-06-24 Shute; Alan B. Counter-top cooking unit using natural stone
EP0786923A3 (de) * 1996-01-26 1998-01-07 AEG Hausgeräte GmbH Schaltungssystem für den Übertemperaturschutz der Glaskeramikplatte eines Kochfeldes
DE19604306C2 (de) * 1996-02-07 2000-05-11 Ako Werke Gmbh & Co Strahlungsheizkörper
DE19646826C5 (de) * 1996-02-22 2008-10-16 AEG Hausgeräte GmbH Vorrichtung zur Temperaturmessung an Kochstellen
DE19643698C2 (de) * 1996-05-11 2000-04-13 Aeg Hausgeraete Gmbh Vorrichtung zur Abschirmung von für kapazitive Messungen verwendeten Leiterbahnen eines Kochfeldes
DE19632057C2 (de) * 1996-08-09 2000-06-21 Schott Glas Verfahren zum Kalibrieren von Temperaturmeßwiderständen auf Trägern aus Glas, Glaskeramik oder dergleichen
DE19654773C1 (de) * 1996-12-31 1998-04-23 Schott Glaswerke Verfahren und Vorrichtung zur betrieblichen Messung der Temperatur in mindestens einer Kochzone eines Kochfeldes mit einer Glaskeramikplatte
DE19700753C2 (de) * 1997-01-11 2000-09-14 Schott Glas Kochfeld mit einer nicht-metallischen Kochplatte
GB2327541A (en) * 1997-07-17 1999-01-27 Ceramaspeed Ltd Electric heater control for a glass-ceramic top cooking appliance
US5973298A (en) * 1998-04-27 1999-10-26 White Consolidated Industries, Inc. Circular film heater and porcelain enamel cooktop
DE19828052A1 (de) * 1998-06-24 1999-12-30 Cherry Gmbh Einrichtung zur Temperaturbegrenzung eines Glaskeramikkochfelds
DE19845103A1 (de) * 1998-09-30 2000-04-06 Bsh Bosch Siemens Hausgeraete Kontaktwärmeübertragendes elektrisches Kochsystem und Verfahren zum Betreiben eines entsprechenden Kochsystems
DE19851029C2 (de) 1998-11-05 2000-12-21 Schott Glas Verfahren zum Anpassen des Grenzwertes der Betriebstemperatur einer Glas-/Glaskeramikkochfläche und Vorrichtung zur Durchführung des Verfahrens
DE19906115C1 (de) * 1999-02-13 2000-08-31 Schott Glas Verfahren zum Erkennen des Leerkochens von Geschirr bei Kochfeldern mit einer Glaskeramik-Kochfläche und zugehörige Vorrichtung
US6127659A (en) * 1999-04-26 2000-10-03 Hardt Equipment Manufacturing Inc. Food warmer
US6242722B1 (en) * 1999-07-01 2001-06-05 Thermostone Usa, Llc Temperature controlled thin film circular heater
US6225608B1 (en) 1999-11-30 2001-05-01 White Consolidated Industries, Inc. Circular film heater
DE10023179C2 (de) * 2000-05-11 2002-07-18 Schott Glas Vorrichtung und deren Verwendung Steuerung von Kochfeldern mit Glaskeramikkochflächen
DE10041967A1 (de) * 2000-08-25 2002-03-21 Schott Glas Kochfläche aus Glaskeramik
DE10103299B4 (de) * 2001-01-25 2010-08-05 BSH Bosch und Siemens Hausgeräte GmbH Kochmuldenheizvorrichtung
EP1355214A3 (de) * 2002-04-17 2004-12-15 Diamond H Controls Limited Thermischer Sensor, Herstellungsverfahren und Verwendung davon als Flammenfehlerdetektor
GB2391725A (en) * 2002-04-17 2004-02-11 Diamond H Controls Ltd Control device with thermal sensor
DE10307246A1 (de) 2003-02-17 2004-08-26 E.G.O. Elektrogerätebau GmbH Heizungseinrichtung mit zwei Bereichen
GB0313831D0 (en) * 2003-06-16 2003-07-23 Ceramaspeed Ltd Apparatus and method for detecting abnormal temperature rise associated with a cooking arrangement
FR2856881B1 (fr) * 2003-06-30 2005-08-26 Frima Sa Plaque chauffante avec une pluralite de pistes chauffantes, ainsi qu'un appareil de cuisson comprenant une telle plaque chauffante
US7025893B2 (en) * 2003-08-12 2006-04-11 Thermo Stone Usa, Llc Structure and method to compensate for thermal edge loss in thin film heaters
KR20050026598A (ko) * 2003-09-09 2005-03-15 삼성전자주식회사 전기조리기 및 그 제어방법
FR2859867B1 (fr) * 2003-09-16 2006-04-14 Frima Sa Element chauffant pour appareil de cuisson
DE102004034204A1 (de) * 2004-07-14 2006-02-09 Meier Vakuumtechnik Gmbh Heizplatte, insbesondere für einen Laminator
US7825353B2 (en) 2005-10-05 2010-11-02 Evo, Inc. Electric cooking apparatus
DE102006021029A1 (de) * 2006-04-28 2007-10-31 E.G.O. Elektro-Gerätebau GmbH Vorrichtung und Verfahren zur Temperaturmessung an einer Induktionsheizvorrichtung
DE102007012379A1 (de) * 2007-03-14 2008-09-18 BSH Bosch und Siemens Hausgeräte GmbH Kochfeldvorrichtung
DE102008041184B4 (de) * 2008-08-12 2023-08-17 BSH Hausgeräte GmbH Verfahren und Vorrichtung zum Betreiben einer Kochstelle eines Kochfeldes
ES2356780B1 (es) 2009-01-20 2012-03-13 Bsh Electrodomésticos España, S.A. Campo de cocción con al menos una zona de calentamiento de varios elementos de calentamiento.
US9282593B2 (en) * 2011-06-03 2016-03-08 General Electric Company Device and system for induction heating
DE102014215776A1 (de) * 2014-08-08 2016-02-11 BSH Hausgeräte GmbH Verfahren zum Beschleunigen eines Kochvorgangs, Steuereinrichtung sowie Gargerät hierfür
US9909764B2 (en) * 2016-07-11 2018-03-06 Haier Us Appliance Solutions, Inc. Cooking appliance and method for limiting cooking utensil temperatures using dual control modes
KR102069583B1 (ko) * 2017-06-26 2020-01-23 엘지전자 주식회사 유도 가열 장치 및 유도 가열 장치의 용기 감지 방법
US11562913B2 (en) * 2019-04-25 2023-01-24 Watlow Electric Manufacturing Company Multi-zone azimuthal heater
WO2022022978A1 (de) * 2020-07-30 2022-02-03 BSH Hausgeräte GmbH Kochfeldsystem und verfahren zum betrieb eines kochfeldsystems

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3622754A (en) * 1970-07-24 1971-11-23 Gen Electric Glass plate surface heating unit with even temperature distribution
DE2139828C3 (de) * 1971-08-09 1974-02-14 Jenaer Glaswerk Schott & Gen., 6500 Mainz Temperaturmeßwiderstand mit großer Temperaturwechselbeständigkeit aus Glaskeramik
NL176301C (nl) * 1974-08-24 Schwank Gmbh Toestel met ten minste een gasbrander voor een kookplaat.
US4237368A (en) * 1978-06-02 1980-12-02 General Electric Company Temperature sensor for glass-ceramic cooktop
GB2060329A (en) * 1979-10-11 1981-04-29 Thorn Domestic Appliances Ltd Cooking hobs
FR2476308A1 (fr) * 1980-01-14 1981-08-21 Johnson Matthey Co Ltd Plaque en vitre ceramique comprenant un dispositif de mesure de la temperature
GB2138659B (en) * 1980-01-14 1985-05-15 Johnson Matthey Plc Glass ceramic hob including temperature sensor
NZ196104A (en) * 1980-02-01 1984-08-24 Micropore International Ltd Cooker plate with twin element:thermal cut-out for one
US4394546A (en) * 1980-10-09 1983-07-19 Alps Electric Co., Ltd. Composite switch assembly
DE3117205A1 (de) * 1981-04-30 1982-12-02 Ernst Dipl.-Kfm. Dr. 7100 Heilbronn Haag Optoelektronische kochfeldsteuerung
FR2515790B1 (fr) * 1981-10-29 1986-12-12 Dietrich De Perfectionnement aux indicateurs de chaleur residuelle pour tables ou plans de cuisson a energie electrique
US4394564A (en) * 1981-12-21 1983-07-19 General Electric Company Solid plate heating unit
DE3314501A1 (de) * 1983-04-21 1984-10-25 Ego Elektro Blanc & Fischer Heizelement, insbesondere strahlungs-heizelement fuer die beheizung von glaskeramikplatten
DE3234349A1 (de) * 1982-09-16 1984-03-22 Ego Elektro Blanc & Fischer Heizkoerper fuer glaskeramikkochflaechen
GB8323387D0 (en) * 1983-08-31 1983-10-05 Thorn Emi Domestic Appliances Heating apparatus
GB8412339D0 (en) * 1984-05-15 1984-06-20 Thorn Emi Domestic Appliances Heating apparatus
DE3639186A1 (de) * 1986-11-15 1988-05-26 Ego Elektro Blanc & Fischer Elektro-schaltgeraet, insbesondere zur leistungssteuerung
US4755655A (en) * 1986-12-04 1988-07-05 General Electric Company Thermal protection arrangement for solid disk glass cooktop
US4740664A (en) * 1987-01-05 1988-04-26 General Electric Company Temperature limiting arrangement for a glass-ceramic cooktop appliance
DE3736005A1 (de) * 1987-10-23 1989-05-03 Bosch Siemens Hausgeraete Steuereinheit fuer elektronische kochstellen-temperaturregelung mit temperatursensor
DE8914470U1 (de) * 1988-12-09 1990-06-21 Emaco Ltd., Bedfordshire, Bedfordshire Steuereinrichtung für eine elektrische Heizeinheit
US5001423A (en) * 1990-01-24 1991-03-19 International Business Machines Corporation Dry interface thermal chuck temperature control system for semiconductor wafer testing
DE4022845A1 (de) * 1990-07-18 1992-01-23 Schott Glaswerke Temperatursensor oder -sensoranordnung aus glaskeramik und kontaktierenden filmwiderstaenden
DE4022844C1 (de) * 1990-07-18 1992-02-27 Schott Glaswerke, 6500 Mainz, De
GB2263379B (en) * 1992-01-10 1995-07-26 Ceramaspeed Ltd Radiant heater having multiple heating zones

Also Published As

Publication number Publication date
ES2066280T3 (es) 1995-03-01
JP2715193B2 (ja) 1998-02-18
DE59104213D1 (de) 1995-02-23
DE4022846A1 (de) 1992-01-23
ATE117157T1 (de) 1995-01-15
DE4022846C2 (de) 1994-08-11
US5352864A (en) 1994-10-04
EP0471171A3 (en) 1992-08-05
EP0471171A2 (de) 1992-02-19
JPH05347177A (ja) 1993-12-27

Similar Documents

Publication Publication Date Title
EP0471171B1 (de) Vorrichtung zur Leistungssteuerung und -begrenzung bei einer Heizfläche aus Glaskeramik oder einem vergleichbaren Material
EP0467134B1 (de) Verfahren und Vorrichtung zum Anzeigen eines anomalen thermischen Belastungszustandes einer Heizfläche aus Glaskeramik oder einem vergleichbaren Material
DE3744372C2 (de) Leistungssteuerungsverfahren zum Schutz von Glaskeramikkochflächen
DE4130337C2 (de) Verfahren zum Betrieb einer elektrischen Heizeinheit und elektrische Heizeinheit
EP0467133B1 (de) Temperatursensor oder -sensoranordnung aus Glaskeramik und kontaktierenden Filmwiderständen
DE69832329T2 (de) Verfahren und Vorrichtung zur Regelung eines elektrischen Heizelementes
EP0250880B1 (de) Strahlheizkörper
DE69026553T2 (de) Temperaturmessvorrichtung für Induktionskochgerät und Gerät mit einer solchen Vorrichtung
DE4345472C2 (de) Verfahren zum Zubereiten von Speisen in einem wenigstens teilweise mit Wasser gefüllten Kochgeschirr auf einem Kochfeld aus Keramik, insbesondere Glaskeramik
DE19648397A1 (de) Verfahren und Vorrichtung zum Erkennen des Kochpunktes von Kochgut
DE4413979C2 (de) Sensorgesteuerte Garungseinheit und Gargerät
EP0967839A2 (de) Kochfeld mit Bedieneinheit zur Vorgabe der Leistungsstufe
EP0777169B1 (de) Leistungs-Regeleinrichtung für eine Strahlungsbeheizung
DE19646826A1 (de) Vorrichtung und Verfahren zur Temperaturmessung und Topferkennung an Kochstellen
DE102017114951A1 (de) Verfahren zum Betrieb einer Kochstelle eines Induktionskochfelds mit einem Kochgeschirr
DE19500448A1 (de) Heizeinheit
WO2008110458A2 (de) Kochfeldvorrichtung
DE102004059822A1 (de) Sensorvorrichtung für ein Kochfeld, Verfahren zum Betrieb einer Sensorvorrichtung und Verwendung eines Temperatursensors als Topferkennungssensor
EP0806887A1 (de) Verfahren und Vorrichtung zum Erkennen des Kochpunktes von Kochgut
DE19526091A1 (de) Einrichtung zur Temperaturbegrenzung eines elektrischen Wärmegerätes
EP1074823A1 (de) Kochfeld mit Gewichtsmesseinheit
DE19820108C2 (de) Anordnung eines wärmeleitenden keramischen Trägers mit einem Heizkörper als Kochzone in einer Aussparung einer Kochfläche
EP0754918B1 (de) Kochfläche mit einer Sensoranordung für Kochstellenheizelemente.
DE4339267C2 (de) Verfahren zur Steuerung der Heizleistung einer Kochstelle mit einer elektronischen Steuerung mit kontinuierlicher Leistungszufuhr, insbesondere PureHalogen-Kochstelle
EP0836056A1 (de) Kochmulde

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT CH DE ES FR GB IT LI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT CH DE ES FR GB IT LI

17P Request for examination filed

Effective date: 19920821

17Q First examination report despatched

Effective date: 19931123

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE ES FR GB IT LI

REF Corresponds to:

Ref document number: 117157

Country of ref document: AT

Date of ref document: 19950115

Kind code of ref document: T

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950119

REF Corresponds to:

Ref document number: 59104213

Country of ref document: DE

Date of ref document: 19950223

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2066280

Country of ref document: ES

Kind code of ref document: T3

ITF It: translation for a ep patent filed

Owner name: STUDIO TORTA SOCIETA' SEMPLICE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050610

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050613

Year of fee payment: 15

Ref country code: DE

Payment date: 20050613

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20050614

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20050615

Year of fee payment: 15

Ref country code: AT

Payment date: 20050615

Year of fee payment: 15

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: SCHOTT AG

Free format text: SCHOTT GLASWERKE#HATTENBERGSTRASSE 10#D-55122 MAINZ 1 (DE) -TRANSFER TO- SCHOTT AG#HATTENBERGSTRASSE 10#55122 MAINZ (DE)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060625

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060630

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070103

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060625

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070228

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20060626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070625