EP0424277A1 - Procédé d'amélioration de la résistance à la corrosion d'un alliage à base de nickel et alliage ainsi réalisé - Google Patents

Procédé d'amélioration de la résistance à la corrosion d'un alliage à base de nickel et alliage ainsi réalisé Download PDF

Info

Publication number
EP0424277A1
EP0424277A1 EP90402959A EP90402959A EP0424277A1 EP 0424277 A1 EP0424277 A1 EP 0424277A1 EP 90402959 A EP90402959 A EP 90402959A EP 90402959 A EP90402959 A EP 90402959A EP 0424277 A1 EP0424277 A1 EP 0424277A1
Authority
EP
European Patent Office
Prior art keywords
alloy
around
silicon
nickel
carbides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP90402959A
Other languages
German (de)
English (en)
Other versions
EP0424277B1 (fr
Inventor
Paul Blanchard
Ricardo Cozar
Michel Rouby
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TECPHY
Original Assignee
TECPHY
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TECPHY filed Critical TECPHY
Publication of EP0424277A1 publication Critical patent/EP0424277A1/fr
Application granted granted Critical
Publication of EP0424277B1 publication Critical patent/EP0424277B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%

Definitions

  • the subject of the invention is a process for improving the resistance to corrosion by pitting and crevices, in a chlorinated medium, of nickel-based alloys, and more particularly alloys containing at least 50% of nickel, around 20 % chromium, around 8% molybdenum, around 4% niobium and around 1% titanium and aluminum.
  • the invention also covers the alloys thus improved and their use for the production of wrought parts requiring ingots of large dimensions or else molded parts.
  • the parts produced from these alloys must have a high elastic limit, for example greater than 800 MPa which is generally obtained by cold working. However, this is difficult or impossible for solid parts and, more generally, parts molded or produced from powder.
  • the Applicant Company has already proposed specific compositions of such alloys comprising in particular titanium and aluminum so as to allow structural hardening by precipitation by phase tempering of the Ni3 (Ti, Al) and / or Ni3Nb type. It is thus possible to obtain, without strain hardening, elastic limits greater than 800 MPa or even 1050 MPa depending on the quantity of elements participating in the structural hardening , that is to say essentially niobium, titanium, aluminum, and depending on the heat treatment used.
  • the object of the invention is to provide a solution to this problem, by perfecting alloys of this type so as to improve their resistance to corrosion by pitting and crevices, in particular in a chlorinated medium, while allowing obtaining a high yield strength, greater than 800 MPa.
  • the subject of the invention is therefore, generally, a process for improving the resistance to pitting and crevice corrosion of a nickel-based alloy comprising: at least 50% nickel, around 20% chromium, around 8% molybdenum, around 4% niobium, around 1% titanium and aluminum.
  • the proportions of carbon and silicon are adjusted within narrow limits making it possible, during solidification, to avoid the formation by segregation of carbide of M6C type, the proportion by weight of carbon being maintained at 0.03% at least, without exceeding, however, 0.05% and the proportion by weight of silicon not exceeding 0.15%, the absence of carbides containing silicon being verified at 1 'gross state of casting.
  • an alloy according to the invention has the following composition, by weight: 50% to 55% nickel, 15 to 22% and preferably 19.5 to 21% of chromium, 8 to 10% and preferably 8 to 9% molybdenum 3 to 5% and preferably 3.5 to 4.3% of niobium, 1 to 2% and preferably 1 to 1.5% of titanium, 0.1 to 0.6% and preferably 0.1% to 0.35% aluminum, 1 to 3% and preferably 2 to 3% copper not more than 2% cobalt at least 0.03% and at most 0.05% carbon not more than 0.15% silicon the rest being iron.
  • test G 48 and test G 28, method A of ASTM.
  • ASTM test G 48 uses a solution of 100g of ferric chloride in 900 ml of distilled water. The test is carried out at 25 and 50 ° C. To make the test more selective, it can be modified compared to the ASTM method by lowering the pH of the solution to 0.5 by addition of hydrochloric acid and by raising the bath temperature to 100 ° C. This test therefore corresponds to an acidified chlorinated medium. It detects sensitivity to pitting and crevice corrosion.
  • ASTM test G 28, method A uses a solution of 25g of ferric sulfate in 600 ml of 50% sulfuric acid brought to the boil. We measure the weight loss after a 120h immersion.
  • the silicon content should be much lower, in particular when the carbon content is very low and that it should not exceed a content of 0 , 15% silicon, preferring a content of 0.10% maximum.
  • the alloy should contain at least 0.03% carbon.
  • Alloys of this type are based on nickel and, generally, it is preferred that the nickel content is at least 55%. This avoids the precipitation of topologically compact phases such as the LAVES phase during the operations of using the alloy (solidification, welding or transformation). These phases have a negative influence on the forgeability and / or corrosion resistance.
  • the LAVES phase for example, results in an inability of the metal to be processed by spinning and a poor result with the ASTM G 28 test. This solution is effective but expensive, the price of nickel being high.
  • the nickel content of the alloy can be reduced to a minimum of 50%, on the one hand thanks to the actions relating to segregation which are mentioned above, on the other hand by compensating for this lowering of the nickel content by adding 1.0 to 3% of copper (or preferably 2 to 3%) which increases the structural stability of the alloy, i.e. decreases its propensity to precipitation of topologically compact phases.
  • the following composition of an alloy according to the invention could be defined: Ni: 50 to 55% Cr: 15 to 22% and preferably 19.5 to 21% Mo: 8 to 10% and preferably 8 to 9% Nb: 8 to 5% and preferably 3.5 to 4.3% Ti: 1 to 2% and preferably 1 to 1.5% Al: 0.1 to 0.6% and preferably 0.1 to 0.35% Cu: 1 to 3% and preferably 2 to 3% Co: at most 2% of Co the rest being iron.
  • a first example highlights the influence of carbon content on niobium segregation.
  • a laboratory casting produced in the vacuum induction furnace was carried out with the following basic composition 5: At the casting it was divided into two ingots A and B of carbon contents equal, respectively, to 0.016% for ingot A and 0.038% for ingot B
  • the niobium segregation rates were measured in two places for example, the interdendritic spaces and the dendrites and it was found that the ratios of the niobium contents between these two points were, respectively, 3.59 for ingot A and 2.30 for ingot B.
  • a ratio of 2.3 can be corrected using thermomechanical homogenization treatments but that a ratio of 3.59 cannot be tolerated. This example therefore shows that there is a precise limit for the carbon content of the alloy below which the niobium segregations become too large.
  • a second example corresponding to an industrial casting illustrates the effect of too low carbon contents on the structure.
  • the following analysis flow was transformed into forged products:
  • a third example illustrates the influence of the composition on the presence or absence of the topologically compact Laves phase, and on the forgeability.
  • Two industrial castings A and B of the following compositions were transformed into billets intended for the extrusion of tubes.
  • Elements VS Mn Yes Or Cr Mo Ti Nb Fe Al Flows AT 0.022 0.04 0.30 60.12 20.72 8.86 1.37 3.53 4.64 0.22 B 0.038 0.01 0.08 60.62 20.30 8.20 1.29 3.75 4.60 0.15
  • metal A is unsuitable for transformation by extrusion while metal B has good aptitude for this transformation.
  • a fourth example illustrates the influence of the composition of the alloy on its resistance to corrosion and shows the particular resistance of the composition which is the subject of the invention.
  • Flow A shows pitting and crevices after 10 hours of immersion in the ferric chloride solution acidified to pH 0.5 and brought to 50 ° C.
  • Flow B resists up to 95 ° C and shows some cracks after 24 hours at this temperature.
  • Flow C does not show any pitting or crevices after 24 h at 97 ° C. It shows only a few cracks from 72 h at this temperature.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

L'invention a pour objet un procédé d'amélioration de la résistance à la corrosion par piqûres et crevasses d'un alliage base de Nickel et couvre également l'alliage ainsi perfectionné. Un tel alliage comprend au moins 50% Ni et environ 20% Cr, 4% Nb, 1% Ti et Al. Selon l'invention, lors de l'élaboration de l'alliage, on règle les proportions de carbone et de silicium dans des limites étroites permettant, lors de la solidification du métal d'éviter la formation par ségrégation de carbures de type M6C , la proportion en poids de carbone étant maintenue à au moins 0,03% sans dépasser 0,05% et la proportion en poids de silicium ne dépassant pas 0,15%,l'absence de carbures contenant du silicium étant vérifiée à l'état brut de coulée. L'invention s'applique spécialement aux alliages utilisés pour la réalisation de lingots ou de pièces moulées de grandes dimensions.

Description

  • L'invention a pour objet un procédé d'amélioration de la résistance à la corrosion par piqûres et crevasses, en milieu chloruré, d'alliages à base de nickel, et plus spécialement des alliages contenant au moins 50 % de nickel, autour de 20% de chrome , autour de 8% de molyb­dène, autour de 4% de niobium et autour de 1% de titane et d'aluminium .
  • L'invention couvre également les alliages ainsi améliorés et leur utilisation pour la réa­lisation de pièces corroyées nécessitant des lin­gots de grandes dimensions ou bien de pièces moulées.
  • La résistance à la corrosion en milieu chlo­ruré des alliages à base de nickel-chrome , molybdène,niobium est bien connue. De tels allia­ges sont utilisés couramment pour des applica­tions en eau de mer, en eau saumâtre , dans les eaux résiduaires industrielles ou dans les puits de pétrole acide.
  • Dans de nombreuses applications, les pièces réalisées à partir de ces alliages doivent avoir une limite élastique élevée , par exemple supé­rieure à 800 MPa qui est obtenue généralement grâce à un écrouissage à froid. Mais ceci est difficile ou impossible pour des pièces massives et, plus généralement, des pièces moulées ou réa­lisées à partir de poudre .
  • Pour résoudre ce problème, la Société dépo­sante a déjà proposé des compositions particuliè­res de tels alliages comprenant notamment du titane et de l'aluminium de façon à permettre un durcissement structural par précipitation par re­venu de phases du type Ni₃(Ti,Al)et/ou Ni₃Nb.On peut ainsi obtenir sans écrouissage de limites d'élasticité supérieures à 800 MPa ou même 1050 MPa suivant la quantité d'éléments participant du durcissement structural, c'est-à-dire essentiel­lement niobium, titane, aluminium, et suivant le traitement thermique utilisé .
  • On a constaté, cependant , que de tels al­liages pouvaient poser de difficiles problèmes de fabrication, en particulier pour la réalisation de pièces dont les dimensions nécessitent des lingots de grand diamètre , par exemple 400 nm ou plus .On a observé, en effet, que même si l'on obtenait les limites d'élasticité souhaitées, des pièces aussi importantes présentaient une parti­culière sensibilité à la corrosion, en parti­culier en milieu chloruré .
  • L'invention a pour objet d'apporter une solution à ce problème, en perfectionnant les al­liages de ce type de façon à améliorer leur ré­sistance à la corrosion par piqûres et crevasses, en particulier en milieu chloruré, tout en per­mettant l'obtention d'une limite d'élasticité élevée , supérieure à 800 MPa.
  • Les études menées à cet effet ont permis tout d'abord d'établir un lien entre la moindre résistance à la corrosion par piqûre et les sé­grégations qui se produisent en particulier lors de la solidification de pièces coulées de grandes dimensions .On a observé , cependant , qu'il n'était pas suffisant de minimiser les ségréga­tions en recourant, par exemple,à un procédé de fabrication de lingots par refusion d'une élec­trode consommable, sous vide ou sous laitier. Il est, en effet , apparu que,même dans ce cas , il pouvait se produire dans les espaces interdendri­tiques des lingots, des enrichissements en nio­bium, molybdène et titane susceptibles d'altérer localement la résistance à la corrosion de l'alliage .
  • On a ainsi pu établir que la résistance à la corrosion de tels alliages était influencée à la fois par la formation de ségrégations,la composi­tion de l'alliage et sa structure .
  • L'invention a donc pour objet, d'une façon générale, un procédé d'amélioration de la résis­tance à la corrosion par piqûres et crevasses d'un alliage à base de nickel comprenant :
    au moins 50% de nickel ,autour de 20% de chrome,
    autour de 8% de molybdène, autour de 4% de niobium,
    autour de 1% de titane et d'aluminium.
  • Conformément à l'invention, lors de l'élaboration de l'alliage , on règle les propor­tions de carbone et de silicium dans des limites étroites permettant , lors de la solidification d'éviter la formation par ségrégation de carbure de type M₆C, la proportion en poids de carbone étant maintenue à 0,03% au moins,sans dépasser, cependant, 0,05 % et la proportion en poids de silicium ne dépassant pas 0,15%, l'absence de carbures contenant du silicium étant vérifiée à l'état brut de coulée .
  • De façon particulièrement avantageuse, un alliage selon l'invention présente la composition suivante ,en poids :
    50% à 55 % de nickel,
    15 à 22% et de préférence 19,5 à 21 % de chrome ,
    8 à 10% et de préférence 8 à 9% de molybdè­ne
    3 à 5 % et de préférence 3,5 à 4,3 % de niobium,
    1 à 2 % et de préférence 1 à 1,5 % de tita­ne,
    0,1 à 0,6 % et de préférence 0,1% à 0,35 % d'aluminium ,
    1 à 3% et de préférence 2 à 3% de cuivre
    au plus 2 % de cobalt
    au moins 0,03% et au plus 0,05 % de car­bone
    au plus 0,15 % de silicium
    le reste étant du fer .
  • Pour étudier la résistance à la corrosion de tels alliages , on a utilisé deux méthodes ex­périmentales, le test G 48 et le test G 28, mé­thode A de l'ASTM.
  • Le test G 48 de l'ASTM utilise une solution de 100g de chlorure ferrique dans 900 ml d'eau distillée . L'essai est effectué à 25 et 50°C . Pour rendre l'essai plus sélectif , on peut le modifier par rapport à la méthode ASTM en abais­sant le pH de la solution à 0,5 par adaddition d'acide chlorhydrique et en élevant la tempéra­ture du bain jusqu'à 100°C . Cet essai correspond donc à un milieu chloruré acidifé. Il détecte la sensibilité à la corrosion par piqûres et par crevasses.
    Le test G 28, méthode A de l'ASTM utilise une so­lution de 25g de sulfate ferrique dans 600 ml d'acide sulfurique à 50% porté à ébullition. On mesure la perte de poids après une immersion de 120h.
  • Par ailleurs, pour chaque coulée, on a vérifié en laboratoire la structure de l'alliage et on a observé la formation de plu­sieurs sortes de carbures :
  • 1/ Carbures de type MC où M est un mé­lange d'éléments métalliques que nous allons préciser.
  • .A l'état brut de solidification, nous avons observé des carbures de composition :
    Nb0,86/0,90; Ti0,05/0,08; Mo0,02./0,06; Cr0/0,02;Ni0/0,04)C où les teneurs sont exprimées en pourcentages atomiques . Ces carbures primai­res issus de la solidification,subsistent dans le produit fini, même s'il est fortement corroyé.
  • On observe également une petite quantité de carbures secondaires intergranulaires de com­position assez peu différente :
    Nb0,62; Mo0,26; Ti0,06; Cr0,06) C.
  • On constate que,dans les deux cas, ces carbu­res ne contiennent pas de silicium.
  • 2/Carbures de type M₆C.
  • A l'état brut de solidification (carbures primaires),on a trouvé la composition : Ni0,33; Mo0,25; Cr0,19; Nb0,18; Si0,03; Fe0,02)₆ C. On observe également des carbures secondaires précipités aux joints des grains ayant la composition:
    (Ni0,11; Mo0,27; Cr0,56; Nb0,02; Si0,04)₆C.Il ap­paraît que, dans les deux cas,ces carbures contiennent du silicium .
  • 3/Carbures de type M₂₃C₆
  • Ces carbures ne sont pas observés à l'état brut de solidification . Ils apparaissent aux joints des grains des produits transformés. Dans ces alliages , on a pu déterminer leur composition: (Cr0,80, Mo0,13, Ni0,05, Nb0,01,Fe0,01)₂₃C₆.
  • On a ainsi mis au point diverses composi­tions d'alliages pour lesquelles on a étudié en parallèle la structure obtenue à la solidifica­tion et la résistance à la corrosion, et on a pu déterminer que les carbures de type M₆C avaient une influence très défavorable sur la résistance à la corrosion, les deux types d'essais mention­nés ci-dessus ayant permis de déceler que de tels carbures constituaient des sites d'attaque préfé­rentielle.
  • Par ailleurs, on a constaté que l'apparition de tels carbures de type M₆C était liée aux teneurs de l'alliage en silicium et en carbone .
  • Jusqu'à présent, en effet, il semblait normal de limiter la teneur en silicium mais on admettait des teneurs en silicium pouvant aller jusqu'à 1%, le brevet Fr 2.154.871 cité plus haut, abaissant cependant cette limite à 0,5%. Mais , cette limitation de la teneur en Silicium avait toujours pour objet de préserver les pro­priétés de soudabilité, l'influence du Silicium, à cet égard, étant bien connue.
  • Or, on a établi que, pour éviter l'apparition de carbures de type M₆C,la teneur en silicium devait être beaucoup plus réduite, en particulier lorsque la teneur en carbone est très basse et qu'il ne fallait pas dépasser une teneur de 0,15 % en silicium , en préférant une teneur de 0,10% maximum.
  • En ce qui concerne la teneur en carbone, il était admis également que celle-ci devait être réduite autant que possible lors de l'élaboration du métal et ne devait pas dépasser 0,1 à 0,2% .
  • Mais,on a constaté qu'une teneur trop basse en carbone pouvait conduire à une augmentation de l'importance des ségrégations dans les espaces interdentriques. Or, il apparaît que , pendant la solidification des lingots, plus la ségrégation en niobium est importante dans les espaces inter­dendritiques plus leur masse spécifique s'élève, ceci ayant pour conséquence d'augmenter, en cours de solidification, la probabilité d'instabilités hydrodynamiques qui peuvent conduire à la formation de macrodéfauts de soli­dification fortement ségrégés et riches en carbu­res M₆C, qui, comme on l'a vu, contiennent du silicium et constituent des points privilégiés pour l'attaque par les milieux corrosifs, ce ris­que augmentant avec la taille des lingots et de­venant important lorsque leurs dimensions dépassent 400 mm.
  • On a ainsi pu déterminer que l'alliage devait contenir au moins 0,03% de carbone.
  • Toutefois, si l'on a besoin d'une quantité minimale de carbures de type MC ou M₂₃ C₆ on a observé , au-delà d'une certaine limite, la for­mation au voisinage de ces carbures, de zones dé­chromées et démolybdénisées qui constituent des sites attaqués en particulier par le réactif G 28, méthode A de l'ASTM . Il apparaît donc que la teneur en carbone doit être maintenue au-dessous d'une certaine limite, très inférieure aux limi­tes communément admises et, en pratique, on a trouvé que la teneur en carbone ne devait pas dé­passer 0,05 %.
  • Il est donc apparu qu'une définition très précise de la fourchette de teneur en carbone, entre 0,03% et 0,05% et une limitation stricte de la teneur en silicium qui ne doit pas dépasser 0,15% permettait d'une part d'éviter la formation de carbures M₆C et d'autre part, de limiter les ségrégations et défauts de solidification qui constituent des points faibles pour la résistance à la corrosion par piqûres.
  • On a également été amené à définir des four­chettes de teneurs précises pour les éléments principaux de l'alliage.
  • Les alliages de ce type sont à base de nickel et, généralement , on préfère que la teneur en nickel soit d'au moins 55% . On évite ainsi la précipitation de phases topologiquement compactes comme la phase de LAVES pendant les opérations de mise en oeuvre de l'alliage (solidification, sou­dage ou transformation). Ces phases ont une in­fluence néfaste sur la forgeabilité et/ou la résistance à la corrosion. La phase de LAVES par exemple entraîne une inaptitude du métal à la transformation par filage et un mauvais résultat avec le test G 28 de l'ASTM. Cette solution est efficace mais coûteuse, le prix du nickel étant élevé.
  • Or , on a trouvé que la teneur en nickel de l'alliage pouvait être abaissée jusqu'à un mini­mum de 50%, d'une part grâce aux actions relati­ves aux ségrégations qui sont mentionnées ci-dessus , d'autre part en compensant cet abais­sement de la teneur en nickel par une addition de 1,0 à 3% de cuivre (ou de préférence de 2 à 3% ) qui augmente la stabilité structurale de l'alliage , c'est-à-dire diminue sa propension à la précipitation de phases topologiquement com­pactes .
  • Par ailleurs, on sait qu'une telle ad­dition de cuivre est en soi favorable à la résis­ tance à la corrosion en particulier dans les milieux chlorurés et dans les milieux sulfuriques.
  • En définitive, pour obtenir le résultat souhaité,on a pu définir la composition suivante d'un alliage selon l'invention :
    Ni: 50 à 55 %
    Cr: 15 à 22 % et de préférence 19,5 à 21%
    Mo: 8 à 10% et de préférence 8 à 9%
    Nb: 8 à 5% et de préférence 3,5 à 4,3%
    Ti: 1 à 2 % et de préférence 1 à 1,5%
    Al: 0,1 à 0,6 % et de préférence 0,1 à 0,35 %
    Cu: 1 à 3 % et de préférence 2 à 3%
    Co: au plus 2% de Co
    le reste étant du fer.
  • Pour illustrer l'influence de la composition de l'alliage sur l'importance des ségrégations, sur la structure et sur la résistance à la corro­sion, on va maintenant donner plusieurs exemples de coulées avec les résultats des examens effec­tués sur ces coulées.
  • Un premier exemple met en lumière l'influence de la teneur en carbone sur les ségrégations en niobium.
  • Une coulée de laboratoire élaborée au four à induction sous vide a été réalisée avec la compo­sition de base 5 suivante:
    Figure imgb0001
    A la coulée elle a été divisée en deux lingots A et B de teneurs en carbone égales,respectivement,à 0,016% pour le lingot A et 0,038% pour le lingot B
  • On a mesuré , pour chaque lingot,les taux de ségrégations en niobium en deux endroits par exemple,les espaces interdendritiques et les den­drites et l'on a constaté que les rapports des te­neurs en niobium entre ces deux points étaient, respectivement de 3,59 pour le lingot A et 2,30 pour le lingot B . Or on sait que l'on peut corri­ger un rapport de 2,3 grâce à des traitements thermomécaniques d'homogénéisation mais qu'un rap­port de 3,59 ne peut être toléré . Cet exemple montre donc qu'il existe une limite précise pour la teneur en carbone de l'alliage au-dessous de laquelle les ségrégations en niobium deviennent trop importantes.
  • Un deuxième exemple correspondant à une coulée industrielle illustre l'effet de trop basses te­neurs en carbone sur la structure . Une coulée d'analyse suivante a été trans formée en pro­duits forgés :
    Figure imgb0002
  • Dans les produits fabriqués à partir de cette coulée, on a observé des carbures primaires (c'est-à-dire formés lors de la solidification) de type M₆C, le métal M indiqué ci-dessus étant un mélange des métaux molybdène, niobium, chrome, si­licium et nickel.
  • Des échantillons de ce métal ont été soumis au test G 48 de l'ASTM. On a observé des piqûres et des crevasses après une immersion de 24 h à 60°C, ce qui est considéré comme un mauvais résultat pour ce type d'alliage.
  • Un troisième exemple illustre l'influence de la composition sur la présence ou l'absence de la phase de Laves topologiquement compacte, et sur la forgeabilité . Deux coulées industrielles A et B de compositions suivantes ont été transformées en billettes destinées à l'extrusion de tubes.
    Eléments C Mn Si Ni Cr Mo Ti Nb Fe Al
    Coulées
    A 0,022 0,04 0,30 60,12 20,72 8,86 1,37 3,53 4,64 0,22
    B 0,038 0,01 0,08 60,62 20,30 8,20 1,29 3,75 4,60 0,15
  • Dans le métal issu de la coulée A on a décelé des quantités importantes de phase de Laves et de carbures M₆C.Au contraire ces phases n'ont pas été décelées dans la coulée B dont les teneurs en car­bone et silicium sont conformes à l'invention .
  • La forgeabilité de ces coulées a été éva­luée par essai de traction rapide aux températures 1150, 1180 et 1200°C de la façon suivante: Pour chaque température, on préchauffe d'abord l'éprouvette à une température supérieure de 50°C à la température d'essai,puis on la ramène à cette température d'essai avant de la rompre . Le para­ mètre mesuré est la striction à la rupture , la­quelle doit être au moins égale à 60% aux trois températures d'essai pour que le métal soit apte à la transformation par extrusion.
    Les résultats obtenus sont les suivants:
    Striction à la rupture %
    Température 1150°C 1180°C 1200°C
    Coulées
    A 63 13 10
    B 80 67,5 63,0
  • On voit que le métal A est inapte à la trans­formation par extrusion alors que le métal B a une bonne aptitude à cette transformation.
  • Enfin,un quatrième exemple illustre l'influence de la composition de l'alliage sur sa résistance à la corrosion et montre la résistance particulière de la composition objet de l'invention .
  • Les deux coulées A et B de l'exemple précédent et une troisième coulée C ont été comparées en ce qui concerne leur résistance à la corrosion .
    L'analyse de la coulée C était la suivante :
    Figure imgb0003
  • Du métal de ces trois coulées a été laminé en barres de diamètre 20 mm et soumis au traitement thermique suivant:
    • 1°) Mise en solution : 1 h à 1040°C - refroi­dissement air
    • 2°) Revenu 8 h à 750°C - refroidissement à 50°C/h jusqu'à 620°C - maintien 8 h - refroi­dissement à l'air.
  • Les caractéristiques de traction mesurées sur les trois coulées étaient peu différentes,comme on le voit sur le tableau ci-dessous qui indique,pour chaque coulée, la résistance à la rupture Rm, la limite d'élasticité conventionnelle à 0,2% et l'allongement en %.
    Coulée Rm(MPa) R0,002(MPa) A%
    A 1330 920 32
    B 1370 952 31
    C 1355 935 35
  • Ces trois coulées ont été soumises au test G 48 de l'ASTM modifié par acidification du réactif comme exprimé plus haut .
  • La coulée A montre des piqûres et crevasses après 10h d'immersion dans la solution de chlorure ferrique acidifié au pH 0,5 et portée à 50°C.
  • La coulée B résiste jusqu'à 95°C et montre quelques crevasses après 24 h à cette tem­pérature. La coulée C ne montre ni piqûres ni cre­vasses après 24 h à 97°C. Elle ne montre que quelques crevasses à partir de 72 h à cette tempé­rature.

Claims (5)

1.Procédé d'amélioration de la résistance à la corrosion par piqûres et crevasses d'un allia­ge à base de Nickel comprenant :
au moins 50% de nickel
autour de 20% de chrome
autour de 8% de molybdène
autour de 4% de niobium
autour de 1% de titane et d'aluminium
caractérisé par le fait que lors de l'élaboration de l'alliage , on règle les propor­tions de carbone et de silicium dans des limites étroites permettant, lors de solidification d'éviter la formation par ségrégation de carbures de type M₆C, la proportion en poids de carbone étant maintenue à au moins 0,03% sans dépasser 0,05% et la proportion en poids de silicium ne dépassant pas 0,15% , l'absence de carbures contenant du silicium étant vérifiée à l'état brut de coulée.
2.Procédé selon la revendication 1,caractérisé par le fait que, lors de l'élaboration de l'alliage on règle les propor­tions des différents constituants dans les limi­tes suivantes:
C de 0,03 à 0,05 %
Mn inférieure à 0,35 %
Si inférieure à 0,15 % et de préférence ne dépassant pas 0,10%
Cr de 15 à 22% et de préférence de 19,5 à 21%
Mo de 8 à 10% et de préférence de 8 à 9%
Nb de 3 à 5% et de préférence de 3,5 à 4,3 %
Ti de 1 à 2% et de préférence de 1 à 1,5
Al de 0,1 à 0,6% et de préférence de 0,1 à 0,35 %
Ni de 50 à 55%
Cu de 1 à 3% et de préférence de 2 à 3%
Co inférieure à 2%
Fe complément
3.Alliage à base de nickel résistant à la corrosion par piqûres et crevasses dans les milieux chlorurés et de limite d'élasticité supé­rieure à 830 MPa et comprenant principalement:
autour de 20% de chrome
autour de 8% de molybdène
autour de 4% de niobium
autour de 1% de titane et d'aluminium
au moins 50% de nickel
ainsi que des impuretés et éléments accidentels caractérisé par le fait que les teneurs en carbo­ne et silicium sont réglées lors de l'élaboration de l'alliage, dans des limites étroites, respectivement:
au moins 0,03% et au plus 0,05% de carbone
et au plus 0,15 % de silicium
ledit alliage ne contenant pas de carbures de ty­pe M₆C à l'état brut de coulée.
4.Alliage à base de nickel selon la revendication 1,caractérisé par le fait qu'il comprend:
Ni : 50 à 55% Cr : 15 à 22% et de préférence 19,5 à 21%
Mo : 8 à 10% et de préférence 8 à 9%
Nb 3 à 5% et de préférence 3,5 à 4,3%
Ti: 1 à 2% et de préférence 1 à 1,5 %
Al 0,1 à 0,6% et de préférence 0,1 à 0,35%
Cu: 1 à 3% et de préférence 2 à 3%
Co : au plus 2% de Co
le reste étant du fer.
5.Utilisation d'un alliage selon l'une des revendications 4 et 5 pour la réalisation de lin­gots de grande dimension et de pièces moulées dont au moins une dimension dépasse 300 mm.
EP19900402959 1989-10-20 1990-10-19 Procédé d'amélioration de la résistance à la corrosion d'un alliage à base de nickel et alliage ainsi réalisé Expired - Lifetime EP0424277B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8913798A FR2653451B1 (fr) 1989-10-20 1989-10-20 Procede d'amelioration de la resistance a la corrosion d'un alliage a base de nickel et alliage ainsi realise.
FR8913798 1989-10-20

Publications (2)

Publication Number Publication Date
EP0424277A1 true EP0424277A1 (fr) 1991-04-24
EP0424277B1 EP0424277B1 (fr) 1995-12-06

Family

ID=9386632

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19900402959 Expired - Lifetime EP0424277B1 (fr) 1989-10-20 1990-10-19 Procédé d'amélioration de la résistance à la corrosion d'un alliage à base de nickel et alliage ainsi réalisé

Country Status (4)

Country Link
EP (1) EP0424277B1 (fr)
DE (1) DE69024023D1 (fr)
FR (1) FR2653451B1 (fr)
NO (1) NO904505L (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0648850A1 (fr) * 1993-09-20 1995-04-19 Mitsubishi Materials Corporation Alliage à base de nickel
EP2222884A1 (fr) * 2007-11-19 2010-09-01 Huntington Alloys Corporation Alliage de résistance ultra élevée pour des environnements difficiles de pétrole et de gaz et procédé de préparation
JP2019052349A (ja) * 2017-09-14 2019-04-04 日本冶金工業株式会社 ニッケル基合金
JP2020117813A (ja) * 2017-09-14 2020-08-06 日本冶金工業株式会社 ニッケル基合金

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2154871A5 (fr) * 1971-09-28 1973-05-18 Creusot Loire
EP0066361A2 (fr) * 1981-04-17 1982-12-08 Inco Alloys International, Inc. Alliage à base de nickel, résistant à la corrosion et possédant des caractéristiques mécaniques élevées
EP0247577A1 (fr) * 1986-05-27 1987-12-02 Carpenter Technology Corporation Alliage à base de nickel durcissable par vieillissement et résistant à la corrosion
EP0259660A1 (fr) * 1986-08-18 1988-03-16 Inco Alloys International, Inc. Alliage nickel-chrome à haute limite d'endurance
EP0262673A2 (fr) * 1986-10-01 1988-04-06 Inco Alloys International, Inc. Alliage à base de nickel, résistant à la corrosion et possédant des caractéristiques mécaniques élevées

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2154871A5 (fr) * 1971-09-28 1973-05-18 Creusot Loire
EP0066361A2 (fr) * 1981-04-17 1982-12-08 Inco Alloys International, Inc. Alliage à base de nickel, résistant à la corrosion et possédant des caractéristiques mécaniques élevées
EP0247577A1 (fr) * 1986-05-27 1987-12-02 Carpenter Technology Corporation Alliage à base de nickel durcissable par vieillissement et résistant à la corrosion
EP0259660A1 (fr) * 1986-08-18 1988-03-16 Inco Alloys International, Inc. Alliage nickel-chrome à haute limite d'endurance
EP0262673A2 (fr) * 1986-10-01 1988-04-06 Inco Alloys International, Inc. Alliage à base de nickel, résistant à la corrosion et possédant des caractéristiques mécaniques élevées

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0648850A1 (fr) * 1993-09-20 1995-04-19 Mitsubishi Materials Corporation Alliage à base de nickel
US5529642A (en) * 1993-09-20 1996-06-25 Mitsubishi Materials Corporation Nickel-based alloy with chromium, molybdenum and tantalum
EP2222884A1 (fr) * 2007-11-19 2010-09-01 Huntington Alloys Corporation Alliage de résistance ultra élevée pour des environnements difficiles de pétrole et de gaz et procédé de préparation
EP2222884A4 (fr) * 2007-11-19 2012-02-22 Huntington Alloys Corp Alliage de résistance ultra élevée pour des environnements difficiles de pétrole et de gaz et procédé de préparation
US9017490B2 (en) 2007-11-19 2015-04-28 Huntington Alloys Corporation Ultra high strength alloy for severe oil and gas environments and method of preparation
EP2845916A3 (fr) * 2007-11-19 2015-05-06 Huntington Alloys Corporation Alliage de résistance ultra élevée pour des environnements difficiles de pétrole et de gaz et procédé de préparation
US10100392B2 (en) 2007-11-19 2018-10-16 Huntington Alloys Corporation Ultra high strength alloy for severe oil and gas environments and method of preparation
JP2019052349A (ja) * 2017-09-14 2019-04-04 日本冶金工業株式会社 ニッケル基合金
JP2020117813A (ja) * 2017-09-14 2020-08-06 日本冶金工業株式会社 ニッケル基合金

Also Published As

Publication number Publication date
EP0424277B1 (fr) 1995-12-06
FR2653451B1 (fr) 1993-08-13
FR2653451A1 (fr) 1991-04-26
DE69024023D1 (de) 1996-01-18
NO904505L (no) 1991-04-22
NO904505D0 (no) 1990-10-18

Similar Documents

Publication Publication Date Title
JP3517034B2 (ja) Ni−Cr−Mo−Cu耐食合金
WO2009150989A1 (fr) Procédé de production de tuyau sans soudure fortement allié
CH524685A (fr) Alliage à base de nickel
JP6602463B2 (ja) Cr基二相合金及びその製造物
CN1513061A (zh) 制备具有改良抗蚀性的不锈钢的方法
CH651322A5 (fr) Alliages a base de nickel a teneur elevee en chrome.
JPH086164B2 (ja) ニッケル基合金の耐すきま腐食および耐孔食を高める方法
JP6481802B1 (ja) Cr−Fe−Ni系合金製造物およびその製造方法
EP0424277B1 (fr) Procédé d'amélioration de la résistance à la corrosion d'un alliage à base de nickel et alliage ainsi réalisé
WO2017168972A1 (fr) Alliage à deux phases à base de chrome et produit utilisant ledit alliage à deux phases
CA2444175C (fr) Acier a outils a tenacite renforcee, procede de fabrication de pieces dans cet acier et pieces obtenues
EP1287171A1 (fr) Alliage fe-ni durci pour la fabrication de grilles support de circuits integres et procede de fabrication
JP5021873B2 (ja) 延性に優れたチタン板およびその製造方法
EP0388283A1 (fr) Acier inoxydable ferritique et procédé pour l'élaboration d'un tel acier
US20030026725A1 (en) Alloy composition for making blister-free aluminum forgings and parts made therefrom
JPS5925941A (ja) 可塑物の射出成型機および同押出機用シリンダおよびスクリユ部材並びにその製造法
EP1228253A1 (fr) Composition d'acier, procede de fabrication et pieces formees dans ces compositions, en particulier soupapes
CA2292742A1 (fr) Composition d'acier a outils
CA2222466C (fr) Composition d'alliage base nickel-chrome-fer
TWI761253B (zh) 高強度麻時效鋼板材及其製造方法
JPH02147195A (ja) コバルト・クロム基合金溶接材料の製造方法
KR100834201B1 (ko) 결정립이 미세화된 구리기합금주물
JPH062093A (ja) 耐食性のすぐれた金属間化合物析出型高強度Ni−Cr−Mo系合金部材の製造方法
JP2003221614A (ja) マルエージング鋼の製造方法
JPH042740A (ja) 鍛造用アルミニウム合金

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES GB IT NL SE

17P Request for examination filed

Effective date: 19910816

17Q First examination report despatched

Effective date: 19940322

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES GB IT NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19951206

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19951206

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19951206

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19951206

REF Corresponds to:

Ref document number: 69024023

Country of ref document: DE

Date of ref document: 19960118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19960306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960307

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19951206

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed