EP0398011A1 - Steuergerät-Kühlsystem für eine Brennkraftmaschine - Google Patents

Steuergerät-Kühlsystem für eine Brennkraftmaschine Download PDF

Info

Publication number
EP0398011A1
EP0398011A1 EP19900106563 EP90106563A EP0398011A1 EP 0398011 A1 EP0398011 A1 EP 0398011A1 EP 19900106563 EP19900106563 EP 19900106563 EP 90106563 A EP90106563 A EP 90106563A EP 0398011 A1 EP0398011 A1 EP 0398011A1
Authority
EP
European Patent Office
Prior art keywords
contact signal
ignition contact
control apparatus
control device
canceled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP19900106563
Other languages
English (en)
French (fr)
Other versions
EP0398011B1 (de
Inventor
Johannes Locher
Herbert Dipl.-Ing. Graf (Fh)
Jürgen Dipl.-Ing. Schwenger (FH)
Werner Dr.-Ing. Zimmermann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0398011A1 publication Critical patent/EP0398011A1/de
Application granted granted Critical
Publication of EP0398011B1 publication Critical patent/EP0398011B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/162Controlling of coolant flow the coolant being liquid by thermostatic control by cutting in and out of pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/14Indicating devices; Other safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/02Controlling of coolant flow the coolant being cooling-air
    • F01P7/08Controlling of coolant flow the coolant being cooling-air by cutting in or out of pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2050/00Applications
    • F01P2050/30Circuit boards

Definitions

  • the invention relates to a control unit with cooling used in internal combustion engines.
  • Such cooling systems are used where a control unit is arranged in the engine compartment and must be protected against overheating by heat radiated by the engine.
  • a control device cooling system is known, with a control device device for controlling a diesel engine, which device is activated by an ignition contact signal.
  • a coolant system is cooled by a coolant circuit with a coolant pump, to which the control device device is connected in a highly conductive manner.
  • the control unit is equipped with components that are not damaged up to temperatures of 125 ° C. This ensures that the control device device is not destroyed even if heat accumulates after the diesel engine is switched off.
  • the control unit cooling system has a means for temporarily supplying the supply voltage to the coolant pump device even after the ignition contact signal has been canceled, and for so long until a predetermined condition is met.
  • This condition is e.g. B. the expiration of a predetermined period of time or reaching a predetermined sufficiently low temperature, or both.
  • Control units are usually cooled using fuel. From DE 30 04 822 it is already known to operate a fuel pump under certain circumstances after the ignition contact signal has been canceled. However, this is not a fuel coolant pump, but rather the fuel pump that pumps fuel to injectors. The pump is started when the fuel pressure drops due to the formation of gas bubbles. It is then increased again to such an extent that a sufficiently high pressure is immediately available for a starting process which takes place sometime later. In the present case, however, the fuel pressure is not increased, but the fuel in the coolant circuit is pumped around in order to cool a control device device.
  • control unit cooling system with a self-holding circuit, which is set by the ignition contact signal, which in the set state controls a relay, which in the activated state supplies the supply voltage to the control unit device and the coolant pump device, and that from a pulse is reset, which is output by a microcomputer in the control device device, as soon as a predetermined condition is met after the ignition contact signal has been canceled.
  • a control unit cooling system with such a self-holding circuit has several advantages.
  • a first is the general advantage already described, namely that after-cooling can take place after the internal combustion engine has been switched off.
  • Another advantage is that an existing microcomputer can be used to evaluate whether the predetermined condition is met, when reached the coolant pump device is disconnected from the supply voltage.
  • a third advantage is that if the microcomputer is still operated with the help of the self-holding circuit, self-diagnosis processes are carried out, as otherwise would only be carried out when the internal combustion engine was started. So there is a time saving during the starting process.
  • FIG. 1 The arrangement shown in FIG. 1 is used to cool a control device 10.
  • a control device device can also have a plurality of control devices instead of a single control device 10.
  • the control unit 10 is connected to a cooling plate 11 with good thermal conductivity.
  • the cooling plate 11 can also be integrated in the control unit. Fuel flows through it, which is sucked out of the fuel tank 13 by a coolant pump 12 and reaches the tank again with the aid of lines through the cooling plate 11.
  • the coolant pump 12 is driven by a pump motor 14. It is pointed out that instead of fuel tank 13, fuel can also be pumped from another storage container. Another coolant can be used instead of fuel.
  • FIG. 2 shows that the control device 10 has a voltage stabilization 15 and a microcomputer 16. As soon as a voltage is present at a contact Z as the ignition contact signal by actuating the ignition lock, this is fed to the voltage stabilization 15, which then supplies the microcomputer 16 with stabilized voltage.
  • a timing relay 17 receives the ignition contact signal, whereby it picks up and closes an engine switch 18. In the closed state, the latter connects the pump motor 14 to a battery contact B, to which voltage from the battery is present.
  • the computer 16 and the pump motor 14 work. If the ignition contact signal is canceled, the control unit 10 ends its work directly, but the pump motor 14 continues to run for a period of time t which is caused by the time function of the time relay 17 is set. This period of time is chosen so long that even under the most unfavorable conditions the cooling is sufficiently long to ensure that components with normal temperature resistance in the control unit 10 are not damaged by heat build-up.
  • the time period t is typically a few tens of seconds to a few minutes.
  • the embodiment according to FIG. 3 differs from that according to FIG. 2 in that a bimetal switch 19 is provided instead of the time relay 17 to trigger a post-cooling process.
  • the bimetallic switch 19 lies in a self-holding path for a relay 20 which actuates the motor switch 18.
  • This relay 20 like the time relay 17, picks up immediately as soon as voltage is present at contact Z. It closes the motor switch 18, whereby the pump motor 14 is supplied with voltage from the contact B. If the coolant warms up during operation of the internal combustion engine, the bimetal switch 19 also heats up. It finally reaches a temperature at which it is closed, which position is shown in FIG. 3. In the closed position of the bimetal switch 19, it makes the relay 20 self-holding. If the ignition contact signal is now canceled, the relay 20 remains closed until the bimetal switch 19 has cooled so far that it opens the self-holding path.
  • the circuit according to FIG. 3 has the advantage that post-cooling only takes place when it is actually necessary. If the internal combustion engine was only operated for so long that the coolant and with it the bimetal switch 19 only reached a temperature at which no after-cooling is required, the bimetal switch is still open when the ignition contact signal is canceled, which is why the relay 20 is not yet self-sustaining, so that it immediately disconnects the pump motor 14 from the voltage at the battery contact B when the ignition contact signal is lost.
  • Embodiments with a latching circuit are preferred. An example of such an embodiment will now be explained with reference to FIG. 4.
  • a self-holding circuit 21 is also present in the control unit 10.
  • a control device can also contain further functional groups, but on the other hand also the self-holding circuit 21 and / or the voltage stabilization 15 can be arranged outside the control device. It is important in the embodiment according to FIG. 4 that the voltage stabilization 15 is no longer supplied with voltage from contact Z, but rather with voltage from battery contact B. However, this only occurs when a relay 20 closes the motor switch 18 already mentioned. One connection of the relay 20 is on the battery contact B, so it is supplied with voltage. The other terminal is connected to the latch circuit 21.
  • the relay 20 picks up and closes the motor switch 28, whereupon the pump motor 14 runs and the voltage stabilization 15 in the control unit is supplied with voltage. It outputs a stabilized voltage to the microcomputer 16.
  • the micro-computer 16 is also supplied with the ignition contact signal from the contact Z, but not in order to supply it with voltage, but rather to indicate to it when the ignition contact signal is present and when it is canceled. As soon as the microcomputer 16 determines that the ignition contact signal is no longer present, it runs a procedure which determines how long the pump motor 14 should continue to run.
  • the microcomputer can determine the time period depending on the coolant temperature of the internal combustion engine, which temperature is routinely supplied to a microcomputer in a control unit.
  • the control unit 10 can also have its own temperature measuring element, e.g. B. an NTC resistor 22. Its signal is supplied to the microcomputer 16, which compares it with a setpoint. As soon as it is determined that the actual temperature of values above the target temperature has reached or fallen below the target temperature, the reset signal is output.
  • the microcomputer 16 outputs the reset signal in any event with a time delay, even if the main condition for ending the post-cooling phase is not the expiry of a predetermined period of time, but rather the achievement of a target temperature. Even if the actual temperature is below the target temperature, the reset signal is not output immediately, but only after the self-diagnosis procedure has ended.
  • the latch circuit 21 is advantageously designed so that it is at its reset by a reset signal gear R cannot be reset as long as the ignition contact signal is present at its set input S. Unwanted reset signals can e.g. B. occur when the microcomputer 16 is working incorrectly. Even in the event of such an error, if the measure just mentioned is taken, it is ensured that the voltage stabilization 15 continues to operate and can continue to operate an auxiliary computer which is present in many systems.
  • the self-holding circuit 21 can then be switched off either by a signal from the auxiliary computer or in that it has its own timer which ensures that the relay 20 is no longer supplied with voltage after a predetermined period of time after the ignition contact signal has ceased to exist.
  • the signal from a temperature control device can additionally act on the pump motor 14 in order to operate the pump motor even during the time in which the ignition contact signal is present only when cooling of the control device device 10 is actually required.
  • a switch is placed in series with the pump motor 14, which switch is controlled by the temperature control device, preferably the microcomputer.
  • the microcomputer 16 then not only evaluates the signal from the temperature element 22 when the ignition contact signal is no longer present, but continuously evaluates it and continuously compares it with a desired value. Whenever the actual value is below the target value, the switch just mentioned is controlled so that it disconnects the pump motor 14 from the supply voltage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

Ein Steuergerät-Kühlsystem weist eine Steuergeräteinrichtung (10) für eine Brennkraftmaschine auf, die durch ein Zündkontaktsignal in Betrieb gesetzt wird. Die Steuergeräteinrichtung wird mit Hilfe eines Kühlmittelkreislaufs gekühlt, der über einen Pumpenmotor (14) verfügt. In der Steuergeräteinrichtung ist eine Selbsthalteschaltung (21) vorhanden, die den Pumpenmotor und eine Spannungsstabilisierung (15) zum Betreiben eines Mikrorechners (16) mit Spannung versorgt, sobald das Zündkontaktsignal ansteht. Wenn das Zündkontaktsignal wegfällt, wird der Kühlvorgang der Steuergeräteinrichtung nicht sofort beendet, sondern der Pumpenmotor läuft nach, bis gewährleistet ist, daß Bauteile mit üblicher Temperaturfestigkeit in der Steuergeräteeinrichtung nicht durch Überhitzung wegen Stauwärme beschädigt werden können. Wann die Abschaltbedingung erfüllt ist, wird vom Mikrorechner festgestellt. Das beschriebene System hat den Vorteil, daß Bauteile üblicher Temperaturfestigkeit in der Steuergeräteinrichtung verwendet werden können. Weiterhin besteht der Vorteil, daß der auch noch nach Wegfall des Zündkontaktsignales vorübergehend be triebene Mikrorechner Selbstdiagnoseverfahren ausüben kann, die bei herkömmlichen Systemen erst beim Start der Brennkraftmaschine ausgeführt werden, was dann zu einer Verzögerung beim Anlassen der Brennkraftmaschine führt.

Description

    Technisches Gebiet
  • Die Erfindung betrifft ein bei Brennkraftmaschinen eingesetz­tes Steuergerät mit Kühlung. Derartige Kühlungen werden dort verwendet, wo ein Steuergerät im Motorraum angeordnet ist und vor Überhitzung durch vom Motor abgestrahlte Wärme geschützt werden muß.
  • Stand der Technik
  • Aus einem Artikel von R. J. Hames et al. in SAE 861049 unter dem Titel "DDEC II - Advanced Electronic Diesel Control" ist ein Steuergerät-Kühlsystem bekannt, mit einer Steuergerätein­richtung zum Steuern eines Dieselmotors, welche Einrichtung durch ein Zündkontaktsignal in Betrieb gesetzt wird. Durch einen Kühlmittelkreislauf mit einer Kühlmittelpumpe wird eine Kühl­anordnung gekühlt, mit der die Steuergeräteinrichtung gut lei­tend verbunden ist. Das Steuergerät ist mit Bauteilen ausge­stattet, die bis zu Temperaturen von 125 °C keinen Schaden neh­men. Dadurch ist gewährleistet, daß auch dann, wenn nach dem Abschalten des Dieselmotors Stauwärme entsteht, die Steuer­geräteinrichtung nicht zerstört wird.
  • Das Erfordernis, hochtemperaturstabile Bauteile für Steuerge­räte verwenden zu müssen, die im Motorraum von Brennkraftma­schinen angeordnet werden, wird seit längerem als nachteilig empfunden. Dies, weil derartige Bauteile erheblich teurer sind als Bauteile mit üblicher Temperaturfestigkeit.
  • Darstellung der Erfindung
  • Das erfindungsgemäße Steuergerät-Kühlsystem verfügt über ein Mittel zum zeitweiligen Zuführen von Versorgungsspannung zur Kühlmittelpumpeinrichtung auch noch nach dem Aufheben des Zünd­kontaktsignales, und zwar für so lange, bis eine vorgegebene Bedingung erfüllt ist. Diese Bedingung ist z. B. der Ablauf einer vorgegebenen Zeitspanne oder das Erreichen einer vorge­gebenen ausreichend tiefen Temperatur oder beides.
  • Dadurch, daß der Kühlmittelkreislauf auch noch nach dem Aufhe­ben des Zündkontaktsignales weiterbetrieben wird, ist gewähr­leistet, daß auf das Steuergerät einwirkende Stauwärme von die­sem abgeleitet wird. Dies ermöglicht es, Bauteile üblicher Temperaturfestigkeit zu verwenden.
  • Das Kühlen von Steuergeräten erfolgt üblicherweise mit Hilfe von Kraftstoff. Aus DE 30 04 822 ist es bereits bekannt, eine Kraftstoffpumpe nach dem Aufheben des Zündkontaktsignales unter Umständen noch zu betreiben. Es handelt sich hierbei jedoch nicht um eine Kraftstoff-Kühlmittelpumpe, sondern um diejenige Kraftstoffpumpe, die Kraftstoff zu Einspritzventilen pumpt. Die Pumpe wird dann in Gang gesetzt, wenn aufgrund von Gasbla­senbildung der Kraftstoffdruck abfällt. Er wird dann wieder so weit erhöht, daß für einen irgendwann später erfolgenden Startvorgang sofort ein ausreichend hoher Druck zur Verfügung steht. Im vorliegenden Fall wird jedoch nicht der Kraftstoff­druck erhöht, sondern der Kraftstoff im Kühlmittelkreislauf wird umgepumpt, um eine Steuergeräteinrichtung zu kühlen. Ebenfalls bereits bekannt ist es, das Kühlmittel für eine Brennkraftmaschine noch nach dem Aufheben des Zündkontakt­signales für eine bestimmte Zeitspanne oder bis zum Erreichen einer vorgegebenen relativ tiefen Temperatur umzupumpen, um zu verhindern, daß die Brennkraftmaschine durch Stauwärme geschä­digt wird. Diese Maßnahme vermochte der Fachwelt aber bisher keine Anregung dafür zu geben, eine ähnliche Maßnahme auch im Kraftstoffkreislauf zum Kühlen einer Steuergeräteinrichtung zu verwenden. Das Signal, das bei den eben genannten herkömm­lichen Anordnungen zum Abschalten der Kühlmittelpumpe für den Motorkühlkreislauf dient, kann zugleich auf die Kühlmittelpump­einrichtung bei einem Steuergerät-Kühlsystem einwirken. Es ist dann auf einfachste Art und Weise ein erfindungsgemäßes Steuer­gerät-Kühlsystem realisiert, bei dem die Versorgungsspannung der Kühlmittelpumpeinrichtung auch noch nach dem Aufheben des Zünd­kontaktsignales zugeführt wird, bis eine vorgegebene Bedingung erfüllt ist.
  • Von ganz besonderem Vorteil ist es, das Steuergerät-Kühlsystem mit einer Selbsthalteschaltung auszustatten, die durch das Zündkontaktsignal gesetzt wird, die in gesetztem Zustand ein Relais ansteuert, das in angesteuertem Zustand die Versorgungs­spannung an die Steuergeräteinrichtung und die Kühlmittelpump­einrichtung gibt, und die von einem Impuls rückgesetzt wird, der von einem Mikrorechner in der Steuergeräteinrichtung ab­gegeben wird, sobald eine vorgegebene Bedingung nach dem Auf­heben des Zündkontaktsignals erfüllt ist.
  • Ein Steuergerät-Kühlsystem mit einer derartigen Selbsthalte­schaltung weist mehrere Vorteile auf. Ein erster ist der be­reits beschriebene allgemeine Vorteil, daß nämlich ein Nach­kühlen nach dem Abschalten der Brennkraftmaschine erfolgen kann. Ein weiterer Vorteil ist der, daß ein ohnehin vorhande­ner Mikrorechner verwendet werden kann, um auszuwerten, ob die vorgegebene Bedingung erfüllt ist, bei deren Erreichen die Kühlmittelpumpeinrichtung von der Versorgungsspannung getrennt wird. Ein dritter Vorteil ist der, daß dann, wenn der Mikro­rechner noch mit Hilfe der Selbsthalteschaltung weiterbetrie­ben wird, bereits Selbstdiagnosevorgänge ausgeführt werden, wie sie ansonsten erst beim Start der Brennkraftmaschine voll­zogen werden . Es ergibt sich also eine Zeitersparnis beim Startvorgang.
  • Zeichnung
    • Fig. 1 schematische Darstellung eines Steuergerät-Kühl­systems mit einem Steuergerät und einem Kühlmittel­kreislauf;
    • Fig. 2 Blockschaltbild eines Steuergerät-Kühlsystems mit Zeitrelais zum Nachkühlen des Steuergerätes bei aus­geschalteter Brennkraftmaschine;
    • Fig. 3 Blockschaltbild entsprechend dem von Fig. 2, jedoch mit einem Bimetallschalter statt einem Zeitrelais zum Ausführen eines Nachkühlvorganges; und
    • Fig. 4 Blockschaltbild entsprechend dem von Fig. 2, jedoch mit einer Selbsthalteschaltung im Steuergerät zum Steuern eines Nachkühlvorganges.
    Beschreibung von Ausführungsbeispielen
  • Die in Fig. 1 dargestellte Anordnung dient zum Kühlen eines Steuergerätes 10. Eine Steuergeräteinrichtung kann statt einem einzelnen Steuergerät 10 auch mehrere Steuergeräte aufweisen. Das Steuergerät 10 ist mit einer Kühlplatte 11 gut wärmeleitend verbunden. Die Kühlplatte 11 kann auch in das Steuergerät integriert sein. Sie wird von Kraftstoff durchströmt, der von einer Kühlmittelpumpe 12 aus dem Kraftstofftank 13 ge­saugt wird und mit Hilfe von Leitungen durch die Kühlplatte 11 hindurch wieder in den Tank gelangt. Die Kühlmittelpumpe 12 wird von einem Pumpenmotor 14 angetrieben. Es wird darauf hin­gewiesen, daß statt aus dem Kraftstofftank 13 Kraftstoff auch aus einem anderen Vorratsbehälter gepumpt werden kann. Statt Kraftstoff kann auch ein anderes Kühlmittel eingesetzt werden.
  • In Fig. 2 ist dargestellt, daß das Steuergerät 10 eine Span­nungsstabilisierung 15 und einen Mikrorechner 16 aufweist. Sobald durch Betätigen des Zündschlosses an einem Kontakt Z als Zündkontaktsignal eine Spannung ansteht, wird diese der Spannungsstabilisierung 15 zugeführt, die dann den Mikrorech­ner 16 mit stabilisierter Spannung versorgt. Außerdem erhält ein Zeitrelais 17 das Zündkontaktsignal, wodurch es anzieht und einen Motorschalter 18 schließt. Letzterer verbindet in geschlossenem Zustand den Pumpenmotor 14 mit einem Batterie­kontakt B, an dem Spannung von der Batterie anliegt.
  • Sowie also das Zündkontaktsignal am Kontakt Z ansteht, arbei­ten der Rechner 16 und der Pumpenmotor 14. Wird das Zündkon­taktsignal aufgehoben, beendet das Steuergerät 10 direkt seine Arbeit, jedoch läuft der Pumpenmotor 14 noch für eine Zeit­spanne t nach, die durch die Zeitfunktion des Zeitrelais 17 festgelegt ist. Diese Zeitspanne wird so lang gewählt, daß auch bei ungünstigsten Bedingungen ausreichend lang gekühlt wird, um zu gewährleisten, daß Bauteile mit üblicher Temperatur­festigkeit im Steuergerät 10 nicht durch Stauwärme beschädigt werden. Die Zeitspanne t beträgt typischerweise einige 10 Se­kunden bis einige wenige Minuten.
  • Die Ausführungsform gemäß Fig. 3 unterscheidet sich von der gemäß Fig. 2 dadurch, daß zum Auslösen eines Nachkühlvorgangs ein Bimetallschalter 19 statt des Zeitrelais 17 vorhanden ist.
  • Der Bimetallschalter 19 liegt in einem Selbsthaltepfad für ein Relais 20, das den Motorschalter 18 betätigt. Dieses Relais 20 zieht ebenso wie das Zeitrelais 17 sofort an, sobald Spannung am Kontakt Z anliegt. Es schließt dabei den Motorschalter 18, wodurch der Pumpenmotor 14 mit Spannung vom Kontakt B versorgt wird. Erwärmt sich während des Betriebs der Brennkraftmaschine die Kühlflüssigkeit, erwärmt sich auch der Bimetallschalter 19. Er erreicht schließlich eine Temperatur, bei der er geschlos­sen ist, welche Stellung in Fig. 3 eingezeichnet ist. In der geschlossenen Stellung des Bimetallschalters 19 macht er das Relais 20 selbsthaltend. Wird nun das Zündkontaktsignal aufge­hoben, bleibt das Relais 20 solange geschlossen, bis der Bi­metallschalter 19 so weit abgekühlt ist, daß er den Selbst­haltepfad öffnet.
  • Die Schaltung gemäß Fig. 3 hat den Vorteil, daß ein Nachkühlen nur dann erfolgt, wenn es tatsächlich erforderlich ist. Wurde nämlich die Brennkraftmaschine nur so lange betrieben, daß das Kühlmittel und mit ihm der Bimetallschalter 19 nur eine Tem­peratur erreichten, bei der kein Nachkühlen erforderlich ist, ist der Bimetallschalter beim Aufheben des Zündkontaktsignales noch offen, weswegen das Relais 20 noch nicht selbsthaltend ist, so daß es bei Wegfall des Zündkontaktsignales sofort den Pumpenmotor 14 von der Spannung am Batteriekontakt B trennt.
  • Bevorzugt sind Ausführungsformen mit Selbsthalteschaltung. Ein Beispiel für eine solche Ausführungsform wird nun anhand von Fig. 4 erläutert.
  • Bei der Ausführungsform gemäß Fig. 4 ist im Steuergerät 10 außer der Spannungsstabilisierung 15 und dem Mikrorechner 16 noch eine Selbsthalteschaltung 21 vorhanden. Es sei an dieser Stelle darauf hingewiesen, daß ein Steuergerät noch weitere Funktionsgruppen enthalten kann, daß aber andererseits auch die Selbsthalteschaltung 21 und / oder die Spannungsstabilisie­rung 15 außerhalb des Steuergerätes angeordnet sein können. Wichtig ist bei der Ausführungsform gemäß Fig. 4, daß die Span­nungsstabilisierung 15 nun nicht mehr mit Spannung vom Kon­takt Z versorgt wird, sondern mit Spannung vom Batteriekon­takt B. Dies jedoch nur dann, wenn ein Relais 20 den bereits genannten Motorschalter 18 schließt. Der eine Anschluß des Relais 20 liegt am Batteriekontakt B, wird also mit Spannung versorgt. Der andere Anschluß ist mit der Selbsthalteschal­tung 21 verbunden. Er wird geerdet, sobald die Selbsthalte­schaltung 21 an ihrem Setzeingang S das Zündkontaktsignal vom Kontakt Z erhält. Es wird darauf hingewiesen, daß die Selbst­halteschaltung auch die Spannung des Zündkontaktsignals wei­terleiten könnte und dann der andere Anschluß des Relais 20 geerdet sein müßte.
  • Sobald das Zündkontaktsignal abgegeben wird, wird also die Selbsthalteschaltung 21 gesetzt, das Relais 20 zieht an und schließt den Motorschalter 28, woraufhin der Pumpenmotor 14 läuft und die Spannungsstabilisierung 15 im Steuergerät mit Spannung versorgt wird. Sie gibt eine stabilisierte Spannung an den Mikrorechner 16 ab. Dem Mikrorechner 16 wird auch das Zündkontaktsignal vom Kontakt Z zugeführt, jedoch nicht, um ihn mit Spannung zu versorgen, sondern um ihm anzuzeigen, wann das Zündkontaktsignal vorhanden ist und wann es aufgehoben ist. Sobald der Mikrorechner 16 feststellt, daß das Zündkontaktsig­nal nicht mehr vorhanden ist, läßt er eine Prozedur ablaufen, die festlegt, wie lange der Pumpenmotor 14 noch nachlaufen soll. Zum Beispiel wird durch Auszählen von Taktsignalen eine Zeitspanne ausgemessen, mit deren Ablauf der Mikrorechner 16 ein Signal an den Rücksetzeingang R der Selbsthalteschaltung 21 abgibt. Diese schaltet dann das Relais 20 ab, so daß der Mo­torschalter 18 öffnet und den Pumpenmotor 14 sowie die Span­nungsstabilisierung 15 von der Batteriespannung trennt. Der Mikrorechner kann die Zeitspanne abhängig von der Kühlmittel­temperatur der Brennkraftmaschine bestimmen, welche Temperatur einem Mikrorechner in einem Steuergerät routinemäßig zugelei­tet wird. Das Steuergerät 10 kann jedoch auch über ein eigenes Temperaturmeßelement verfügen, z. B. einen NTC-Widerstand 22. Dessen Signal wird dem Mikrorechner 16 zugeführt, der es mit einem Sollwert vergleicht. Sobald festgestellt wird, daß die Isttemperatur von Werten oberhalb der Solltemperatur die Soll­temperatur erreicht oder unterschritten hat, wird das Rück­setzsignal ausgegeben.
  • Das eben beschriebene Beispiel macht deutlich, daß es von Vor­teil ist, wenn der Mikrorechner 16 genutzt werden kann, um festzustellen, ob eine vorgegebene Bedingung zum Beenden des Nachkühlens erreicht ist. Dieser Vorteil ist mit Hilfe der Selbsthalteschaltung 21 realisierbar, die, im Gegensatz zur Funktion bei bekannten Anordnungen, dafür sorgt, daß der Mikro­rechner auch nach dem Aufheben des Zündkontaktsignals noch weiterarbeiten kann. Durch dieses Weiterarbeiten ist es auch möglich, z. B. Selbstdiagnosefunktionen nach dem Abstellen einer Brennkraftmaschine auszuführen und diese Vorgänge nicht erst dann zu vollzuziehen, wenn die Brennkraftmaschine erneut gestartet wird. Werden derartige Selbstdiagnosen ausgeführt, ist es von Vorteil, wenn der Mikrorechner 16 das Rücksetzsig­nal auf jeden Fall zeitverzögert ausgibt, auch dann, wenn die Hauptbedingung zum Beenden der Nachkühlphase nicht das Ablau­fen einer vorgegebenen Zeitspanne, sondern das Erreichen einer Solltemperatur ist. Selbst wenn die Isttemperatur unter der Solltemperatur liegt, wird dann das Rücksetzsignal nicht so­fort ausgegeben, sondern erst nach Ablauf der Selbstdiagnose­verfahren.
  • Die Selbsthalteschaltung 21 ist vorteilhafterweise so ausge­bildet, daß sie durch ein Rücksetzsignal an ihrem Rücksetzein­ gang R nicht rückgesetzt werden kann, solange das Zündkontakt­signal an ihrem Setzeingang S ansteht. Ungewollte Rücksetzsig­nale können z. B. anfallen, wenn der Mikrorechner 16 fehler­haft arbeitet. Selbst bei einem solchen Fehler ist bei Ergrei­fen der eben genannten Maßnahme gewährleistet, daß die Span­nungsstabilisierung 15 weiterarbeitet und einen Hilfsrechner, der in vielen Systemen vorhanden ist, weiterbetreiben kann. Das Abschalten der Selbsthalteschaltung 21 kann dann entweder durch ein Signal vom Hilfsrechner erfolgen oder dadurch, daß diese ein eigenes Zeitglied aufweist, das dafür sorgt, daß nach einer vorgegebenen Zeitspanne nach Wegfall des Zündkon­taktsignals das Relais 20 nicht mehr mit Spannung versorgt wird.
  • Es wird darauf hingewiesen, daß auf den Pumpenmotor 14 zusätz­lich das Signal einer Temperaturregeleinrichtung wirken kann, um den Pumpenmotor auch in derjenigen Zeit, in der das Zünd­kontaktsignal anliegt, nur dann zu betreiben, wenn ein Kühlen der Steuergeräteinrichtung 10 tatsächlich erforderlich ist. Zu diesem Zweck wird ein Schalter in Reihe zum Pumpenmotor 14 ge­legt, welcher Schalter von der Temperaturregeleinrichtung, vor­zugsweise dem Mikrorechner angesteuert wird. Der Mikrorech­ner 16 wertet dann das Signal vom Temperaturelement 22 nicht nur dann aus, wenn das Zündkontaktsignal nicht mehr vorhanden ist, sondern er wertet es dauernd aus und vergleicht es dauernd mit einem Sollwert. Immer dann, wenn der Istwert unter dem Sollwert liegt, wird der eben genannte Schalter so angesteuert, daß er den Pumpenmotor 14 von der Versorgungsspannung trennt.

Claims (7)

1. Steuergerät-Kühlsystem mit
- einer Steuergeräteinrichtung (10) für eine Brennkraftma­schine, welche Steuergeräteinrichtung durch ein Zündkontakt­signal in Betrieb gesetzt wird, und
- einen Kühlmittelkreislauf mit einer Kühlmittelpumpeinrich­tung (12, 14) und einer Kühlanordnung (11) zum Kühlen der Steuergeräteinrichtung,
gekennzeichnet durch
- ein Mittel (17; 19; 21) zum zeitweiligen Zuführen von Ver­sorgungsspannung zur Kühlmittelpumpeinrichtung (12, 14) auch noch nach dem Aufheben des Zündkontaktsignales, und zwar bis eine vorgegebene Bedingung erfüllt ist.
2. System nach Anspruch 1, gekennzeichnet durch ein Zeitrelais (17), das die Kühlmittelpumpeinrichtung (12, 14) nach einer vorgegebenen Zeitspanne von der Versorgungsspannung trennt, welche Zeitspanne ab dem Zeitpunkt des Aufhebens des Zündkontaktsignales läuft.
3. System nach Anspruch 1 , gekennzeichnet durch einen in gutem Wärmekontakt mit dem Kühlmittel angeordneten Bimetallschalter, der dann, wenn das Kühlmittel eine vorgege­ bene Temperatur nach dem Aufheben des Zündkontaktsignales un­terschreitet, die Kühlmittelpumpeinrichtung (12, 14) von der Versorgungsspannung trennt.
4. System nach Anspruch 1 , gekennzeichnet durch eine Selbsthalteschaltung (21), die durch das Zündkontaktsig­nal gesetzt wird, die in gesetztem Zustand ein Relais (20) ansteuert, das in angesteuertem Zustand die Versorgungsspannung an die Steuergeräteinrichtung (10) und die Kühlmittelpumpein­richtung (12, 14) gibt, und die von einem Impuls rückgesetzt wird, der von einem Mikrorechner (16) in der Steuergerätein­richtung abgegeben wird, sobald eine vorgegebene Bedingung nach dem Aufheben des Zündkontaktsignales erfüllt ist.
5. System nach Anspruch 4, gekennzeichnet durch ein Temperaturmeßelement (22), das an der Steuergeräteinrich­tung (10) angebracht ist und das einen Temperaturistwert aus­gibt, der von dem Mikrorechner (16) mit einem Sollwert vergli­chen wird, um den Rücksetzimpuls auszugeben, sobald nach dem Aufheben des Zündkontaktsignales der Istwert den Sollwert un­terschreitet.
6. System nach einem der Ansprüche 4 oder 5, dadurch gekennzeichnet, daß die Steuergeräteinrichtung (10) eine Zeitmeßfunktion aufweist, zum Abgeben des Rücksetzimpul­ses, sobald eine vorgegebene Zeitspanne nach dem Aufheben des Zündkontaktsignales abgelaufen ist.
7. System nach einem der Ansprüche 1 - 6, gekennzeich­net durch ein Temperaturmeßelement (22), das an der Steuergeräteinrichtung (10) angebracht ist und das einen Tem­peraturistwert ausgibt, der von dem Mikrorechner (16) mit einem Sollwert verglichen wird, um die der Kühlmittelpumpeinrichtung (12, 14) zugeführte Versorgungsspannung immer solang zu unter­brechen, wie der Temperaturistwert unter einem Sollwert liegt.
EP90106563A 1989-05-13 1990-04-05 Steuergerät-Kühlsystem für eine Brennkraftmaschine Expired - Lifetime EP0398011B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3915709A DE3915709A1 (de) 1989-05-13 1989-05-13 Steuergeraet-kuehlsystem fuer eine brennkraftmaschine
DE3915709 1989-05-13

Publications (2)

Publication Number Publication Date
EP0398011A1 true EP0398011A1 (de) 1990-11-22
EP0398011B1 EP0398011B1 (de) 1993-06-30

Family

ID=6380636

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90106563A Expired - Lifetime EP0398011B1 (de) 1989-05-13 1990-04-05 Steuergerät-Kühlsystem für eine Brennkraftmaschine

Country Status (4)

Country Link
US (1) US5042434A (de)
EP (1) EP0398011B1 (de)
JP (1) JP2824315B2 (de)
DE (2) DE3915709A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0621399A1 (de) * 1993-04-23 1994-10-26 Société Anonyme dite: REGIE NATIONALE DES USINES RENAULT Verfahren und Vorrichtung zum Antrieb von Hilfsgeräten einer Brennkraftmaschine
EP1923555A1 (de) * 2006-11-17 2008-05-21 Delphi Technologies, Inc. Temperaturschutz eines Motorsteuergerätes
WO2008077665A1 (de) * 2006-12-21 2008-07-03 Robert Bosch Gmbh Steuergerät insbesondere für ein kühlluftgebläse eines verbrennungsmotors sowie kühlsystem für einen verbrennungsmotor

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4344027C2 (de) * 1993-12-23 1996-10-24 Audi Ag Steuergerät zur Steuerung von Motorbetriebsfunktionen
DE50000537D1 (de) * 1999-04-21 2002-10-24 Siemens Ag Steuerungsanlage für eine brennkraftmaschine mit elektromechanisch betätigten gaswechselventilen
GB2357593A (en) * 1999-12-21 2001-06-27 Cummins Engine Co Ltd Temperature control of engine electronic control unit
US7240660B1 (en) 2006-09-21 2007-07-10 Ford Global Technologies, Llc Heat management for control unit
US8206204B2 (en) * 2006-09-21 2012-06-26 Ford Global Technologies, Llc Control unit heat management
FR3103576B1 (fr) * 2019-11-26 2023-12-29 Psa Automobiles Sa Procédé et dispositif de contrôle d’un dispositif de communication de véhicule

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3026802A1 (de) * 1979-07-18 1981-01-22 Hitachi Ltd Elektronisch gesteuerte kraftstoffzufuehrvorrichtung fuer brennkraftmaschine
US4409933A (en) * 1981-08-12 1983-10-18 Nissan Motor Company, Limited Engine compartment cooling apparatus
US4557225A (en) * 1984-01-18 1985-12-10 Mikuni Kogyo Kabushiki Kaisha Combined housing and heat sink for electronic engine control system components
EP0271136A1 (de) * 1986-11-24 1988-06-15 Volvo Car B.V. Kühlanlage für den Zylinderkopf und den Turbo-Kompressor einer Brennkraftmaschine
EP0309986A1 (de) * 1987-09-30 1989-04-05 Hitachi, Ltd. Elektronische Steuerungsvorrichtung zur Verwendung in Kraftfahrzeugen

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2352525A1 (de) * 1973-10-19 1975-04-30 Bosch Gmbh Robert Schaltanordnung fuer den elektrischen motor eines luefters
JPS53138132A (en) * 1977-05-09 1978-12-02 Toyota Motor Corp Automotive cooling fan drive control unit
DE3004822A1 (de) * 1980-02-09 1981-10-15 Robert Bosch Gmbh, 7000 Stuttgart Einrichtung zum steuern einer kraftstoffpumpe bei einer brennkraftmaschine
JPS6364607A (ja) * 1986-09-05 1988-03-23 Alps Electric Co Ltd 磁気ヘツド

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3026802A1 (de) * 1979-07-18 1981-01-22 Hitachi Ltd Elektronisch gesteuerte kraftstoffzufuehrvorrichtung fuer brennkraftmaschine
US4409933A (en) * 1981-08-12 1983-10-18 Nissan Motor Company, Limited Engine compartment cooling apparatus
US4557225A (en) * 1984-01-18 1985-12-10 Mikuni Kogyo Kabushiki Kaisha Combined housing and heat sink for electronic engine control system components
EP0271136A1 (de) * 1986-11-24 1988-06-15 Volvo Car B.V. Kühlanlage für den Zylinderkopf und den Turbo-Kompressor einer Brennkraftmaschine
EP0309986A1 (de) * 1987-09-30 1989-04-05 Hitachi, Ltd. Elektronische Steuerungsvorrichtung zur Verwendung in Kraftfahrzeugen

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 7, no. 50 (M-197)(1195) 26 Februar 1983, & JP-A-57 198312 (NIPPON RADIATOR) 04 Dezember 1982, *
PATENT ABSTRACTS OF JAPAN vol. 8, no. 227 (M-332)(1664) 18 Oktober 1984, & JP-A-59 108818 (NIPPON DENSO) 23 Juni 1984, *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0621399A1 (de) * 1993-04-23 1994-10-26 Société Anonyme dite: REGIE NATIONALE DES USINES RENAULT Verfahren und Vorrichtung zum Antrieb von Hilfsgeräten einer Brennkraftmaschine
FR2704185A1 (fr) * 1993-04-23 1994-10-28 Renault Procédé d'entraînement d'un appareil auxiliaire de moteur à combustion interne et dispositif pour sa mise en Óoeuvre.
EP1923555A1 (de) * 2006-11-17 2008-05-21 Delphi Technologies, Inc. Temperaturschutz eines Motorsteuergerätes
WO2008077665A1 (de) * 2006-12-21 2008-07-03 Robert Bosch Gmbh Steuergerät insbesondere für ein kühlluftgebläse eines verbrennungsmotors sowie kühlsystem für einen verbrennungsmotor

Also Published As

Publication number Publication date
EP0398011B1 (de) 1993-06-30
DE3915709A1 (de) 1990-11-15
DE59001878D1 (de) 1993-08-05
JP2824315B2 (ja) 1998-11-11
JPH02305311A (ja) 1990-12-18
US5042434A (en) 1991-08-27

Similar Documents

Publication Publication Date Title
DE2754852C2 (de)
DE2529797A1 (de) Detektorsystem mit einem abgasfuehler, insbesondere fuer brennkraftmaschinen
DE2051919B2 (de) Kraftstoffeinspritzvorrichtung für eine Brennkraftmaschine
EP0398011A1 (de) Steuergerät-Kühlsystem für eine Brennkraftmaschine
DE69016728T2 (de) Vorheizungsanlage für eine Maschine.
DE2364532C2 (de) Vorrichtung zum Überwachen der Schmierölmenge eines Verbrennungsmotors
DE3922492A1 (de) Starterschutzschaltung
DE112009004737T5 (de) Kraftstoffeigenschaftsbestimmungsgerät
DE1288849B (de) Anlassvorrichtung fuer einen Dieselmotor
DE3941995A1 (de) Verfahren und vorrichtung zur ueberwachung der funktionsfaehigkeit einer sonden-heizeinrichtung
DE3701279A1 (de) Enteisungssteuersystem fuer transportkuehleinheit
DE2720488A1 (de) Steueranlage fuer ein gasturbinentriebwerk
DE2743059A1 (de) Verfahren und anordnung zum schnellaufheizen von gluehkerzen
DE4041631C1 (de)
DE19601772A1 (de) Verfahren zum Starten eines Fahrzeugzusatzheizgerätes
DE2750464C2 (de) Kontrolleinrichtung für die Glühkerzen einer luftverdichtenden Brennkraftmaschine
EP0492084A2 (de) Verfahren zum Aufheizen der Ansaugluft bei Brennkraftmaschinen mittels einer Flammstartanlage
EP0090984B1 (de) Hubkolbenbrennkraftmaschine mit einem elektronischen Zentralregelgerät
EP2672100A2 (de) Steuerung eines elektrischen Ansaugluftwärmers einer Brennkraftmaschine
EP0314961B1 (de) Anordnung zum Bestimmen der Kraftstoffeinspritzmenge für eine Brennkraftmaschine
DE3110502C2 (de) Durchlauferhitzer zur Vorwärmung von viskosem Brennstoff für eine Heizeinrichtung
DE4425482C2 (de) Mikroprozessor-Steuergerät für mit Dieselkraftstoff betriebene Heizgeräte und Verfahren zum Starten eines mit Dieselkraftstoff betriebenen Heitzgerätes
EP0279042B2 (de) Vorrichtung zum Schonen von Relaiskontakten
DE19644497B4 (de) Verfahren zur Steuerung einer Brennkraftmaschine mit einer Kraftstoffpumpe
DE1958443A1 (de) Schalteinrichtung fuer die Gluehkerzen von Brennkraftmaschinen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19901212

17Q First examination report despatched

Effective date: 19910610

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59001878

Country of ref document: DE

Date of ref document: 19930805

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930708

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 19960523

REG Reference to a national code

Ref country code: FR

Ref legal event code: D9

Free format text: CORRECTION

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19980323

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19980420

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980619

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990405

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19990405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991231

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000201