EP0361557B1 - Verfahren zum Behandeln eines Kohlenwasserstoffe und H2S enthaltenden Erdgases - Google Patents

Verfahren zum Behandeln eines Kohlenwasserstoffe und H2S enthaltenden Erdgases Download PDF

Info

Publication number
EP0361557B1
EP0361557B1 EP89202108A EP89202108A EP0361557B1 EP 0361557 B1 EP0361557 B1 EP 0361557B1 EP 89202108 A EP89202108 A EP 89202108A EP 89202108 A EP89202108 A EP 89202108A EP 0361557 B1 EP0361557 B1 EP 0361557B1
Authority
EP
European Patent Office
Prior art keywords
natural gas
zone
heat exchange
hydrocarbons
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89202108A
Other languages
English (en)
French (fr)
Other versions
EP0361557A1 (de
Inventor
Joachim Dr. Wilhelm
Ulf Jauernik
Manfred Dr. Kriebel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GEA Group AG
Original Assignee
Metallgesellschaft AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metallgesellschaft AG filed Critical Metallgesellschaft AG
Priority to AT89202108T priority Critical patent/ATE67298T1/de
Publication of EP0361557A1 publication Critical patent/EP0361557A1/de
Application granted granted Critical
Publication of EP0361557B1 publication Critical patent/EP0361557B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0242Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 3 carbon atoms or more
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G5/00Recovery of liquid hydrocarbon mixtures from gases, e.g. natural gas
    • C10G5/06Recovery of liquid hydrocarbon mixtures from gases, e.g. natural gas by cooling or compressing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0209Natural gas or substitute natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0238Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 2 carbon atoms or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/50Processes or apparatus using other separation and/or other processing means using absorption, i.e. with selective solvents or lean oil, heavier CnHm and including generally a regeneration step for the solvent or lean oil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/66Separating acid gases, e.g. CO2, SO2, H2S or RSH
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/921Chlorine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/922Sulfur
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/931Recovery of hydrogen
    • Y10S62/932From natural gas

Definitions

  • the invention relates to a process for the treatment of natural gas, which in addition to methane contains hydrocarbons having 2 to 4 carbon atoms per molecule and H2S, for the partial removal of the hydrocarbons and the H2S.
  • the hydrocarbons with 5 and more carbon atoms per molecule can be removed relatively easily by adsorption.
  • the object of the present process is to remove the more difficult to separate C2 to C4 hydrocarbons and at the same time also the H2S, which also damages the reforming catalyst, to a sufficient extent.
  • this is achieved in that the natural gas, which has a pressure of at least 5 bar, is indirectly cooled in a heat exchange zone to temperatures from -30 to -100 ° C and condensate is separated, that the condensate is expanded and passed through the heat exchange zone as a coolant that one cools a washing liquid coming from a regeneration zone in the heat exchange zone to temperatures from -30 to -80 ° C and passes into a washing zone, to which one also supplies the natural gas freed from condensate, that washing liquid loaded with H2S and hydrocarbons from the washing zone through the heat exchange zone and into the regeneration zone, and that the natural gas cleaned in the scrubbing zone is expanded and passed through the heat exchange zone.
  • the cold necessary for the process is achieved by relaxing the condensate and also by relaxing the natural gas coming from the washing zone.
  • a refrigeration system can advantageously be dispensed with. Since the cooling requirement in the washing zone is not high because the necessary amount of washing liquid is kept low, the cold generated by condensation is also sufficient to cool the washing liquid in front of the washing zone sufficiently.
  • the condensate separated from the cooled natural gas is expediently expanded in two stages and the expansion gas formed in the process is passed through the heat exchange zone.
  • the washing liquid used is methanol, acetone or other C1 to C3 oxo hydrocarbons.
  • Natural gas containing hydrocarbons and H2S is introduced in line (1).
  • the solids and also the hydrocarbons having 5 and more carbon atoms per molecule have preferably been separated from this natural gas beforehand.
  • the natural gas in line (1) thus contains in addition to H2S especially C2, C3 and C- hydrocarbons.
  • This natural gas is in a heat exchange zone (2), e.g. a plate heat exchanger, indirectly cooled to temperatures from -30 to -100 ° C and preferably -40 to -90 ° C. This cooling creates condensate, which contains the main part of the hydrocarbons and also a considerable part of the H2S.
  • this mixture is led to a separator (5), from which the condensate is drawn off through line (6).
  • the gas mixture is added to a washing column (8) in line (7).
  • the condensate is partially expanded via the expansion valve (10) and fed to a separation tank (11).
  • the expansion gas is drawn off in line (12) and the condensate is expanded again via the expansion valve (13).
  • the expansion of the condensate in the valves (10) and (13) leads to a considerable drop in temperature.
  • the condensate which is led through the heat exchange zone (2) in the line (14) can effectively serve as a coolant.
  • the exhaust gas resulting from the heating in the heat exchange zone (2) is available in line (15) and, since it is high in calorific value, it can be used as fuel gas.
  • the washing column (8) is fed through the line (20) with a washing liquid at temperatures of -30 to -80 ° C and preferably -60 to -70 ° C. Below is of it assumed that this is methanol, but other washing liquids are also possible per se.
  • the column (8) usually contains trays or packing. In it, the H2S is sufficiently washed out of the natural gas introduced in line (7), and the methanol also absorbs hydrocarbons. Purified natural gas is drawn off in the line (21), it is at least partially expanded in the expansion valve (22) and the temperature is thereby reduced. The natural gas is then passed together with the gas of line (12) through the heat exchange zone (2), where it serves as a coolant, and is available in line (24) as a product for further use.
  • the washing liquid loaded with H2S and hydrocarbons is withdrawn from the column (8) in the line (26), expediently expanded in the expansion valve (27) and the mixture is placed in a separation container (28).
  • An H2S-containing exhaust gas is passed through line (29) to the condensate of line (14) and the washing liquid is passed through line (30) after passing through the heat exchange zone (2) to a regeneration system (31).
  • the load is largely removed from the washing liquid in a manner known per se by stripping or heating and also by a combination of these measures.
  • An exhaust gas is drawn off in line (32) and leads to a further treatment, not shown.
  • Regenerated washing liquid is drawn off in line (20) and returned to the washing column (8) via a pump (not shown).
  • a partial flow of the product gas of the line (24) can be used, which can be obtained via the Line (34) shown in broken lines leads and used as stripping gas.
  • the product gas of line (24) consists mainly of methane and may also contain 2 to 20 vol .-% of C2 hydrocarbons.
  • the content of C3-hydrocarbons is usually below 0.1 vol .-% and the H2S content is at most about 1/10 of the H2S content in the gas line (1). In this purity, it is well suited as a feed gas for catalytic steam reforming to generate a gas mixture containing CO and H2.
  • the natural gas which also contains 400 vol. Ppm H2S, has a pressure of 28 bar and a temperature of 30 ° C. It is cooled to -73 ° C in a plate heat exchanger (2) and thus reaches the separator (5).
  • the separated condensate is expanded to 10 bar in the expansion valve (10) and further expansion to 2 bar in the valve (13).
  • the gas in line (7) which is fed to the washing column (8), still contains about half of the C2-hydrocarbons and H2S, as well as N2 and CO2 and traces of C3-hydrocarbons.
  • the column (8) is given methanol of -70 ° C. in a quantity of 10 m3 / h as washing liquid, a pressure of 28 bar prevailing in the washing column.
  • the washed gas which is practically free of H2S and C3 hydrocarbons and contains only a small amount of C2 hydrocarbons, is passed through the expansion valve (22), the pressure being reduced to 10 bar.
  • the loaded washing liquid drawn off from the washing column in line (26) is let down to 2 bar; the expansion gas released during the expansion is mixed with the gas in line (14).
  • 7,000 Nm 3 / h of exhaust gas are obtained in line (15) with a pressure of 2 bar and a temperature of + 10 ° C.
  • the methanol arrives in line (30) for regeneration (31), where it is largely freed from the load at temperatures of + 10 ° C. by stripping with natural gas from line (34).
  • the methanol is then fed back to the washing column (8) via a pump (not shown).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Industrial Gases (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Behandlung von Erdgas, das neben Methan Kohlenwasserstoffe mit 2 bis 4 C-Atomen pro Molekül und H₂S enthält, zum teilweisen Entfernen der Kohlenwasserstoffe und des H₂S.
  • Aus dem rohen Erdgas, das z.B. als Einsatzmaterial für die katalytische Dampfreformierung vorgesehen ist, kann man die Kohlenwasserstoffe mit 5 und mehr Kohlenstoffatomen pro Molekül durch Adsorption relativ leicht entfernen. Die Kohlenwasserstoffe, insbesondere die höheren Kohlenwasserstoffe, bilden bei der katalytischen Reformierung Koksablagerungen auf dem Katalysator und vermindern dessen Aktivität.
  • Aus der DE-A-1794353 ist es bekannt, kohlendioxid aus einem Erdgasstrom durch partielle Kondensation des Erdgases und anschlisßendes Waschen des Gasstroms in einer Waschzone abzukennen.
  • Aufgabe des vorliegenden Verfahrens ist es, auf wirtschaftliche Weise die schwieriger abzutrennenden C₂- bis C₄-Kohlenwasserstoffe und gleichzeitig auch das H₂S, das den Reformierkatalysator ebenfalls schädigt, gemeinsam im ausreichenden Maß zu entfernen. Erfindungsgemäß gelingt dies dadurch, daß man das Erdgas, das einen Druck von mindestens 5 bar aufweist, in einer Wärmeaustauschzone indirekt auf Temperaturen von  -30 bis  -100°C kuhlt und Kondensat abtrennt, daß man das Kondensat entspannt und als Kühlmittel durch die Wärmeaustauschzone leitet, daß man eine aus einer Regenerationszone kommende Waschflüssigkeit in der Wärmeaustauschzone auf Temperaturen von  -30 bis  -80°C kühlt und in eine Waschzone leitet, welcher man auch das vom Kondensat befreite Erdgas zuführt, daß man aus der Waschzone mit H₂S und Kohlenwasserstoffen beladene Waschflüssigkeit durch die Wärmeaustauschzone und in die Regenerationszone leitet, und daß man das in der Waschzone gereinigte Erdgas entspannt und durch die Wärmeaustauschzone leitet.
  • Vorteilhafterweise wird beim Auskondensieren der Kohlenwasserstoffe auch ein beträchtlicher Teil des H₂S mit auskondensiert. Dadurch wird die nachfolgende Waschzone entlastet. Diese Waschzone ist so ausgelegt, daß man hier die notwendige Entfernung des H₂S aus dem Erdgas erreicht. In der Waschzone werden üblicherweise auch C₃- und C₄-Kohlenwasserstoffe aus dem Erdgas entfernt, wodurch die vorausgehende Kondensation weniger zu leisten hat.
  • Die für das Verfahren notwendige Kälte wird durch Entspannen des Kondensats sowie auch durch die Entspannung des aus der Waschzone kommenden Erdgases erreicht. Vorteilhafterweise kann auf eine Kälteanlage verzichtet werden. Da der Kältebedarf in der Waschzone nicht hoch ist, weil die notwendige Menge an Waschflüssigkeit niedrig gehalten wird, reicht die durch Kondensation erzeugte Kälte auch aus, um die Waschflüssigkeit vor der Waschzone genügend zu kühlen.
  • Zweckmäßigerweise wird das aus dem gekühlten Erdgas abgetrennte Kondensat zweistufig entspannt und das dabei gebildete Entspannungsgas durch die Wärmeaustauschzone geleitet.
  • Als Waschflüssigkeit verwendet man Methanol, Aceton oder andere C₁- bis C₃-Oxo-Kohlenwasserstoffe.
  • Einzelheiten und Ausgestaltungsmöglichkeiten des Verfahrens werden mit Hilfe der Zeichnung erläutert.
  • Erdgas, das Kohlenwasserstoffe und H₂S enthält, wird in der Leitung (1) herangeführt. Vorzugsweise hat man aus diesem Erdgas die Feststoffe und auch die Kohlenwasserstoffe mit 5 und mehr C-Atomen pro Molekül bereits zuvor abgetrennt. Das Erdgas in der Leitung (1) enthält somit neben H₂S vor allem noch C₂-, C₃- und C₄-Kohlenwasserstoffe. Dieses Erdgas wird in einer Wärmeaustauschzone (2), z.B. einem Plattenwärmetauscher, auf Temperaturen von  -30 bis  -100°C und vorzugsweise  -40 bis  -90°C indirekt gekühlt. Bei dieser Kühlung entsteht Kondensat, welches den Hauptteil der Kohlenwasserstoffe und auch einen beträchtlichen Teil des H₂S enthält. In der Leitung (4) führt man dieses Gemisch zu einem Abscheider (5), aus dem man das Kondensat durch die Leitung (6) abzieht. Das Gasgemisch gibt man in der Leitung (7) einer Waschkolonne (8) auf.
  • Das Kondensat wird über das Entspannungsventil (10) teilweise entspannt und einem Trennbehälter (11) zugeführt. Das Entspannungsgas zieht man in der Leitung (12) ab und entspannt das Kondensat über das Entspannungsventil (13) nochmals. Die Entspannung des Kondensats in den Ventilen (10) und (13) führt zu einer erheblichen Temperaturabsenkung. Dadurch kann das Kondensat, das man in der Leitung (14) durch die Wärmeaustauschzone (2) führt, in wirksamer Weise als Kühlmittel dienen. Das durch die Erwärmung in der Wärmeaustauschzone (2) entstehende Abgas steht in der Leitung (15) zur Verfügung, es kann, da es heizwertreich ist, als Brenngas verwendet werden.
  • Der Waschkolonne (8) führt man durch die Leitung (20) eine Waschflüssigkeit mit Temperaturen von  -30 bis  -80°C und vorzugsweise  -60 bis  -70°C zu. Nachfolgend wird davon ausgegangen, daß es sich hierbei um Methanol handelt, doch sind an sich auch andere Waschflüssigkeiten möglich. Die Kolonne (8) enthält üblicherweise Böden oder Füllkörper. In ihr wird das H₂S aus dem in der Leitung (7) herangeführten Erdgas in ausreichendem Maß ausgewaschen, dabei nimmt das Methanol auch Kohlenwasserstoffe auf. Gereinigtes Erdgas zieht man in der Leitung (21) ab, entspannt es mindestens teilweise im Entspannungsventil (22) und senkt dadurch die Temperatur. Das Erdgas wird dann zusammen mit dem Gas der Leitung (12) durch die Wärmeaustauschzone (2) geführt, wo es als Kühlmittel dient und steht in der Leitung (24) als Produkt zur weiteren Verwendung zur Verfügung.
  • Die mit H₂S und Kohlenwasserstoffen beladene Waschflüssigkeit zieht man aus der Kolonne (8) in der Leitung (26) ab, entspannt es zweckmäßigerweise im Entspannungsventil (27) und gibt das Gemisch einem Trennbehälter (28) auf. Ein H₂S-haltiges Abgas führt man über die Leitung (29) zum Kondensat der Leitung (14) und die Waschflüssigkeit gibt man über die Leitung (30) nach Hindurchleiten durch die Wärmeaustauschzone (2) zu einer Regenerationsanlage (31). In der Anlage (31) wird in an sich bekannter Weise durch Strippen oder Erhitzen sowie auch durch eine Kombination dieser Maßnahmen die Beladung aus der Waschflüssigkeit weitgehend entfernt. Ein Abgas zieht man in der Leitung (32) ab und führt es zu einer nicht dargestellten Weiterbehandlung.
  • Regenerierte Waschflüssigkeit wird in der Leitung (20) abgezogen und über eine nicht dargestellte Pumpe der Waschkolonne (8) wieder zugeführt. Zum Regenerieren in der Anlage (31) kann man z.B. einen Teilstrom des Produktgases der Leitung (24) verwenden, welchen man über die gestrichelt eingezeichnete Leitung (34) heranführt und als Strippgas benutzt.
  • Das Produktgas der Leitung (24) besteht hauptsächlich aus Methan und kann daneben noch 2 bis 20 Vol.-% an C₂-Kohlenwasserstoffen enthalten. Der Gehalt an C₃-Kohlenwasserstoffen liegt zumeist unterhalb von 0,1 Vol.-% und der H₂S-Gehalt beträgt höchstens etwa 1/10 des H₂S-Gehalts im Gas der Leitung (1). Als Einsatzgas für die katalytische Dampfreformierung zum Erzeugen eines CO und H₂ enthaltenden Gasgemisches ist es in dieser Reinheit gut geeignet.
  • Beispiel
  • In einer der Zeichnung entsprechenden Verfahrensführung werden pro Stunde 50000 Nm³ Erdgas behandelt. Einzelheiten des Verfahrens wurden zum Teil berechnet. Aus dem Erdgas wurden in einer Vorstufe Kohlenwasserstoffe mit 5 und mehr C-Atomen sowie auch Verunreinigungen abgetrennt. Die Zusammensetzung des Erdgases der Leitung (1) ist folgende:
    Figure imgb0001
  • Das Erdgas, das auch 400 Vol.-ppm H₂S enthält, weist einen Druck von 28 bar und eine Temperatur von 30°C auf. Es wird in einem Plattenwärmeaustauscher (2) auf  -73°C gekühlt und gelangt so in den Abscheider (5). Das abgetrennte Kondensat wird im Entspannungsventil (10) auf 10 bar entspannt und eine weitere Entspannung erfolgt im Ventil (13) auf 2 bar.
  • Das Gas in der Leitung (7), das der Waschkolonne (8) zugeführt wird, enthält etwa noch die Hälfte der C₂-Kohlenwasserstoffe und des H₂S, dazu N₂ und CO₂ sowie Spuren von C₃-Kohlenwasserstoffen. Der Kolonne (8) gibt man als Waschflüssigkeit Methanol von  -70°C in einer Menge von 10 m³/h auf, wobei in der Waschkolonne ein Druck von 28 bar herrscht. Das gewaschene Gas, das praktisch frei von H₂S und C₃-Kohlenwasserstoffen ist und nur noch einen geringen Rest an C₂-Kohlenwasserstoffen enthält, wird durch das Entspannungsventil (22) geleitet, wobei der Druck auf 10 bar reduziert wird. Gemischt mit dem Gas der Leitung (12) erhält man in der Leitung (24) pro Stunde 43 000 Nm³ behandeltes Erdgas mit einem Druck von 10 bar und einer Temperatur von 22°C, das neben CH₄ noch 10 Vol.-% C₂-Kohlenwasserstoffe, 0,1 Vol.-% C₃-Kohlenwasserstoffe, 3,4 Vol.-% N₂ und 0,7 Vol.-% CO₂ enthält. Der H₂S-Gehalt des Gases beträgt 5 Vol.-ppm.
  • Die in der Leitung (26) aus der Waschkolonne abgezogene beladene Waschflüssigkeit wird auf 2 bar entspannt; das bei der Entspannung freigesetzte Entspannungsgas mischt man dem Gas der Leitung (14) zu. Man erhält auf diese Weise in der Leitung (15) 7 000 Nm³/h Abgas mit einem Druck von 2 bar und einer Temperatur von +10°C. Das Methanol gelangt in der Leitung (30) zur Regeneration (31), wo es bei Temperaturen von  +10°C durch Strippen mit Erdgas aus der Leitung (34) von der Beladung weitgehend befreit wird. Über eine nicht dargestellte Pumpe wird das Methanol dann zurück zur Waschkolonne (8) geführt.

Claims (5)

1. Verfahren zur Behandlung von Erdgas, das neben Methan Kohlenwasserstoffe mit 2 bis 4 C-Atomen pro Molekül und H₂S enthält, zum teilweisen Entfernen der Kohlenwasserstoffe und des H₂S, bei dem man das Erdgas, das einen Druck von mindestens 5 bar aufweist, in einer Wärmeaustauschzone indirekt auf Temperaturen von  -30 bis  -100°C kühlt und Kondensat abtrennt, daß man das Kondensat entspannt und als Kühlmittel durch die Wärmeaustauschzone leitet, daß man eine aus einer Regenerationszone kommende Waschflüssigkeit in der Wärmeaustauschzone auf Temperaturen von  -30 bis  -80°C kühlt und in eine Waschzone leitet, welcher man auch das vom Kondensat befreite Erdgas zuführt, daß man aus der Waschzone mit H₂S und Kohlenwasserstoffen beladene Waschflüssigkeit durch die Wärmeaustauschzone und in die Regenerationszone leitet, und daß man das in der Waschzone gereinigte Erdgas entspannt und durch die Wärmeaustauschzone leitet.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man das Erdgas mit einem Druck von mindestens 10 bar zum indirekten Kühlen durch die Wärmeaustauschzone leitet.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß man das aus dem gekühlten Erdgas abgetrennte Kondensat zweistufig entspannt und das dabei gebildete Entspannungsgas durch die Wärmeaustauschzone leitet.
4. Verfahren nach Anspruch 1 oder einem der folgenden, dadurch gekennzeichnet, daß man die aus der Waschzone kommende, beladene Waschflüssigkeit teilweise entspannt und das dabei abgetrennte, H₂S-haltige Entspannungsgas durch die Wärmeaustauschzone leitet.
5. Verfahren nach Anspruch 1 oder einem der folgenden, dadurch gekennzeichnet, daß man als Waschflüssigkeit Methanol, Aceton oder andere C₁- bis C₃-Oxo-Kohlenwasserstoffe verwendet.
EP89202108A 1988-09-02 1989-08-17 Verfahren zum Behandeln eines Kohlenwasserstoffe und H2S enthaltenden Erdgases Expired - Lifetime EP0361557B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT89202108T ATE67298T1 (de) 1988-09-02 1989-08-17 Verfahren zum behandeln eines kohlenwasserstoffe und h2s enthaltenden erdgases.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3829878A DE3829878A1 (de) 1988-09-02 1988-09-02 Verfahren zum behandeln eines kohlenwasserstoffe und h(pfeil abwaerts)2(pfeil abwaerts)s enthaltenden erdgases
DE3829878 1988-09-02

Publications (2)

Publication Number Publication Date
EP0361557A1 EP0361557A1 (de) 1990-04-04
EP0361557B1 true EP0361557B1 (de) 1991-09-11

Family

ID=6362175

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89202108A Expired - Lifetime EP0361557B1 (de) 1988-09-02 1989-08-17 Verfahren zum Behandeln eines Kohlenwasserstoffe und H2S enthaltenden Erdgases

Country Status (13)

Country Link
US (1) US4934146A (de)
EP (1) EP0361557B1 (de)
AR (1) AR246603A1 (de)
AT (1) ATE67298T1 (de)
CA (1) CA1320429C (de)
DE (2) DE3829878A1 (de)
GR (1) GR3002720T3 (de)
ID (1) ID893B (de)
IN (1) IN171560B (de)
MX (1) MX171737B (de)
MY (1) MY105042A (de)
PT (1) PT91618B (de)
SA (1) SA91110375B1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2641542B1 (fr) * 1988-11-15 1994-06-24 Elf Aquitaine Procede de decarbonatation et de degazolinage simultanes d'un melange gazeux constitue principalement d'hydrocarbures consistant en methane et hydrocarbures en c2 et plus et renfermant egalement co2
US5321952A (en) * 1992-12-03 1994-06-21 Uop Process for the purification of gases
US5325672A (en) * 1992-12-03 1994-07-05 Uop Process for the purification of gases
FR2722110B1 (fr) * 1994-07-08 1996-08-30 Inst Francais Du Petrole Procede de desacidification d'un gaz pour production de gaz acides concentres
US5659109A (en) * 1996-06-04 1997-08-19 The M. W. Kellogg Company Method for removing mercaptans from LNG
DE102004036708A1 (de) * 2004-07-29 2006-03-23 Linde Ag Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
US7645322B2 (en) * 2006-09-15 2010-01-12 Ingersoll Rand Energy Systems Corporation System and method for removing water and siloxanes from gas
GB0814556D0 (en) * 2008-08-11 2008-09-17 Edwards Ltd Purification of gas stream
US9528704B2 (en) 2014-02-21 2016-12-27 General Electric Company Combustor cap having non-round outlets for mixing tubes

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE935144C (de) * 1949-09-16 1955-11-10 Linde Eismasch Ag Verfahren zur Reinigung von Gasen, insbesondere von solchen fuer Synthese- und Heizzwecke
US3373574A (en) * 1965-04-30 1968-03-19 Union Carbide Corp Recovery of c hydrocarbons from gas mixtures containing hydrogen
DE1794353A1 (de) * 1967-04-15 1973-02-15 Helmut Prof Dr Phys Knapp Das auswaschen von wasserdampf aus einem erdgasstrom
GB1216256A (en) * 1967-11-03 1970-12-16 Linde Ag Improvements in or relating to the separation of hydrogen containing gas mixtures
US4038332A (en) * 1975-10-09 1977-07-26 Phillips Petroleum Company Separation of ethyl fluoride
US4336045A (en) * 1981-06-29 1982-06-22 Union Carbide Corporation Acetylene removal in ethylene and hydrogen separation and recovery process
DE3247782A1 (de) * 1982-12-23 1984-06-28 Linde Ag, 6200 Wiesbaden Verfahren zum zerlegen eines in einer methanolsynthesegasanlage zu verwendenden gasgemisches bei tiefen temperaturen
JPS60150456A (ja) * 1984-01-19 1985-08-08 Diesel Kiki Co Ltd 内燃機関用燃料噴射装置
IT1190359B (it) * 1985-05-24 1988-02-16 Snam Progetti Procedimento criogenico di rimozione di gas acidi da miscele di gas mediante solvente
US4654062A (en) * 1986-07-11 1987-03-31 Air Products And Chemicals, Inc. Hydrocarbon recovery from carbon dioxide-rich gases
DE3626561A1 (de) * 1986-08-06 1988-02-11 Linde Ag Verfahren zum abtrennen von c(pfeil abwaerts)2(pfeil abwaerts)(pfeil abwaerts)+(pfeil abwaerts)- oder von c(pfeil abwaerts)3(pfeil abwaerts)(pfeil abwaerts)+(pfeil abwaerts)- kohlenwasserstoffen aus einem gasgemisch

Also Published As

Publication number Publication date
GR3002720T3 (en) 1993-01-25
MX171737B (es) 1993-11-11
DE58900284D1 (de) 1991-10-17
DE3829878A1 (de) 1990-03-08
MY105042A (en) 1994-07-30
ATE67298T1 (de) 1991-09-15
CA1320429C (en) 1993-07-20
PT91618B (pt) 1995-05-04
US4934146A (en) 1990-06-19
SA91110375B1 (ar) 2002-06-01
EP0361557A1 (de) 1990-04-04
IN171560B (de) 1992-11-21
AR246603A1 (es) 1994-08-31
PT91618A (pt) 1990-03-30
ID893B (id) 1996-09-05

Similar Documents

Publication Publication Date Title
DE3437374C2 (de)
EP0017174B1 (de) Verfahren zum Zerlegen eines Gasgemisches
EP1724542B1 (de) Verfahren und Vorrichtung zur Gewinnung von Produkten aus Synthesegase
DE3215829A1 (de) Verfahren zur gewinnung von kohlenmonoxid
DE3217366A1 (de) Verfahren zur herstellung eines weitgehend inertfreien gases zur synthese
EP0361557B1 (de) Verfahren zum Behandeln eines Kohlenwasserstoffe und H2S enthaltenden Erdgases
DE69909143T2 (de) Trennung von Kohlenstoffmonoxid aus stickstoffverschmutzten, Wasserstoff und Methan enthaltenden Gasgemischen
DE2323410A1 (de) Verfahren zur herstellung von kohlenmonoxid durch gaszerlegung
DE3148520A1 (de) "verfahren zur entfernung von sauren gasen aus gasgemischen"
EP0307983B1 (de) Verfahren zur Erzeugung eines Ammoniak-Synthesegases
EP0285189B1 (de) Verfahren zum Behandeln einer beladenen, unter Druck stehenden Waschlösung
DE4210638A1 (de) Verfahren zur gewinnung von hochreinem wasserstoff und hochreinem kohlenmonoxid
EP0284121A1 (de) Verfahren zum Behandeln zweier beladener Waschlösungsströme
DE1296133B (de) Verfahren zur Herstellung von Methanol-Synthesegas
DE2440456C3 (de) Verfahren zur Reinigung eines mit Kohlendioxid verunreinigten methanreichen Gases
DE2928858C2 (de)
DE3017998C2 (de) Verfahren zur katalytischen Behandlung von Partialoxidationsrohgas
AT217987B (de) Verfahren zur Herstellung von flüssigem Wasserstoff, aus dem durch Rektifikation Deuterium gewonnen werden soll
AT254222B (de) Verfahren und Vorrichtung zum Herstellen von NH3-Synthesegas durch Zerlegen von wasserstoffhaltigen Gasgemischen
DE1088477B (de) Verfahren zur gleichzeitigen Gewinnung von hochreinem AEthylen und AEthan
DE2442719C3 (de) Verfarhen und Vorrichtung zur Gewinnung von Reinwasserstoff
DE3815866A1 (de) Verfahren zur reinigung eines rohgases fuer die ammoniaksynthese mittels einer stickstoffwaesche
DE1501720C (de) Verfahren zum Abtrennen von CO tief 2 und H tief 2 S aus Gasgemischen
DE944308C (de) Verfahren zur Herstellung von Wasserstoff oder wasserstoffhaltigen Gasen
DE976850C (de) Verfahren zum Entfernen von Bestandteilen aus Gasen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19900517

17Q First examination report despatched

Effective date: 19910204

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH DE GR IT LI LU NL

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE GR IT LI LU NL

REF Corresponds to:

Ref document number: 67298

Country of ref document: AT

Date of ref document: 19910915

Kind code of ref document: T

REF Corresponds to:

Ref document number: 58900284

Country of ref document: DE

Date of ref document: 19911017

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3002720

EPTA Lu: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20080814

Year of fee payment: 20

Ref country code: NL

Payment date: 20080813

Year of fee payment: 20

Ref country code: DE

Payment date: 20080822

Year of fee payment: 20

Ref country code: LU

Payment date: 20080826

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20080814

Year of fee payment: 20

Ref country code: IT

Payment date: 20080826

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20080918

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20080826

Year of fee payment: 20

BE20 Be: patent expired

Owner name: *METALLGESELLSCHAFT A.G.

Effective date: 20090817

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV7 Nl: ceased due to reaching the maximum lifetime of a patent

Effective date: 20090817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20090817