EP0465333A1 - Procédé et installation de cémentation de pièces en alliage métallique à basse pression - Google Patents

Procédé et installation de cémentation de pièces en alliage métallique à basse pression Download PDF

Info

Publication number
EP0465333A1
EP0465333A1 EP91401792A EP91401792A EP0465333A1 EP 0465333 A1 EP0465333 A1 EP 0465333A1 EP 91401792 A EP91401792 A EP 91401792A EP 91401792 A EP91401792 A EP 91401792A EP 0465333 A1 EP0465333 A1 EP 0465333A1
Authority
EP
European Patent Office
Prior art keywords
hpa
pressure
vacuum
breaking
ethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP91401792A
Other languages
German (de)
English (en)
Other versions
EP0465333B1 (fr
Inventor
André Faure
Jacques Frey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aubert and Duval SA
Original Assignee
Aubert and Duval SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aubert and Duval SA filed Critical Aubert and Duval SA
Publication of EP0465333A1 publication Critical patent/EP0465333A1/fr
Application granted granted Critical
Publication of EP0465333B1 publication Critical patent/EP0465333B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • C23C8/22Carburising of ferrous surfaces

Definitions

  • the present invention relates to a low pressure carburizing process applied to metal alloy parts and more particularly steel as well as an installation allowing the implementation of this process.
  • Case hardening is a common practice in metallurgy when it comes to hardening metal parts on the surface to a certain depth to the exclusion of their internal parts which, themselves, must retain a certain flexibility so as not to break inadvertently.
  • the carbon is incorporated by gas carburizing.
  • the articles to be case-hardened are placed in a vacuum furnace in which gaseous hydrocarbons are circulated essentially based on methane or propane and the treatment is only envisaged. '' at temperatures above about 950 ° C. We work at a pressure below atmospheric pressure, thus ensuring the absorption and thermal diffusion of carbon at the surface of the article. It can be noted that the implementation of this method implies the need to use a pulsation effect to ensure the diffusion at the desired depth of the carbon in the treated part.
  • a methane-based fuel gas is also used.
  • This gas has the disadvantage of dissociating by producing a lot carbon which turns into black smoke and hinders cementation by fouling the treated parts as well as the oven.
  • the object of the present invention is to eliminate such drawbacks by implementing a process in which a fuel mixture consisting of hydrogen and ethylene is used, in a proportion of 2 to 60% of ethylene in volume and the oven is heated between about 820 ° C and about 1100 ° C depending on the nature of the metals constituting the parts and according to the desired content and depth of carbon on the surface of the parts.
  • the method according to the invention is particularly well suited to the treatment of parts used in advanced industries and the automotive industry such as bearings, gears, slides, cams, piston pins, etc.
  • This device described in the case of a double vacuum oven, is also applicable in a cold wall oven.
  • Figure 1a is shown the carbon profile of a piece cemented according to Example 1, we can thus observe the percentage of carbon incorporated as a function of the depth P.
  • FIG. 1b is shown the microhardness HV 0.5 kg as a function of the depth for parts treated according to example 1.
  • Figure 1c is shown a section of a cylindrical part 10 cemented on the surface according to Example 1 after attack at the nital 2% and respective magnification of 2 and 500 times showing the great regularity on the macrographic picture and the homogeneity of structure on the micrograph.
  • Examples 2 to 7 are illustrated by figures drawn up identically to the figures in Example 1.
  • FIG. 2c shows the arrangement in exploded view on three stages in the tank of the furnace of blind bores 11 and open bores 12. Remarkable results have been obtained using tubes of 85 mm in length, with external diameter 14 mm and a bore diameter of 8 mm.
  • FIG. 2a represents the dispersion band of the carbon profiles obtained on all of the parts shown in 2c.
  • FIG. 2b represents the dispersion band of the microhardness profiles obtained on all of the parts shown in 2c.
  • FIG. 2d is shown a section of a tubular piece 20 cemented on the surface, at the periphery and in the bore, according to Example 2 after attack at the nital 2% and respective magnification of 2 and 500 times showing the great regularity and the homogeneity of the cemented layer.
  • the assembly represented in FIG. 8 comprises the tank 3 and the internal device as well as the cover 5.
  • Gas inlet pipes 7, 8, 9 pass through the cover and open respectively to the first I, second II and third III stages of the tank in at least three outlets per stage regularly distributed such as 21, 22 and 23 for stage II in particular.
  • thermocouples installed on each floor are permanently connected to a microcomputer not shown which ensures the smooth running of all the operations of the installation.
  • Each stage has a perforated tray on which the articles to be cemented rest.
  • the gases circulate through the load in the direction of the two exhausts, one main at the top of the tank, the other derived at the bottom of the tank following the path indicated by the arrows to be finally sucked at the top of the cover by a large pipe 26 connected to a circulation pump 28.
  • a relative flow curve as a percentage of the cementing gas is shown to the right of the furnace.
  • the installation shown in FIG. 9 comprises a so-called double vacuum oven 50 in the sense that a vacuum is established both in the tank 55 and in the annular space 56 surrounding the tank.
  • the cementing gases arrive via lines 51 for hydrogen and 52 for ethylene and are directed to several stages where they are regularly distributed.
  • the gas circulation takes place in the tank as described in FIG. 8.
  • the gases are then directed to the pumping unit 62 by a line 59 with a sampling branch to a gas analyzer 60 in connection with a microcomputer.
  • the various data such as temperatures, pressure, flow rates and gas composition are gathered by a acquirer connected to a microcomputer 61.
  • Charging of the tank containing the parts to be treated then takes place and the first austenitization phase is carried out by heating to different temperatures depending on the case, and to a maximum vacuum of 10 ⁇ 2 hPa.
  • the vacuum is broken by introducing hydrogen until a pressure of 500 hPa is obtained. Carbon enrichment is carried out by introduction of ethylene at a pressure generally close to 30 hPa and then diffusion at an absolute pressure less than or equal to 10 ⁇ 1 hPa. The vacuum is then broken with nitrogen at atmospheric pressure and then a job treatment is carried out which makes it possible to obtain the desired final characteristics for the case-hardened parts. In the case of Examples 4, 5 and 6, after the diffusion, the vacuum is broken with hydrogen and a second carbon enrichment is carried out followed by a diffusion which precedes the vacuum breaking with nitrogen at pressure atmospheric.
  • the implementation of the method is carried out under the supervision of a microcomputer to which all the technical parameters programmed are supplied such as grades of steels, temperatures of the various places of the furnace, pressure in the enclosure, durations of the enrichment and diffusion sequences, general flow of gases on each stage, composition of gases and adjustment in depending on the analysis of the exit gases.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Muffle Furnaces And Rotary Kilns (AREA)
  • Heat Treatment Of Articles (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Forging (AREA)

Abstract

On utilise un mélange carburant constitué d'hydrogène et d'éthylène à raison de 2 à 60 % d'éthylène en volume et l'on chauffe le four entre 820° et 1100°C. L'installation comporte un four (50), dit à double vide, constitué d'une cuve (55) avec son dispositif intérieur de répartition des gaz cémentants, d'un espace annulaire (56) entourant la cuve, d'un couvercle traversé par des conduites de pompage et d'arrivée d'hydrogène (51) et d'éthylène (52) débouchant aux différents étages de la cuve en plusieurs endroits régulièrement répartis, des thermocouples (TC), un microordinateur (61). Application à des pièces d'automobiles. <IMAGE>

Description

  • La présente invention se rapporte à un procédé de cémentation à basse pression appliqué à des pièces en alliage métallique et plus spécialement en acier ainsi qu'à une installation permettant la mise en oeuvre de ce procédé.
  • La cémentation est une pratique courante en métallurgie quand il s'agit de durcir des pièces métalliques en surface sur une certaine profondeur à l'exclusion de leurs parties internes qui, elles, doivent conserver une certaine souplesse pour ne pas se rompre malencontreusement.
  • Suivant une technique généralement courante dans la métallurgie, on effectue l'incorporation du carbone par cémentation gazeuse.
  • Comme décrit en particulier dans le brevet FR 2 154 398 au nom de HAYES les articles à cémenter sont placés dans un four sous vide dans lequel on fait circuler des hydrocarbures gazeux essentiellement à base de méthane ou de propane et le traitement n'est envisagé qu'à des températures supérieures à environ 950°C. On travaille à une pression inférieure à la pression atmosphérique, on assure ainsi l'absorption et la diffusion thermique du carbone à la superficie de l'article. On peut noter que la mise en oeuvre de ce procédé implique la nécessité d'utiliser un effet de pulsation pour assurer la diffusion à la profondeur voulue du carbone dans la pièce traitée.
  • Selon un autre procédé décrit dans le brevet BF 2 361 476 au nom de IPSEN, on utilise aussi un gaz carburant à base de méthane. Ce gaz a l'inconvénient de se dissocier en produisant beaucoup de carbone qui se transforme en noir de fumée et entrave la cémentation en encrassant les pièces traitées ainsi que le four.
  • D'autres constructeurs de four recourent encore à la décharge plasma sous vide pour tenter de pallier les difficultés inhérentes à l'emploi des hydrocarbures précités : c'est la cémentation ionique.
  • Le but de la présente invention est d'éliminer de tels inconvénients grâce à la mise en oeuvre d'un procédé dans lequel on utilise un mélange carburant constitué d'hydrogène et d'éthylène, à raison de 2 à 60 % d'éthylène en volume et l'on chauffe le four entre environ 820°C et environ 1100°C suivant la nature des métaux constituant les pièces et suivant la teneur et la profondeur souhaitées du carbone à la surface des pièces.
  • Le procédé conforme à l'invention est particulièrement bien adapté au traitement des pièces utilisées dans les industries de pointe et l'industrie automobile telles que les roulements, les engrenages, les glissières, les cames, les axes de piston, etc.
  • Grâce à ce procédé, il est possible de cémenter tous les alliages traités par les procédés actuellement connus mais dans de meilleures conditions à la fois de qualité et le plus souvent de vitesse. Il est possible également de traiter certains alliages dont la surface naturellement très passive nécessitait jusqu'à présent un traitement préalable de dépassivation. D'autres alliages qui ne pouvaient être traités même après dépassivation peuvent l'être grâce aux procédés de l'invention.
  • De façon plus précise, le procédé conforme à l'invention comporte essentiellement les étapes suivantes :
    • a) prévidage de la cuve du four jusqu'à une pression de 10⁻¹ hPa de façon à éliminer l'air,
    • b) remplissage de la cuve par de l'azote purifié à la pression atmosphérique,
    • c) enfournement de la cuve contenant les pièces métalliques,
    • d) mise sous vide de la cuve à 10⁻² hPa,
    • e) chauffage jusqu'à la température d'austénitisation et maintien à cette température pour l'homogénéisation des pièces,
    • f) introduction d'hydrogène jusqu'à 500 hPa,
    • g) enrichissement en carbone par introduction du gaz carburant à base d'éthylène à une pression de 10 à 100 hPa suivant les cas,
    • h) diffusion sous vide à 10⁻¹ hPa,
    • i) introduction d'azote pour défournement.
  • La mise en oeuvre de ce procédé implique l'utilisation d'un dispositif particulier dont les caractéristiques sont données dans la suite du présent exposé.
  • Ce dispositif, décrit dans le cas d'un four à double vide, est applicable également en four à paroi froide.
  • D'autres avantages et caractéristiques de l'invention ressortiront encore de la description qui suit de plusieurs exemples de réalisation non limitatifs de cémentation de différents alliages donnés en référence aux dessins annexés dans lesquels :
    • les figures 1a, 1b et 1c se rapportent à l'exemple 1 relatif à la cémentation sur une profondeur classique de 1,80 mm de pièces en acier 16 NCD 13.
    • Les figures 2a, 2b, 2c et 2d se rapportent à l'exemple 2 relatif à la cémentation de pièces à géométrie difficile comportant des alésages borgnes ou ouverts en acier 14 NC 12.
    • La figure 2c, se rapportant à l'exemple 2 est un schéma représentatif de la disposition des pièces en cours de traitement.
    • Les figures 3a, 3b et 3c se rapportent à l'exemple 3 relatif à la cémentation sur une profondeur très faible de 0,25 mm de pièces en acier 16 NCD 13.
    • Les figures 4a, 4b et 4c se rapportent à l'exemple 4 relatif à la cémentation de pièces en acier Z 15 CN 17.03.
    • Les figures 5a, 5b et 5c se rapportent à l'exemple 5 relatif à la cémentation de pièces en acier Z 20 WC 10.
    • Les figures 6a, 6b et 6c se rapportent à l'exemple 6 relatif à la cémentation de pièces en acier Z 38 CDV 5.
    • Les figures 7a et 7b se rapportent à l'exemple 7 relatif à la cémentation de piéces en superalliage base Co : KC 20 WN.
    • La figure 8 représente la cuve de cémentation comportant le dispositif de circulation du gaz carburant dans la cuve.
    • La figure 9 représente un four de cémentation à double vide (paroi chaude).
  • Pour faciliter la lecture des 7 exemples donnés ci-après, on donne ici quelques précisions.
    Figure imgb0001
  • Utilisation des alliages métalliques cémentés Acier 16 NCD 13
  • Engrenages, moyeux, arbres, ...
  • Bagues de roulement
  • Pièces de sécurité aéronautiques en général
  • Acier 14 NC 12
  • Engrenages, moyeux, arbres, ...
  • Acier Z 15 CN 17.03
  • Bagues de roulement inoxydable
  • Pièces à piste de roulement inoxydable
  • intégrée (aéronautique)
  • Acier Z 20 WC 10
  • Pistes de roulement rapportées pour
  • utilisation à chaud (aéronautique)
  • Acier Z 38 CDV 5
  • Pièces d'outillage en général
  • Ex : Matrices, poinçons, moules
  • Super alliage base Cobalt KC 20 WN
  • Pièces de turbo machines en général
  • Compositions de réactifs utilisés pour les attaques micrographiques
  • Figure imgb0002
    Figure imgb0003
    Figure imgb0004
    Figure imgb0005
    Figure imgb0006
    Figure imgb0007
    Figure imgb0008
    Figure imgb0009
  • Sur la figure 1a est représenté le profil carbone d'une pièce cémentée selon l'exemple 1, on peut ainsi observer le pourcentage de carbone incorporé en fonction de la profondeur P.
  • Sur la figure 1b est représentée la microdureté HV 0,5 kg en fonction de la profondeur pour des pièces traitées selon l'exemple 1.
  • Sur la figure 1c est représentée une coupe d'une pièce cylindrique 10 cémentée en surface selon l'exemple 1 après attaque au nital 2 % et grossissement respectif de 2 et 500 fois faisant apparaître la grande régularité sur le cliché macrographique et l'homogénéité de structure sur le cliché micrographique.
  • Les exemples 2 à 7 sont illustrés par des figures établies de façon identique aux figures de l'exemple 1.
  • La figure 2c représente la disposition en vue éclatée sur trois étages dans la cuve du four d'alésages borgnes 11 et d'alésages ouverts 12. Des résultats remarquables ont été obtenus en utilisant des tubes de 85 mm de longueur, de diamètre extérieur 14 mm et de diamètre d'alésage de 8 mm.
  • La figure 2a représente la bande de dispersion des profils carbone obtenus sur l'ensemble des pièces figurées en 2c.
  • La figure 2b représente la bande de dispersion des profils de microdureté obtenus sur l'ensemble des pièces figurées en 2c.
  • Sur la figure 2d est représentée une coupe d'une pièce tubulaire 20 cémentée en surface, en périphérie et dans l'alésage, selon l'exemple 2 après attaque au nital 2 % et grossissement respectif de 2 et 500 fois montrant la grande régularité et l'homogénéité de la couche cémentée.
  • L'ensemble représenté sur la figure 8 comprend la cuve 3 et le dispositif intérieur ainsi que le couvercle 5. Des conduits d'arrivée de gaz 7, 8, 9 traversent le couvercle et débouchent respectivement au premier I, deuxième II et troisième III étages de la cuve en au moins trois sorties par étage régulièrement réparties telles que 21, 22 et 23 pour l'étage II en particulier.
  • Des thermocouples TC installés à chaque étage sont branchés en permanence sur un microordinateur non représenté qui assure le bon déroulement de l'ensemble des opérations de l'installation.
  • Chaque étage comporte un plateau perforé sur lequel reposent les articles à cémenter. A leur entrée, les gaz circulent au travers de la charge en direction des deux échappements, l'un principal en sommet de cuve, l'autre dérivé en bas de cuve suivant le trajet indiqué par les flèches pour être finalement aspirés au sommet du couvercle par une grosse conduite 26 reliée à une pompe de circulation 28. Une courbe de débit relatif en pourcentage du gaz cémentant est représentée à la droite du four.
  • L'installation représentée sur la figure 9 comporte un four 50 dit à double vide en ce sens que l'on établit le vide à la fois dans la cuve 55 et dans l'espace annulaire 56 entourant la cuve. Les gaz cémentants arrivent par les conduites 51 pour l'hydrogène et 52 pour l'éthylène et sont dirigés vers plusieurs étages où ils sont régulièrement répartis. La circulation des gaz s'effectue dans la cuve comme décrit sur la figure 8. Les gaz sont ensuite dirigés vers le groupe de pompage 62 par une conduite 59 avec une dérivation de prélèvement vers un analyseur de gaz 60 en liaison avec un microordinateur. Deux autres conduites, 53 pour l'azote, 54 et 57 pour l'air débouchent respectivement au sommet de la cuve 55 et de l'espace 56. Les différentes données telles que températures, pression, débits et composition des gaz sont rassemblées par un acquisiteur relié à un microordinateur 61.
  • En complément des indications données dans les différents exemples, il convient d'apporter les précisions suivantes :
  • Avant le démarrage des traitements, on procède à l'élimination de l'air de la cuve, il s'agit d'un prévidage qui est effectué à une pression de 10⁻¹ hPa et l'on remplit la cuve d'azote purifié à la pression atmosphérique.
  • L'enfournement de la cuve contenant les pièces à traiter a alors lieu et la première phase d'austénitisation est effectuée en chauffant à des températures différentes suivant les cas, et à un vide maximal de 10⁻² hPa.
  • On casse le vide en introduisant de l'hydrogène jusqu'à l'obtention d'une pression de 500 hPa. On procède à l'enrichissement en carbone par introduction d'éthylène à une pression généralement voisine de 30 hPa puis à une diffusion à une pression absolue inférieure ou égale à 10⁻¹ hPa. On casse alors le vide à l'azote à la pression atmosphérique puis on procède à un traitement d'emploi qui permet d'obtenir les caractéristiques finales souhaitées pour les pièces cémentées. Dans le cas des exemples 4, 5 et 6, après la diffusion on casse le vide à l'hydrogène et l'on effectue un second enrichissement en carbone suivi d'une diffusion qui précède le cassage à vide à l'azote à la pression atmosphérique.
  • La mise en oeuvre du procédé est effectuée sous la surveillance d'un microordinateur auquel sont fournis tous les paramètres techniques programmés tels que nuances des aciers, températures des différents endroits du four, pression dans l'enceinte, durées des séquences d'enrichissement et de diffusion, débit général des gaz à chaque étage, composition des gaz et ajustement en fonction de l'analyse des gaz de sortie.

Claims (11)

  1. Procédé de cémentation sous basse pression de pièces en alliage métallique spécialement en acier dans lequel on traite dans un four les pièces en acier en les soumettant à l'action d'un mélange carburant à base d'hydrocarbures gazeux, caractérisé en ce que l'on utilise un mélange carburant constitué d'hydrogène et d'éthylène à raison de 2 à 60 % d'éthylène en volume et que l'on chauffe le four entre environ 820°C et environ 1100°C suivant la nature des métaux constituant les pièces et la profondeur souhaitée d'incorporation du carbone.
  2. Procédé de cémentation selon la revendication 1, caractérisé en ce qu'il comporte les étapes suivantes :
    a) prévidage de la cuve du four jusqu'à une pression de 10⁻¹ hPa de façon à éliminer l'air,
    b) remplissage de la cuve par de l'azote purifié à la pression atmosphérique,
    c) enfournement de la cuve contenant les pièces métalliques,
    d) mise sous vide de la cuve à 10⁻² hPa,
    e) chauffage jusqu'à la température d'austénitisation et maintien à cette température pour l'homogénéisation des pièces,
    f) introduction d'hydrogène jusqu'à 500 hPa,
    g) enrichissement en carbone par introduction du gaz carburant à base d'éthylène à une pression de 10 à 100 hPa suivant les cas,
    h) diffusion sous vide à 10⁻¹ hPa,
    i) introduction d'azote pour défournement.
  3. Procédé de cémentation selon la revendication 2, dans lequel les pièces métalliques sont en acier 16 NCD 13, caractérisé en ce qu'il comporte les cinq étapes suivantes :
    1) austénitisation sous vide pendant une demi-heure à 980°C,
    2) cassage du vide à 980°C à l'hydrogène jusqu'à atteindre une pression de 500 hPa,
    3) enrichissement en carbone à 980°C par action d'un gaz carburant à base d'éthylène pendant 2 heures à une pression de 35 hPa,
    4) diffusion à 980°C pendant 3 heures 30 mn à une pression inférieure ou égale à 10⁻¹ hPa,
    5) cassage du vide à l'azote à la pression atmosphérique
    suivi d'un traitement d'emploi à 825°C et la cémentation est effectuée sur une profondeur de 1,80 mm en obtenant le pourcentage de carbone visé en fonction de la profondeur.
  4. Procédé de cémentation selon la revendication 2, dans lequel les pièces métalliques sont en acier 14 NC 12, caractérisé en ce qu'il comporte les cinq étapes suivantes :
    1) austénitisation sous vide pendant une demi-heure à 880°C,
    2) cassage du vide à 880°C à l'hydrogène jusqu'à l'obtention d'une pression de 500 hPa,
    3) enrichissement en carbone à 880°C par action d'un gaz carburant à base d'éthylène pendant 1 heure et 25 mn à une pression de 30 hPa,
    4) diffusion à 880°C pendant 0 heure et 20 mn à une pression inférieure ou égale à 10⁻¹ hPa,
    5) cassage du vide à l'azote à la pression atmosphérique
    suivi d'un traitement d'emploi à 825°C et la cémentation est effectuée sur une profondeur de 0,55 mm en obtenant le pourcentage de carbone visé en fonction de la profondeur.
  5. Procédé de cémentation selon la revendication 2, dans lequel les pièces métalliques sont en acier 16 NCD 13, caractérisé en ce qu'il comporte les cinq étapes suivantes :
    1) austénitisation sous vide pendant 30 minutes à 820°C,
    2) cassage du vide à 820°C à l'hydrogène jusqu'à l'obtention d'une pression de 500 hPa,
    3) enrichissement en carbone à 820°C par action d'un gaz carburant à base d'éthylène pendant 1 heure à une pression de 25 hPa,
    4) diffusion (sans),
    5) cassage du vide à l'azote à la pression atmosphérique
    suivi d'un traitement d'emploi à 820°C et la cémentation est effectuée sur une profondeur de 0,25 mm en obtenant le pourcentage de carbone visé en fonction de la profondeur.
  6. Procédé de cémentation selon la revendication 2, dans lequel les pièces métalliques sont en superalliage base Co : KC 20 WN, caractérisé en ce qu'il comporte les cinq étapes suivantes :
    1) austénitisation sous vide pendant 30 minutes à 1100°C,
    2) cassage du vide à l'hydrogène à 1100°C jusqu'à l'obtention d'une pression de 500 hPa,
    3) enrichissement en carbone à 1100°C par action d'un gaz carburant à base d'éthylène pendant 4 heures à une pression de 40 hPa,
    4) diffusion à 1100°C pendant 2 heures à une pression inférieure ou égale à 10⁻¹ hPa,
    5) cassage du vide à l'azote à la pression atmosphérique,
    la cémentation est effectuée sur une profondeur totale de 0,8 mm.
  7. Procédé de cémentation selon la revendication 1, caractérisé en ce qu'il comprend les étapes suivantes :
    a) prévidage de la cuve du four jusqu'à une pression de 10⁻¹ hPa de façon à éliminer l'air,
    b) remplissage de la cuve par de l'azote purifié à la pression atmosphérique,
    c) enfournement de la cuve contenant les pièces métalliques,
    d) mise sous vide de la cuve à 10⁻² hPa,
    e) chauffage jusqu'à la température d'austénitisation et maintien à cette température pour l'homogénéisation des pièces,
    f) introduction d'hydrogène jusqu'à 500 hPa,
    g) enrichissement en carbone par introduction du gaz carburant à base d'éthylène à une pression de 10 à 100 hPa suivant les cas,
    h) diffusion sous vide à 10⁻¹ hPa,
    i) cassage du vide à l'hydrogène,
    j) enrichissement en carbone par introduction d'un gaz carburant à base d'éthylène à une pression de 10 à 100 hPa,
    k) diffusion,
    l) cassage du vide à l'azote à la pression atmosphérique.
  8. Procédé de cémentation selon la revendication 2, dans lequel les pièces métalliques sont en acier Z 15 CN 17.03, caractérisé en ce qu'il comporte les huit étapes suivantes :
    1) austénitisation sous vide pendant 30 minutes à 1020°C et refroidissement dans le four jusqu'à 980°C,
    2) cassage du vide à 980°C jusqu'à l'obtention d'une pression de 500 hPa,
    3) enrichissement en carbone à 980°C par action d'un gaz carburant à base d'éthyléne pendant 45 minutes à une pression de 35 hPa,
    4) diffusion à 980°C pendant 10 minutes à une pression inférieure ou égale à 10⁻¹ hPa,
    5) cassage du vide à l'hydrogène à 980°C à la pression de 500 hPa,
    6) enrichissement en carbone à 980°C par action d'un gaz carburant à base d'éthylène pendant 6 heures et 45 minutes à une pression de 35 hPa,
    7) diffusion à 980°C pendant 4 heures et 45 minutes à une pression inférieure ou égale à 10⁻¹ hPa
    8) cassage du vide à l'azote à la pression atmosphérique suivi d'un traitement d'emploi à 1020°C et la cémentation est effectuée sur une profondeur de 1 mm en obtenant le pourcentage de carbone visé en fonction de la profondeur.
  9. Procédé de cémentation selon la revendication 2, dans lequel les pièces métalliques sont en acier Z 20 WC 10, caractérisé en ce qu'il comporte les huit étapes suivantes :
    1) austénitisation sous vide pendant 30 minutes à 1010°C et refroidissement dans le four jusqu'à 940°C,
    2) cassage du vide à l'hydrogène à 940°C jusqu'à l'obtention d'une pression de 500 hPa,
    3) enrichissement en carbone à 940°C par action d'un gaz carburant à base d'éthylène pendant 45 mn à une pression de 30 hPa,
    4) diffusion à 940°C pendant 10 mn à une pression inférieure ou égale à 10⁻¹ hPa,
    5) cassage du vide à l'hydrogène à 940°C jusqu'à l'obtention d'une pression de 500 hPa,
    6) enrichissement en carbone à 940°C par action d'un gaz carburant à base d'éthylène pendant 1 heure et 15 minutes,
    7) diffusion (sans),
    8) cassage du vide à l'azote à la pression atmosphérique
    suivi d'un traitement d'emploi à 1100°C et la cémentation est effectuée sur une profondeur de 1 mm en obtenant le pourcentage de carbone visé en fonction de la profondeur.
  10. Procédé de cémentation selon la revendication 2, dans lequel les pièces métalliques sont en acier Z 38 CDV 5, caractérisé en ce qu'il comporte les huit étapes suivantes :
    1) austénitisation sous vide pendant 30 minutes à 1010°C et refroidissement dans le four jusqu'à 960°C,
    2) cassage du vide à l'hydrogène à 960°C jusqu'à l'obtention d'une pression de 500 hPa,
    3) enrichissement en carbone à 960°C par action d'un gaz carburant à base d'éthylène pendant 30 mn à une pression de 30 hPa,
    4) diffusion à 960°C pendant 10 mn à une pression inférieure ou égale à 10⁻¹ hPa,
    5) cassage du vide à l'hydrogène à 960°C jusqu'à l'obtention d'une pression de 500 hPa,
    6) enrichissement en carbone à 960°C par action d'un gaz carburant à base d'éthylène pendant 1 heure,
    7) diffusion à 960°C à une pression inférieure ou égale à 10⁻¹ hPa,
    8) cassage du vide à l'azote à la pression atmosphérique
    suivi d'un traitement d'emploi à 990°C et la cémentation est effectuée sur une profondeur de 1 mm en obtenant le pourcentage de carbone visé en fonction de la profondeur.
  11. Installation pour la cémentation d'alliage métallique, caractérisée en ce qu'elle comprend essentiellement :
    - un four (50), dit à double vide, constitué d'une cuve (55) avec son dispositif intérieur de répartition des gaz cémentants, d'un espace annulaire (56) entourant la cuve, d'un couvercle traversé par des conduites de pompage et d'arrivée d'hydrogène (51) et d'éthylène (52) débouchant aux différents étages de la cuve en plusieurs endroits régulièrement répartis,
    - des thermocouples (TC) et autres sondes renseignant sur la pression le débit et la composition des gaz en différents endroits du four en liaison avec un acquisiteur de données, lui-même relié à un microordinateur (61),
    - plusieurs étages de réception des pièces à cémenter avec des plateaux perforés pour permettre une libre circulation des gaz.
EP91401792A 1990-07-02 1991-07-01 Procédé et installation de cémentation de pièces en alliage métallique à basse pression Expired - Lifetime EP0465333B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9008330 1990-07-02
FR9008330A FR2663953B1 (fr) 1990-07-02 1990-07-02 Procede et installation de cementation de pieces en alliage metallique a basse pression.

Publications (2)

Publication Number Publication Date
EP0465333A1 true EP0465333A1 (fr) 1992-01-08
EP0465333B1 EP0465333B1 (fr) 1995-03-01

Family

ID=9398230

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91401792A Expired - Lifetime EP0465333B1 (fr) 1990-07-02 1991-07-01 Procédé et installation de cémentation de pièces en alliage métallique à basse pression

Country Status (7)

Country Link
US (1) US5205873A (fr)
EP (1) EP0465333B1 (fr)
AT (1) ATE119214T1 (fr)
CA (1) CA2046052C (fr)
DE (1) DE69107708T2 (fr)
ES (1) ES2071251T3 (fr)
FR (1) FR2663953B1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2763604A1 (fr) * 1997-05-23 1998-11-27 Innovatique Sa Procede pour la formation, par un traitement thermochimique sans plasma, d'une couche superficielle presentant une durete elevee
FR2827875A1 (fr) * 2001-07-24 2003-01-31 Ascometal Sa Acier pour pieces mecaniques, et pieces mecaniques cementees ou carbonitrurees realisees a partir de cet acier
FR2847591A1 (fr) * 2002-11-25 2004-05-28 Bosch Gmbh Robert Procede de cementation de pieces en acier pour travail a chaud par carburation en depression
US9617632B2 (en) 2012-01-20 2017-04-11 Swagelok Company Concurrent flow of activating gas in low temperature carburization
US10156006B2 (en) 2009-08-07 2018-12-18 Swagelok Company Low temperature carburization under soft vacuum

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE203063T1 (de) * 1995-03-29 2001-07-15 Jh Corp Verfahren und zur vakuumaufkohlung, verwendung einer vorrichtung zur vakuumaufkohlung und aufgekohlte stahlerzeugnisse
US6187111B1 (en) 1998-03-05 2001-02-13 Nachi-Fujikoshi Corp. Vacuum carburizing method
JP2000336469A (ja) * 1999-05-28 2000-12-05 Nachi Fujikoshi Corp 真空浸炭方法及び装置
FR2813892B1 (fr) * 2000-09-13 2003-09-26 Peugeot Citroen Automobiles Sa Procede de traitement thermique d'aciers d'outillages hypoeutectoides
US6991687B2 (en) * 2001-07-27 2006-01-31 Surface Combustion, Inc. Vacuum carburizing with napthene hydrocarbons
US7033446B2 (en) * 2001-07-27 2006-04-25 Surface Combustion, Inc. Vacuum carburizing with unsaturated aromatic hydrocarbons
AU2002218508A1 (en) * 2001-11-30 2003-06-17 Koyo Thermo Systems Co., Ltd. Method and apparatus for vacuum heat treatment
DE10209382B4 (de) * 2002-03-02 2011-04-07 Robert Bosch Gmbh Verfahren zur Aufkohlung von Bauteilen
DE10235131A1 (de) * 2002-08-01 2004-02-19 Ipsen International Gmbh Verfahren und Vorrichtung zum Schwärzen von Bauteilen
PL204747B1 (pl) * 2002-10-31 2010-02-26 Politechnika & Lstrok Odzka Sposób nawęglania wyrobów stalowych w podciśnieniu
US7431777B1 (en) * 2003-05-20 2008-10-07 Exxonmobil Research And Engineering Company Composition gradient cermets and reactive heat treatment process for preparing same
WO2006093759A1 (fr) * 2005-02-26 2006-09-08 General Electric Company Procede pour stabiliser le substrat de superalliages a base de nickel a revetement de diffusion en aluminiure
US7823341B2 (en) * 2005-08-04 2010-11-02 Ceslab, Inc. Height-adjustable, structurally suspended slabs for a structural foundation
US7514035B2 (en) * 2005-09-26 2009-04-07 Jones William R Versatile high velocity integral vacuum furnace
US20070068601A1 (en) * 2005-09-26 2007-03-29 Jones William R Process for treating steel alloys
US20080120843A1 (en) * 2006-11-06 2008-05-29 Gm Global Technology Operations, Inc. Method for manufacturing low distortion carburized gears
US8425691B2 (en) 2010-07-21 2013-04-23 Kenneth H. Moyer Stainless steel carburization process
PL422596A1 (pl) 2017-08-21 2019-02-25 Seco/Warwick Spółka Akcyjna Sposób nawęglania podciśnieniowego (LPC) elementów wykonanych ze stopów żelaza i innych metali

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4108693A (en) * 1974-12-19 1978-08-22 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for the heat-treatment of steel and for the control of said treatment
GB1559690A (en) * 1976-11-10 1980-01-23 British Steel Corp Treatment of steel products
DE3217295A1 (de) * 1981-05-08 1982-12-02 General Signal Corp., 06904 Stamford, Conn. Verfahren zur vakuumaufkohlung von stahl

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4152177A (en) * 1977-02-03 1979-05-01 General Motors Corporation Method of gas carburizing
SU668978A1 (ru) * 1977-06-02 1979-06-28 Предприятие П/Я А-7697 Способ цементации стальных деталей
US4836684A (en) * 1988-02-18 1989-06-06 Ultrasonic Power Corporation Ultrasonic cleaning apparatus with phase diversifier

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4108693A (en) * 1974-12-19 1978-08-22 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for the heat-treatment of steel and for the control of said treatment
GB1559690A (en) * 1976-11-10 1980-01-23 British Steel Corp Treatment of steel products
DE3217295A1 (de) * 1981-05-08 1982-12-02 General Signal Corp., 06904 Stamford, Conn. Verfahren zur vakuumaufkohlung von stahl

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ADVANCED MATERIALS & PROCESSES vol. 137, no. 3, Mars 1990, MATERIALS PARK ,OHIO,US E.J. KUBEL JR: 'EXTENDING CARBURIZING-PROCESS CAPABILITIES ' *
CHEMICAL ABSTRACTS, vol. 91, no. 18, Octobre 1979, Columbus, Ohio, US; abstract no. 144330J, KRYLOV V.S. 'cementation of steel articles ' page 218 ;colonne 91 ; *
CHEMICAL ABSTRACTS, vol. 97, no. 14, Octobre 1982, Columbus, Ohio, US; abstract no. 113319G, KASPERSMA 'carburisation and gas reactions of hydrocarbon-nitrogen mixtures at 850Øc and 925Øc: ' page 212 ;colonne 97 ; *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2763604A1 (fr) * 1997-05-23 1998-11-27 Innovatique Sa Procede pour la formation, par un traitement thermochimique sans plasma, d'une couche superficielle presentant une durete elevee
EP0885980A2 (fr) * 1997-05-23 1998-12-23 Innovatique S.A. Procédé pour la formation, par traitement thermochimique sans plasma, d'une couche superficielle présentant une dureté élevée
EP0885980A3 (fr) * 1997-05-23 2000-10-11 Innovatique S.A. Procédé pour la formation, par traitement thermochimique sans plasma, d'une couche superficielle présentant une dureté élevée
FR2827875A1 (fr) * 2001-07-24 2003-01-31 Ascometal Sa Acier pour pieces mecaniques, et pieces mecaniques cementees ou carbonitrurees realisees a partir de cet acier
WO2003012156A1 (fr) * 2001-07-24 2003-02-13 Ascometal Procede de fabrication d'une piece mecanique, et piece mecanique ainsi realisee
FR2847591A1 (fr) * 2002-11-25 2004-05-28 Bosch Gmbh Robert Procede de cementation de pieces en acier pour travail a chaud par carburation en depression
US10156006B2 (en) 2009-08-07 2018-12-18 Swagelok Company Low temperature carburization under soft vacuum
US10934611B2 (en) 2009-08-07 2021-03-02 Swagelok Company Low temperature carburization under soft vacuum
US9617632B2 (en) 2012-01-20 2017-04-11 Swagelok Company Concurrent flow of activating gas in low temperature carburization
US10246766B2 (en) 2012-01-20 2019-04-02 Swagelok Company Concurrent flow of activating gas in low temperature carburization
US11035032B2 (en) 2012-01-20 2021-06-15 Swagelok Company Concurrent flow of activating gas in low temperature carburization

Also Published As

Publication number Publication date
FR2663953B1 (fr) 1993-07-09
CA2046052C (fr) 2001-10-30
US5205873A (en) 1993-04-27
ES2071251T3 (es) 1995-06-16
CA2046052A1 (fr) 1992-01-03
DE69107708D1 (de) 1995-04-06
ATE119214T1 (de) 1995-03-15
DE69107708T2 (de) 1995-09-21
EP0465333B1 (fr) 1995-03-01
FR2663953A1 (fr) 1992-01-03

Similar Documents

Publication Publication Date Title
EP0465333A1 (fr) Procédé et installation de cémentation de pièces en alliage métallique à basse pression
JP6378189B2 (ja) 鋼部材の窒化処理方法
FR2536424A1 (fr) Procede pour former une couche protectrice de diffusion sur des alliages a base de nickel, de cobalt et de fer
EP0532386B1 (fr) Procédé et dispositif de cémentation d&#39;un acier dans une atmosphère à basse pression
FR3028530A1 (fr) Procede et installation de carbonitruration de piece(s) en acier sous basse pression et haute temperature
US4294630A (en) Method and apparatus for the continuous furnace brazing and soft-nitriding treatments of iron articles
EP2986750A1 (fr) Procede de traitement thermochimique comportant une unique phase de nitruration avant une cementation
EP0096602B1 (fr) Procédé de traitement thermique de pièces métalliques par carburation
EP0010484B1 (fr) Perfectionnement dans la chromisation des aciers par voie gazeuse
JP6587886B2 (ja) 窒化鋼部材の製造方法
US4236942A (en) Method for the gaseous nitriding of ferrous-based components
JP5548920B2 (ja) エッジ部を有するワークの浸炭方法
Jacobs et al. Plasma Carburiiing: Theory; Industrial Benefits and Practices
JP2008260994A (ja) 浸炭製品の製造方法
JP7434018B2 (ja) 鋼部材の窒化処理方法
WO2016159235A1 (fr) Procédé de nitruration d&#39;élément en acier
JP4911451B2 (ja) 鉄を主成分として含む金属材料の表面改質方法
JPS63759Y2 (fr)
JPS6033188B2 (ja) 金属熱処理設備
CN215713316U (zh) 减压渗碳设备
JPH0312140B2 (fr)
FR3023850A1 (fr) Procede de nitruration d&#39;une piece en acier inoxydable
JPH0874027A (ja) 浸炭処理方法
RU1808880C (ru) Способ газовой цементации стальных изделий
Grube et al. Carbonitriding at 1050° C in a Glow-discharge Plasma

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19920611

17Q First examination report despatched

Effective date: 19930614

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Effective date: 19950301

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19950301

REF Corresponds to:

Ref document number: 119214

Country of ref document: AT

Date of ref document: 19950315

Kind code of ref document: T

REF Corresponds to:

Ref document number: 69107708

Country of ref document: DE

Date of ref document: 19950406

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19950601

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950512

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2071251

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20080616

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20080728

Year of fee payment: 18

Ref country code: DE

Payment date: 20080715

Year of fee payment: 18

Ref country code: ES

Payment date: 20080718

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20080624

Year of fee payment: 18

Ref country code: IT

Payment date: 20080726

Year of fee payment: 18

Ref country code: AT

Payment date: 20080623

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080711

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20080814

Year of fee payment: 18

BERE Be: lapsed

Owner name: ACIERIES *AUBERT ET *DUVAL

Effective date: 20090731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090701

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20100201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100202

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090701

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20090702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100201