EP0403523B1 - Agencement d'impression electrophotographique et procede electrophotographique commande - Google Patents

Agencement d'impression electrophotographique et procede electrophotographique commande Download PDF

Info

Publication number
EP0403523B1
EP0403523B1 EP89903096A EP89903096A EP0403523B1 EP 0403523 B1 EP0403523 B1 EP 0403523B1 EP 89903096 A EP89903096 A EP 89903096A EP 89903096 A EP89903096 A EP 89903096A EP 0403523 B1 EP0403523 B1 EP 0403523B1
Authority
EP
European Patent Office
Prior art keywords
photoconductor
electrophotographic
control
charge
character generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89903096A
Other languages
German (de)
English (en)
Other versions
EP0403523A1 (fr
Inventor
Hans Manzer
Rainer Koefferlein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Production Printing Germany GmbH and Co KG
Original Assignee
Wincor Nixdorf International GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wincor Nixdorf International GmbH filed Critical Wincor Nixdorf International GmbH
Publication of EP0403523A1 publication Critical patent/EP0403523A1/fr
Application granted granted Critical
Publication of EP0403523B1 publication Critical patent/EP0403523B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/50Machine control of apparatus for electrographic processes using a charge pattern, e.g. regulating differents parts of the machine, multimode copiers, microprocessor control
    • G03G15/5033Machine control of apparatus for electrographic processes using a charge pattern, e.g. regulating differents parts of the machine, multimode copiers, microprocessor control by measuring the photoconductor characteristics, e.g. temperature, or the characteristics of an image on the photoconductor
    • G03G15/5037Machine control of apparatus for electrographic processes using a charge pattern, e.g. regulating differents parts of the machine, multimode copiers, microprocessor control by measuring the photoconductor characteristics, e.g. temperature, or the characteristics of an image on the photoconductor the characteristics being an electrical parameter, e.g. voltage
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/14Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base
    • G03G15/16Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base of a toner pattern, e.g. a powder pattern, e.g. magnetic transfer
    • G03G15/163Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base of a toner pattern, e.g. a powder pattern, e.g. magnetic transfer using the force produced by an electrostatic transfer field formed between the second base and the electrographic recording member, e.g. transfer through an air gap
    • G03G15/1635Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base of a toner pattern, e.g. a powder pattern, e.g. magnetic transfer using the force produced by an electrostatic transfer field formed between the second base and the electrographic recording member, e.g. transfer through an air gap the field being produced by laying down an electrostatic charge behind the base or the recording member, e.g. by a corona device
    • G03G15/1645Arrangements for controlling the amount of charge
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G21/00Arrangements not provided for by groups G03G13/00 - G03G19/00, e.g. cleaning, elimination of residual charge
    • G03G21/06Eliminating residual charges from a reusable imaging member
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/00025Machine control, e.g. regulating different parts of the machine
    • G03G2215/00029Image density detection
    • G03G2215/00033Image density detection on recording member
    • G03G2215/00037Toner image detection
    • G03G2215/00042Optical detection

Definitions

  • the invention relates to an electrophotographic printing device according to the features of claim 1.
  • Electrophotographic printing devices are generally used in connection with EDP systems and the possibility of influencing the print quality is low or the operator expects the printer to deliver an optimal printing result under all conditions. This results in different demands on the quality of the electrophotographic process between printers and copiers.
  • the quality of the consumables such as toner and developer, and the manufacturing quality of the photoconductor, respectively, also have a significant influence on the print quality.
  • the printer manufacturer has less influence on the quality of these materials when operating the printing device.
  • a control method for an electrophotographic copier is described in Patent Abstracts of Japan, Volume 7, No. 184 (P-216) (1329) August 13, 1983 and JP-A-58 86 562.
  • the toner density and the residual charge on the surface of a photoconductor are scanned using a toner image generated using a standard image.
  • the values thus detected and calculated are compared with predetermined standard values and, depending on this, a developer circuit, an exposure circuit, a toner supply circuit and a developer process are controlled via a microcomputer circuit.
  • a reflection density measuring device and a surface charge sensor are used as sensors.
  • a standard template is imaged on the photoconductor and the developer station is regulated depending on the values of the standard template.
  • the norm template ensures average norm values of the electrophotographic process and, based on these norm values, different templates are copied in relation to these norm values.
  • the aim of the invention is to provide an electrophotographic printing device which, regardless of quality fluctuations in the consumables and independent of changing operating conditions, delivers optimum print quality.
  • Another object of the invention is to design an electrophotographic printing device in such a way that the tolerances in the electrophotographic process can be significantly reduced in order to achieve maximum print quality. The entire process should run automatically if possible.
  • the process-controlled, multi-stage control arrangement for optimizing the electrophotographic process depending on the process results and the process flow of the individual process steps results in a guaranteed constant print quality even when the process itself changes. Closed internal control loops first stabilize the electrophotographic process itself and then the operating parameters the printing device, including the process parameters, is controlled for optimum print quality.
  • a single sheet page printer shown schematically in FIG. 1 and working according to the principle of electrophotography contains three paper storage containers V1, V2 and V3 with different capacities for holding single sheets.
  • the paper storage containers V1, V2 and V3 are constructed in a conventional manner and are connected to a pressure channel DK via the paper feed channels 11 Printing device in connection.
  • the pressure channel DK contains the actual printing station DS with a motor-driven photoconductor drum 12 around which the individual units of the electrophotographic printing station are arranged.
  • An aggregate is a character generator 13 with a character-dependent controllable LED comb with individual controllable lighting elements, not shown here, which can be constructed, for example, in accordance with US Pat. No.
  • a charging sensor SL is connected to the exposure station 13, which measures the surface potential on the photoconductor drum and emits a signal as a function thereof.
  • the charge image generated on the photoconductor with the character generator 13 depending on the character is colored using a developer station 14.
  • the developer station 14 contains a toner reservoir TV for receiving toner and a metering device D in the form of a metering roller. Depending on the toner consumption, the metering roller D supplies toner to the actual developer station.
  • the toner is mixed by means of two mixing screws MS and the developer mixture of ferromagnetic carrier particles and toner particles is then fed to a developer roller E.
  • the developer roller E acts as a so-called magnetic brush roller and consists of a hollow roller with magnetic strips arranged therein.
  • the developer roller transports the developer mixture of ferromagnetic carrier particles and toner particles to the development gap ES between the photoconductor drum 12 and developer roller E. Excess developer is transported back to the developer station 14 via the developer roller E.
  • a toner mark scanner TA Immediately downstream of the developer station 14 is a toner mark scanner TA in the form of a reflection scanner.
  • This scanning device TA is described later and is used when scanning a test routine or to scan test marks generated and colored automatically and regularly on the photoconductor and to evaluate these test patterns, for example with regard to color density and color saturation.
  • the inked charge image is then transferred to a recording medium, in this case to single sheets, in a transfer printing station 15.
  • the transfer printing station 15 has a transfer printing corona device UK.
  • the transfer printing corona device UK loosens the colored charge image on the photoconductor drum 12 so that it can be transferred to the recording medium (single sheet).
  • the single sheet is then transported via a suction table S to a fixing station with electrically heated fixing rollers FX, which are driven by an electric motor, and the toner image on the recording medium is thermally fixed.
  • a cleaning station 16 follows in the direction of rotation of the photoconductor drum 12.
  • the cleaning device 16 is constructed in a conventional manner and contains e.g. a stripping element RE, which removes the excess toner or the carrier particles from the photoconductor drum 12. This cleaning process is supported by a corona device KR.
  • This exposure device contains a light source which is homogeneous over its entire spatial length and whose intensity can be controlled in a targeted manner.
  • the surface of the photoconductor drum discharged by the discharge exposure is uniformly recharged in a charging device 18 with a charging corotron arranged therein.
  • the pressure channel DK contains paper transport elements in the form of a belt-shaped suction table S and paper transport rollers P.
  • a paper transport element P in the form of a return channel RF containing motor-driven roller pairs.
  • the return channel RF has a turning device W1, in which in the so-called duplex mode the front and back of the single sheets are described, the single sheets are turned before being fed back to the pressure channel DK.
  • a paper transport channel system PK is connected to the pressure channel DK and feeds the single sheets, not shown here, printed in the simplex or duplex process.
  • paper scanning sensors LS shown as black triangles
  • light barriers For reasons of clarity, only a few light barriers are shown here.
  • the page printer shown schematically in FIG. 1 is controlled with the aid of a control arrangement as shown in FIGS. 2 and 3.
  • the controller for the page printer is basically divided into a controller part C and the actual device controller G.
  • the controller C is principally constructed in accordance with US Pat. No. 4,593,407. It has the task of accepting the print data coming in from a computer H, preparing them page by page and controlling the character generator 13 of the printing station as a function of the characters to be displayed.
  • the device control G in turn serves for the coordinated execution of all printer functions. It has a modular structure and consists of a main processor HP and various submodules SUB1 to SUB5, which ensure independent monitoring of the assigned printer units. Communication between the individual control parts takes place via a hardware / software interface that is uniform for all parts (network-like coupling, serial bus).
  • Each submodule SUB1 to SUB5 has its own Processor equipped and can operate the associated unit of the printing device independently and is itself testable.
  • This self-test capability means that independent test routines are carried out both when the device is switched on and when requested by the main processor HP.
  • All control boards of the printer in the device control are registered with regard to their status in a non-volatile memory. The controller can access these values.
  • the contents of the non-volatile memory can be printed out if necessary. There are also interfaces for additional devices.
  • FIGS. 2 and 3 show the basic structure of the device control in the form of a block diagram. 3 shows a block diagram of the structure of the main processor HP.
  • All submodules SUB1 to SUB5 and the main processor HP are connected to one another with a serial interface INT1, which is controlled via line drivers.
  • the serial interface INT1 is controlled under the control of the main processor HP via a BIT bus.
  • the interface protocol corresponds to the usual HDLC / SDLC description (fast data transfer).
  • the units are controlled by the associated submodules SUB1 to SUB5 directly via power amplifiers (not shown here).
  • the main processor HP periodically checks the function of the individual submodules SUB1 to SUB5.
  • a monitoring circuit (hardware / watchdog) checks the process in the main processor.
  • the sequence control is synchronized with the peripheral speed of the photoconductor drum 12 via the output signals of a rotary pulse generator DI.
  • the output of this rotary pulse generator DI (FIG. 1) is connected to all submodules SUB1 to SUB5 and supplies a synchronization signal F at cyclical intervals.
  • the main processor has the following structure: A central processing unit CPU is connected to three memories SP1 to SP3 and an input / output unit EA.
  • the memory SP1 is a read-write memory
  • the memory SP2 is an electrically programmable read-only memory
  • the memory SP3 is a non-volatile data memory.
  • the input / output unit EA detects, among other things, the synchronization pulse F.
  • non-volatile memory SP3 In the non-volatile memory SP3, consumption metabolism, printed / fixed page, maintenance intervals, error statistics and deviations from guide values etc. entered by the operator are stored.
  • controller C The connection to controller C is established via a common interface INT2.
  • the main processor HP has the task of coordinating all messages, commands and measurement data from the outdoor stations SUB1 to SUB4, checking for plausibility and forwarding them. It also establishes the connection to controller C via the interface INT2 and the system bus BUS2. In doing so, bidirectional commands and messages are transferred. The correct program sequence in the device control is continuously monitored via the monitoring circuit U (watchdog noise).
  • each submodule has its own processor with an input buffer that transmits the data supplied via input I to the processor and power levels that drive the associated units via output O.
  • the submodules can be tested themselves, ie test routines are carried out independently when the device is switched on or when requested by the main processor HP.
  • the submodule SUB1 monitors all sensors LS of the storage containers V1 to V3, the feed channels 11 and the pressure channel DK and in particular the pressure start signal of the sensor LS SYN.
  • the submodule SUB1 controls all units in this area. It detects and reports paper run errors.
  • the submodule SUB2 detects all sensors LS in the paper output area, i.e. in the area of the dispensing container and in the dispensing channel AK. Paper run errors are detected and reported to the main processor HP.
  • the submodule SUB3 monitors the sensors LS in the paper channel system and in the feedback channel RF. It controls the paper flow in these channels and detects paper flow errors.
  • the SUB4 submodule controls a control panel AZ on the printer.
  • the control panel AZ contains a keyboard and a display device, the display showing the paper flow in the printer or, in the event of a paper transport fault, the fault location.
  • the sub module SUB4 in connection with the control panels AZ represents the interface between the operator or maintenance technician and the printing device. All operator inputs and all information from the device are made via the control panel. This essentially consists of a display for displaying the information and a keyboard for entering various commands and parameters. In addition, it has some special controls and indicators.
  • the submodule SUB5 detects the sensors of the printing station DS and the fixing station FX. These sensors are, for example, the charge sensor SL for detecting the surface potential of the photoconductor 12, transport monitoring sensors in the developer station 14, temperature sensors and microswitches in the fixing station FX, the toner mark sensor TA between the developer station 14 and transfer printing station UK.
  • the submodule SUB5 controls the units, the fixation lamps, Motors, fans, charging corotrons etc. The errors that occur are reported to the main processor HP.
  • the submodule SUB5 in connection with the main processor HP also contains the process-controlled control arrangement according to the invention for detecting and regulating the essential operating parameters of the electrophotographic process.
  • This control arrangement is a process-controlled control arrangement which is constructed in several stages and in principle consists of three blocks (control stages) CC1, CC2, CC3.
  • the entire electrophotographic process is first subdivided into a sequence of process steps which take place or mesh with one another, namely the photoconductor process, the development process and the transfer printing process.
  • an attempt is made to regulate the individual process steps independently using individual control blocks, based on the result of the individual process step and the course of the process in the process step.
  • the aim is to stabilize the individual process steps with regard to their operating parameters, in order to build up the next process step on the continuous stabilized process step.
  • the electrophotographic parameters are stabilized as a prerequisite for optimizing the development process.
  • the electrophotographic parameters are understood in particular to be the parameters influencing the charge balance on the photoconductor.
  • the first regulating stage contains a regulating circuit shown in FIG. 4 for regulating the charging potential on the photoconductor.
  • the interrogation arrangement AF compares the measured values obtained with stored reference measured values and corrects the charging current at the charging corotron 18. After a time delay of approx. This cyclical detection enables an almost instantaneous correction of the charging current of the charging corotron 18.
  • the regulation of the charging potential is very important for the print quality. Fluctuations in the charging potential have a direct impact on the print quality.
  • the constant automatic detection and correction of the charging potential enables safe operation within the permissible bandwidth.
  • Control arrangement it is possible to reduce the tolerance of the charging potential that occurs by a factor of 5, for example from absolutely 400 V to approximately 80 V.
  • the remaining 80 V potential tolerances are mainly due to the non-adjustable charge fluctuations on the circumference of the photoconductor drum.
  • An achievable reduction in tolerance from 400 V to 80 V already leads to considerable quality stabilization and assurance. For example, it is possible to increase the pretension at the developer station for better coloring of large areas and at the same time to ensure sufficient security against background coloring.
  • the light output of the discharge lamps 17 is controlled in the exposure station.
  • the light output of the discharge lamps strongly depends on the lamp aging, the number of specimens and the temperature. In order to become independent of these tolerances, the light output is e.g. detected by a photo sensor PS arranged in the light channel of the discharge lamp 17 and corrected by raising or lowering the lamp current.
  • a light source that is homogeneous over its entire length and whose intensity can be specifically controlled is used.
  • the contrast or residual potential of the photoconductor drum 12 has a further significant influence on the print quality when it is discharged from, for example, a regulated charging potential with a defined exposure.
  • a regulated charging potential there are very clear deviations in the residual potential and the discharge capacity from the photoconductor spectra. Some of these tolerances correspond to deviations that can arise with uncontrolled charging.
  • the overall tolerances of the residual or contrast potential also depend on fluctuations in the performance of the writing light and, under certain circumstances, also on the influences of the toner (developer mixture). This ensures a constant quality of the print result, especially of full surfaces or not always guaranteed when printing bar codes.
  • the residual potential can, however, be detected with the aid of a monitoring device.
  • This monitoring device uses two sensors, namely the charging sensor SL, which is also used to measure the charging potential, and the toner mark sensor TA.
  • the charging sensor SL and the toner mark sensor TA are located in the area of the photoconductor 12 on a single movement track. In this way, a test mark that is preferably generated outside the actual writing area on the photoconductor first reaches the area of the charge sensor SL and then the area of the toner mark sensor TA.
  • the charging sensor SL has several functions: It is initially used in the manner described to measure the charging potential, wherein it detects the unexposed areas after charging.
  • an elongated full-area mark 31 is produced outside the writing area 29 by exposure at the edge of the photoconductor drum. All the LEDs of the character generator required to generate the full-area mark are activated with a predetermined light output, this light output being dependent on the type and temperature of the photoconductor. If the full-area mark 31 is produced by exposure, but has not yet been colored, the charging sensor SL measures in the area of the full area the residual potential.
  • the elongated full-area mark is necessary, among other things, because the charge sensor SL has a certain inherent inertia and, because of the rotational speed of the photoconductor drum, a reliable measurement is only possible after a certain time and thus after a certain pass through the full-area mark.
  • the optical scanner TA in the form of a reflection light barrier is located in the same movement track of the photoconductor 12, downstream of the developer station.
  • the reflection light barrier is constructed in the usual way and consists of a light source and a photo transistor as a receiver.
  • the output signal of the phototransistor depends on the degree of reflection of the toner mark applied to the photoconductor and now colored by the developer station and thus on the color saturation, i.e. the optical density of the mark applied and colored by the developer station.
  • the wavelength of the reflection light barrier is chosen so that the scanning light has no influence on the function of the photoconductor drum. This is necessary because the light barrier is constantly activated and therefore also scans areas that have not been exposed.
  • test routines for generating the described full-area marks are called up from time to time via test programs stored in the control arrangement. Then the residual potential is determined in the exposed and non-inked full-area mark via the charge sensor SL and this signal is compared with a limit value stored in the storage device and, depending on this comparison process, a warning signal is then triggered on the display device AZ when the residual potential is exceeded.
  • the maintenance personnel can now stabilize the residual potential, for example, by changing the pretension at the developer station (BIAS voltage) or by other measures. However, this regulation can also be carried out automatically by the control arrangement.
  • the intensity of the writing light of the character generator 13 is changed depending on the comparison process. This is done by changing the control current or the control voltage of the LED.
  • a character generator with a laser beam is used instead of a character generator with activatable single points (LED comb), it is necessary to change the intensity of the laser beam, this can e.g. also take place via filters or other measures.
  • the development device for securing and optimizing the development of the charge pattern is regulated with a second control stage CC2.
  • a toner mark 30 is constantly generated on the photoconductor 12 outside the actual writing area via the character generator 13 in short time intervals, specifically with a defined exposure intensity and this toner mark 30 is colored via the developer station .
  • the colored toner mark 30 is then scanned on the photoconductor 12 with the aid of the optical scanning device TA and, depending on the degree of inking of this brand, the regulation of the conveyance of the toner from the storage container TV via the metering device D to the developer station 14 takes place. Depletion of the developer supply in the developer station 14 is directly reflected in the color density of the toner marking. If the developer supply in the developer station is used up, the color density of the toner marking is changed significantly, this cannot be compensated for by additional funding. This state of consumption is recognized by the control arrangement and a warning signal is activated on the display device AZ.
  • a test pattern can be generated via the control panel, e.g. can consist of a bar extending over the entire width of the record carrier.
  • This test pattern can also be scanned on the photoconductor using the optical scanning device TA.
  • several scanners can be arranged side by side. However, this can also be done using a single scanner, e.g. an elongated bar corresponding to the full-area mark 31 is used as the test pattern, which is arranged outside the actual writing zone, a continuous scanning being carried out as the test mark passes through. However, this scanning can also take place in sections at short intervals.
  • a value for the large area coloring can be derived from this.
  • the degree of coloring of the test pattern is too low, the coloring of the background areas on the photoconductor drum and / or on the paper must first be checked. If this is too high, this indicates a device malfunction or a very aged developer mix. Appropriate activities to compensate for this can then be undertaken.
  • the background area of printed images can also be monitored via the scanning device TA. This background monitoring can be done continuously. If the background coloring exceeds a permissible level, the degree of coloring of the large area is first checked again. If this is within the permissible limits, it can be corrected as described for the measurement of the large area coloring.
  • Another way to check the print quality is to capture raster reproduction.
  • a defined raster reproduction can be impaired. For example, a very easily unloadable photoconductor layer changes a raster to higher or darker values, while a somewhat poorly unloadable photoconductor layer hinders raster printing. Since the human eye is very sensitive on this point and therefore high demands have to be made in this regard, it is necessary to correct this tolerance.
  • the image-based representation with electrophotographic printers takes place in the dot pattern in different gray values, the gray value representation being carried out by corresponding configuration of the individual dots having the same size.
  • the raster mark In order to be able to check this gray value display, it is possible to generate a raster mark at certain time intervals by calling a test routine via the control arrangement.
  • the raster mark consists of a raster area which has a 50% optical density (black area), i.e. 50% black, 50% white. However, this can vary in a range from 25 to 75% area coverage.
  • the raster mark is generated via the character generator 13 and colored via the developer station 14. It is then scanned in the manner described using the optical scanner TA.
  • the sampled value is compared with a stored target value and the light intensity of the character generator 13 is changed in accordance with the deviation, for example by increasing or decreasing the LED voltage.
  • the stored setpoint can, however, also be changed as a function of various machine parameters, in order to achieve an adjustment, for example, depending on the recording medium material used, the photoconductor drum used or the type of recording medium itself.
  • the corresponding correction values or characteristic data can be entered via the display device AZ, or corresponding sensors independently detect these values.
  • the transfer station is controlled in principle with a third control stage CC3 for securing and optimizing the transfer printing.
  • the control panel AZ is used to Entered the paper width and the paper thickness into his keyboard-like input device and set the assigned optimal transfer corotron current determined from empirical values via the device software. This can also be done automatically with a detection device, not shown here, which e.g. when the individual sheets leave the feed channels 11, the thickness and size of the paper are detected by an optoelectronic scanning device.
  • the three control levels capture and stabilize all parameters that are important for print quality. This makes it possible to place the working points of the various parameters in optimal areas without considering the worst case conditions and thus to ensure the maximum achievable quality at all times.
  • FIG. 5 The structure of this control process, referred to as program-guided electrophotography, is listed in FIG. 5. An overall overview of the control concept can be seen in FIG. 6.
  • the control loops shown in FIG. 6 are largely self-contained in order to rule out a clear and undefined control behavior.
  • the individual control loops are influenced depending on the results of the individual process steps, for example changing a parameter.
  • microprocessor-controlled control arrangement essential functions of the microprocessor-controlled control arrangement are the following:
  • the information about whether the conditions in the electrophotographic printing process are still regular is available via the setting value of the charging corotron current determined in the microprocessor for diagnostic purposes.
  • a strong reduction or increase in the charging capacity of the photoconductor drum, caused by external influences such as temperature, toner, etc., can be recognized, evaluated and corrected.
  • test programs can run routinely or on command for diagnostic and remote diagnosis purposes, gray fog test, background test.
  • the information about the residual potential of the photoconductor drum provides valuable information about the current state of the electrophotographic printing unit.
  • the residual potential can be regulated within limits via the light output of the character generator.
  • the value of the residual potential can provide information as to whether the printing of sophisticated programs (barcode) or raster printing with high quality is possible.
  • the light output of the character generator can also be regulated by scanning the raster marks. Is e.g. the grid mark is too dark, the light output is reduced and the mark becomes brighter.
  • the information about the degree of coloring can be used to different parameters such as adjust the bias of the developer station within certain limits.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Control Or Security For Electrophotography (AREA)

Abstract

Un agencement d'impression électrophotographique comprend un dispositif de réglage à circuit fermé pour saisir et réguler les paramètres essentiels de fonctionnement du procédé électrophotographique. L'agencement comprend un premier étage de réglage qui stabilise le processus électrophotographique sur le photoconducteur (12) en régulant le potentiel de charge (18) et, l'éclairage de décharge (17) et en saisissant et contrôlant le potentiel résiduel (SL). Un deuxième étage de réglage sert à optimiser et à rendre plus fiable le développement et la mise en couleurs de l'image électronique de charge par le réglage de l'apport en toner à la zone de développement (14) et de l'encrage de l'image de charge. Un troisième étage de réglage optimise et rend plus fiable la duplication par la saisie des valeurs spécifiques du support d'enregistrement et par le réglage du dispositif à effet de couronne (UK).

Claims (8)

  1. Dispositif d'impression électrophotographique, dans lequel, selon une séquence d'étapes opératoires qui se déroulent successivement ou sont imbriquées les unes dans les autres, des images de charges sont produites par l'intermédiaire d'un générateur de caractères (13) sur un photoconducteur (12), sont développées dans un poste de développement (14) et sont transférées à un support d'enregistrement dans un poste de transfert (15), comportant
    - un dispositif de régulation (SUB5) commandé par le processus et servant à optimiser les différents paramètres de fonctionnement du processus électrophotographique par stabilisation des différentes étapes opératoires pour ce qui concerne leurs paramètres de fonctionnement, l'étape de traitement suivante étant établie sur la base d'une étape de traitement stabilisée exécutée;
    - des blocs successifs de régulation (CC1,CC2,CC3), associés aux différentes étapes opératoires et servant à régler automatiquement les différentes étapes opératoires sur la base des paramètres de fonctionnement de l'étape opératoire individuelle et des étapes opératoires précédentes;
    - des capteurs (SL,TA,PS) pour détecter les paramètres de fonctionnement des différentes étapes opératoires et des moyens d'entrée (AZ) pour des grandeurs caractéristiques spécifiques du processus électrophotographique; et
    - des moyens pour produire sur le photoconducteur (12) à l'extérieur de la zone d'inscription proprement dite, par l'intermédiaire du générateur de caractères (13), en fonction de l'état de fonctionnement du dispositif d'impression, des marques de test et/ou des modèles de test possédant des structures importantes pour le processus et dont l'état de charge après exposition et la densité de coloration après développement sont détectés sur le photodétecteur (12) par l'intermédiaire des capteurs (SL,TA).
  2. Dispositif d'impression photographique selon la revendication 1, comportant un premier bloc de régulation (CC1) pour stabiliser le processus électrophotographique sur un photoconducteur (12) par régulation et/ou contrôle des paramètres de fonctionnement des photoconducteurs (12), comme par exemple le potentiel de charge (18), l'exposition de décharge (17) et le potentiel résiduel (SL), un second bloc de régulation (CC2) pour garantir et optimiser le développement de l'image de charge par régulation et/ou contrôle des paramètres de foncitonnement du poste de développement (14) tels que l'apport de toner à la zone de développement (ES), la coloration de l'image de charge, le nettoyage du photoconducteur (12) et l'intensité lumineuse du générateur de caractères (13), et un troisième bloc de régulation (CC3) pour garantir et optimiser le transfert par régulation et/ou contrôle des paramètres de fonctionnement du poste de transfert (15) au moyen de la détection des grandeurs spécifiques du support d'enregistrement et de l'adaptation du dispositif à effet couronne (UK).
  3. Dispositif d'impression électrophotographique selon la revendication 1, comportant un capteur de charge (SL) disposé entre le générateur de caractères (13) et le poste de développement (14), et un dispositif d'exploration optique (TA) branché en aval du poste de développement (14) dans le sens de développement du photoconducteur (12), le capteur de charge (SL) et le dispositif d'exploration optique (TA) étant disposés l'un derrière l'autre sur une piste de déplacement du photoconducteur (12).
  4. Dispositif d'impression électrophotographique suivant la revendication 3, dans lequel le dispositif d'exploration optique (TA) est réalisé sous la forme d'un relais photoélectrique à réflexion, dont la lumière d'exploration possède une longueur d'onde telle que cette lumière n'a aucune influence photoélectrique sur le photoconducteur (12).
  5. Dispositif d'impression électrophotographique suivant la revendication 1, dans lequel à des intervalles de temps réguliers est produite une marque de test de toner (30), dont la densité de coloration est explorée par un dispositif d'exploration optique (TA) et est transférée au dispositif de régulation qui, en fonction de la densité de coloration, règle l'apport de toner à la zone de développement (ES) et/ou actionne un dispositif d'avertissement (AZ).
  6. Dispositif d'impression électrophotographique suivant la revendication 1, dans lequel, après appel d'un sous-programme de test par l'intermédiaire du dispositif de régulation, une marque de test (31) étendue à toute la surface est produite tout d'abord par exposition avec une intensité d'exposition qui permet d'une part de déterminer le potentiel de charge résiduel par l'intermédiaire d'un capteur de charge (SL) et permet d'autre part, après une coloration, exécutée le cas échéant, de la marque (31) s'étendant sur la surface complète, une exploration de la densité de coloration par l'intermédiaire d'un dispositif d'exploration optique (TA).
  7. Dispositif d'impression électrophotographique suivant la revendication 1, dans lequel après appel du sous-programme de test par l'intermédiaire du dispositif de régulation, des marques de trames (32) possédant une densité optique définie sont formées et explorées par un dispositif d'exploration optique (TA), et que le dispositif des régulation règle de préférence la puissance lumineuse de ce générateur de caractères en fonction du signal de sortie du dispositif d'exploration optique (TA), en dehors d'autres paramètres de régulation.
  8. Dispositif d'impression électrophotographique suivant la revendication 1 à 7, dans lequel le générateur de caractères (13) est réalisé sous la forme d'un générateur de caractères (13) dont l'intensité lumineuse peut être commandée.
EP89903096A 1988-03-04 1989-03-03 Agencement d'impression electrophotographique et procede electrophotographique commande Expired - Lifetime EP0403523B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3807121 1988-03-04
DE3807121A DE3807121A1 (de) 1988-03-04 1988-03-04 Elektrofotografische druckeinrichtung mit geregeltem elektrofotografischen prozess

Publications (2)

Publication Number Publication Date
EP0403523A1 EP0403523A1 (fr) 1990-12-27
EP0403523B1 true EP0403523B1 (fr) 1992-11-25

Family

ID=6348882

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89903096A Expired - Lifetime EP0403523B1 (fr) 1988-03-04 1989-03-03 Agencement d'impression electrophotographique et procede electrophotographique commande

Country Status (5)

Country Link
US (1) US5124732A (fr)
EP (1) EP0403523B1 (fr)
JP (1) JP3162357B2 (fr)
DE (2) DE3807121A1 (fr)
WO (1) WO1989008283A1 (fr)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5043749A (en) * 1989-12-29 1991-08-27 Am International Inc. Printing press and method
JP3009179B2 (ja) * 1990-04-16 2000-02-14 株式会社日立製作所 静電記録装置及び静電潜像測定装置
US5414531A (en) * 1991-02-22 1995-05-09 Canon Kabushiki Kaisha Image forming control based on a stored operation condition
EP0520819B1 (fr) * 1991-06-28 1998-08-19 Canon Kabushiki Kaisha Appareil de formation d'images comprenant un élément de chargement
JPH06266138A (ja) * 1993-03-15 1994-09-22 Canon Inc 電子写真装置
DE4336690C2 (de) * 1993-10-27 1999-04-15 Henning Dipl Phys Dr Frunder Vorrichtung zum Messen von elektrischen Potentialunterschieden an elektrografischen Aufzeichnungsmaterialien
JP3097450B2 (ja) * 1994-04-25 2000-10-10 ブラザー工業株式会社 記録装置およびファクシミリ装置
JP2959394B2 (ja) * 1994-04-25 1999-10-06 ブラザー工業株式会社 画像形成装置並びにファクシミリ装置
US5876132A (en) * 1995-05-23 1999-03-02 International Business Machines Corporation Method and system for high character density printing utilizing low pel density characters
US6081677A (en) * 1996-08-02 2000-06-27 Oce Printing Systems Gmbh Process for optimizing a half-tone reproduction on a photoconductor of electrophotographic printers and copiers
DE19643611B4 (de) * 1996-10-22 2004-02-19 OCé PRINTING SYSTEMS GMBH Verfahren zum Bestimmen eines Einfärbungsgrades von in Druck- und Kopiereinrichtungen erzeugten, betonerten Bereichen
JP3363720B2 (ja) * 1996-12-02 2003-01-08 キヤノン株式会社 インクジェット記録方法、かかる方法に用いるインクジェット記録装置およびかかる方法で記録したインクジェット記録物
US6987575B1 (en) * 1998-12-21 2006-01-17 Oce Printing Systems, Gmbh Printing device which operates with at least three brightness steps and methods to be executed therewith for determining printing parameters
DE19900164A1 (de) 1999-01-05 2000-07-27 Oce Printing Systems Gmbh Verfahren und Einrichtung zur Regelung der Tonerkonzentration in einem elektrografischen Prozess
US6637961B1 (en) 2001-07-02 2003-10-28 Lexmark International, Inc. Encoder control system for printers and related methods
US7506328B2 (en) 2002-02-11 2009-03-17 Xerox Corporation Method and system for optimizing performance of an apparatus
DE10246736A1 (de) * 2002-10-07 2004-04-22 OCé PRINTING SYSTEMS GMBH Verfahren und Vorrichtung zur Einstellung der Tonerzufuhr auf einen Mindestwert in eine Entwicklerstation einer elektrografischen Druck- oder Kopiereinrichtung
US7034858B2 (en) * 2002-10-30 2006-04-25 Kyocera Mita Corporation LED array exposure device, controlling method thereof, and image forming apparatus using the same
DE10250827B3 (de) 2002-10-31 2004-07-15 OCé PRINTING SYSTEMS GMBH Verfahren, Steuerungsschaltung, Computerprogrammprodukt und Druckgerät für einen elektrografischen Prozess mit temperaturkompensierter Entladetiefenregelung
US7686445B2 (en) * 2005-07-19 2010-03-30 Xerox Corporation Method for monitoring a transfer surface maintenance system
JP5016851B2 (ja) * 2006-06-02 2012-09-05 キヤノン株式会社 印刷装置、印刷方法、及びプログラム
US8045871B2 (en) * 2007-06-15 2011-10-25 Ricoh Company, Ltd. Image forming apparatus and image forming method on measured physical quantity

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3788739A (en) * 1972-06-21 1974-01-29 Xerox Corp Image compensation method and apparatus for electrophotographic devices
US4277162A (en) * 1978-07-13 1981-07-07 Ricoh Company, Ltd. Electrophotographic apparatus comprising density sensor means
JPS55130565A (en) * 1979-03-31 1980-10-09 Ricoh Co Ltd Toner concentration control unit
DE3038367C2 (de) * 1979-10-13 1994-06-23 Canon Kk Elektrofotografisches Gerät
JPS56161555A (en) * 1980-05-19 1981-12-11 Fuji Xerox Co Ltd Controller of electrophotographic copying machine
JPS5886562A (ja) * 1981-11-18 1983-05-24 Fuji Xerox Co Ltd 電子複写機の制御方法
JPS5887560A (ja) * 1981-11-20 1983-05-25 Ricoh Co Ltd 複写機
JPS58115453A (ja) * 1981-12-28 1983-07-09 Yokogawa Hokushin Electric Corp 電子写真装置
JPS58221856A (ja) * 1982-06-18 1983-12-23 Ricoh Co Ltd 画像濃度制御方法
JPS58221858A (ja) * 1982-06-18 1983-12-23 Ricoh Co Ltd 記録装置の画像安定化方法
US4502778A (en) * 1982-12-27 1985-03-05 International Business Machines Corporation System for monitoring and controlling electrophotographic toner operation
JPS59136754A (ja) * 1983-01-26 1984-08-06 Canon Inc 画像形成装置
GB2141050B (en) * 1983-06-08 1986-09-10 Xerox Corp Plain paper copier
JPS6045265A (ja) * 1983-08-23 1985-03-11 Canon Inc 電子写真装置
JPS6073671A (ja) * 1983-09-30 1985-04-25 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション パタ−ン処理装置
JPS59201067A (ja) * 1983-12-26 1984-11-14 Ricoh Co Ltd 電子写真複写機
JPS60254061A (ja) * 1984-05-30 1985-12-14 Ricoh Co Ltd 静電型画像記録装置
JPS61105578A (ja) * 1984-10-29 1986-05-23 Tokyo Electric Co Ltd 電子写真装置
DE3534338A1 (de) * 1985-09-26 1987-04-02 Siemens Ag Elektrofotografischer drucker mit einer belichtungsenergie/korrektureinrichtung fuer den optischen zeichengenerator
US5019862A (en) * 1986-01-23 1991-05-28 Sharp Kabushiki Kaisha Heat control for photoreceptor
US4785331A (en) * 1986-11-13 1988-11-15 Minolta Camera Kabushiki Kaisha Electrophotographic copying method and apparatus
JPS63200169A (ja) * 1987-02-17 1988-08-18 Nec Corp 電子写真式記録装置
US4724461A (en) * 1987-04-06 1988-02-09 Eastman Kodak Company Dynamic process control for electrostatographic machines

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
IBM Technical Disclosure Bulletin, vol. 18, no. 8, January 1976 (New York, US), T.F. Cecil et al. : "Transfer corona", page 2408 *
Patent Abstracts of Japan, vol. 10, no. 288 (P-502) (2344), 30 September 1986, & JP A 611 5578 *
Patent Abstracts of Japan, vol. 6, no. 46 (P-107)(924), 24 March 1982, & JP A 56161555 *
Patent Abstracts of Japan, vol. 7, no. 101 (P-194) (1246) 28 April 1983, & JP A 5825677 *
Patent Abstracts of Japan, vol. 7, no. 184 (p-216) (1329), & JP A 5886562 *
Patent Abstracts of Japan, vol. 7, no. 188 (P-217) (1333), 17 August 1983, & JP A 5887560 *
Patent Abstracts of Japan, vol. 7, no. 224 (P-227) (1369), 5 October 1983, & JP A 58115453 *
Patent Abstracts of Japan, vol. 8, no. 79 (P-267) (1516), 11 April 1984, & JP A 58221858 *
Patent Abstracts of Japan, vol. 9, no. 170 (P-373) (1893), 16 July 1985, & JP A 6045265 *
Patent Abstracts of Japan, vol. 9, no. 68 (P-344) (1791), 28 March 1985, & JP A 59201067 *

Also Published As

Publication number Publication date
EP0403523A1 (fr) 1990-12-27
DE58902832D1 (de) 1993-01-07
JP3162357B2 (ja) 2001-04-25
US5124732A (en) 1992-06-23
JPH03503575A (ja) 1991-08-08
WO1989008283A1 (fr) 1989-09-08
DE3807121A1 (de) 1989-09-14

Similar Documents

Publication Publication Date Title
EP0403523B1 (fr) Agencement d'impression electrophotographique et procede electrophotographique commande
DE69805037T2 (de) Steuerung der Tonerabgabe
DE19731251B4 (de) Bilderzeugungseinrichtung und Entwicklungsverfahren für eine Bilderzeugungseinrichtung
DE4035744C2 (fr)
DE69730920T2 (de) Bilderzeugungsgerät und dazu montierbare Prozesskassette
DE69310388T2 (de) Verfahren und Mittel um seitliche Ausrichtungsfehler zu korrigieren
DE60002416T2 (de) Bilderzeugungsverfahren und Vorrichtung zur effektiven Bilddichtesteuerung
DE69926721T2 (de) Drucker mit erleichterter Detektierung eines beschädigten Elementes
DE60016328T2 (de) Bilderzeugungsgerät und Verfahren
DE3709458A1 (de) Bildformungsvorrichtung
DE69027723T2 (de) Bilddarstellungsgerät
EP1047980B1 (fr) Dispositif et procede d'impression ou de photocopie, une marque de toner etant detectee au niveau d'au moins deux points de mesure
EP1141787B1 (fr) Procede et dispositif pour reguler la concentration de toner dans un procede electrographique
DE69219744T2 (de) Zweikomponentenentwicklungsgerät für einen Drucker
DE69637039T2 (de) Verfahren zur Steuerung der Linienbreite eines Tonerbildes
DE3788849T2 (de) Kopiergerät mit Schreibpult.
DE69517082T2 (de) Farbbilderzeugungsgerät
DE69120580T2 (de) Elektrophotographisches Gerät
DE19958020B4 (de) Hochspannungs-Leistungsversorgungseinheit und Drucker
WO1998018059A1 (fr) Machine a developper avec sonde de temperature
EP0946905B1 (fr) Unite de developpement pour une imprimante ou une photocopieuse electrographique
DE4035717A1 (de) Papierstaudetektoranordnung
DE69423156T2 (de) Aufladevorrichtung
EP0946904B1 (fr) Procede de reglage d'une imprimante ou d'un photocopieur electrographique, et appareil de developpement requis pour son application
DE3935231A1 (de) Bilderzeugungseinrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19900710

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS NIXDORF INFORMATIONSSYSTEME AG

17Q First examination report despatched

Effective date: 19920505

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

REF Corresponds to:

Ref document number: 58902832

Country of ref document: DE

Date of ref document: 19930107

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930129

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19970120

Year of fee payment: 9

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

NLS Nl: assignments of ep-patents

Owner name: OCE PRINTING SYSTEMS GMBH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981001

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19981001

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20031222

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040318

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050303

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050303

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20051130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070219

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081001