EP0339523B1 - Verfahren zur Herstellung von Hydroxicarbonsäureestern - Google Patents

Verfahren zur Herstellung von Hydroxicarbonsäureestern Download PDF

Info

Publication number
EP0339523B1
EP0339523B1 EP89107289A EP89107289A EP0339523B1 EP 0339523 B1 EP0339523 B1 EP 0339523B1 EP 89107289 A EP89107289 A EP 89107289A EP 89107289 A EP89107289 A EP 89107289A EP 0339523 B1 EP0339523 B1 EP 0339523B1
Authority
EP
European Patent Office
Prior art keywords
electrochemical oxidation
formula
carried out
bromide
acid esters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89107289A
Other languages
English (en)
French (fr)
Other versions
EP0339523A1 (de
Inventor
Michael Dr. Steiniger
Heinz Hannebaum
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP0339523A1 publication Critical patent/EP0339523A1/de
Application granted granted Critical
Publication of EP0339523B1 publication Critical patent/EP0339523B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/23Oxidation

Definitions

  • This invention relates to a new process for the preparation of hydroxy carboxylic acid esters by electrochemical oxidation of hydroxy aldehydes.
  • J. Org. Chem. 53, 218-219 (1988) describes a process in which 3-hydroxy-2,2-dimethylpropanal is oxidized electrochemically to 3-hydroxipivalic acid methyl ester in methanol in the presence of potassium iodide and a strong base such as sodium methoxide .
  • a disadvantage of this process is that the electrolysis is carried out in a divided electrolysis cell on platinum anodes. Compared to undivided electrolysis cells, this means not only a higher investment, but also a higher energy consumption, since the low conductivity of the organic electrolyte at the separator (diaphragm) results in a high voltage drop.
  • Another disadvantage is that this method, which presupposes the presence of sodium methoxide, allows only those aliphatic aldehydes to be oxidized which cannot undergo aldol condensation.
  • R1 and R2 are hydrogen atoms, hydroxyl groups, alkoxy groups or aliphatic or olefinic, straight-chain, branched or ring-shaped hydrocarbon radicals, where R1 and R2 can also together represent an alkylene radical, and the hydrocarbon radicals can also be substituted by halogen atoms, hydroxyl, epoxy or nitrile groups, and R3 represents a low molecular weight alkyl radical, particularly advantageously by electrochemical oxidation of hydroxy aldehydes of the general formula in the presence of alcohols of the formula R3OH, where n, R1, R2 and R3 have the meaning given above, if the electrochemical oxidation is carried out in the presence of ionogenic bromides or chlorides in an undivided electrolysis cell.
  • the hydroxy carboxylic acid esters are obtained with high selectivity and high current yields.
  • This advantageous result is surprising since in J. Electrochem. Soc. 125 , 1401-1403 (1978) describes that the electrochemical oxidation of primary alcohols in undivided electrolysis cells on graphite electrodes in the presence of chloride and bromide ions leads to aldehydes. Accordingly, ⁇ , ⁇ -dialkoxy carboxylic acid esters or dicarboxylic acid esters would have been expected as reaction products of the process according to the invention.
  • n is a number from 0 to 10, preferably 0 to 5.
  • the aliphatic or olefinic straight-chain or branched hydrocarbon radicals mentioned as radicals R 1 and R 2 are, for example, alkyl or alkylene groups having 1 to 10, in particular 1 to 6, preferably 1 to 4 carbon atoms, such as methyl, ethyl, n or iso-propyl, n, iso or tert-butyl groups.
  • Substituted hydrocarbon radicals of the type mentioned are, for example, hydroximethyl, chloromethyl or hydroxyethyl groups.
  • Annular hydrocarbons are, for example, cycloalkyl radicals having 3 to 8, in particular 5 and 6, carbon atoms. Both radicals R 1 and R 2 also come together to represent an alkylene radical, which can consist, for example, of 2 to 5 methyl groups.
  • R3 represents a low molecular weight alkyl radical, in particular an alkyl radical having 1 to 5 carbon atoms, preferably a methyl or ethyl radical.
  • alkyl radical having 1 to 5 carbon atoms, preferably a methyl or ethyl radical.
  • n- or iso-propanol, n-butanol, n-pentanol and preferably methanol or ethanol can be used.
  • Salts of hydrobromic and hydrochloric acid are suitable as ionogenic halides. Salts of hydrobromic acid, such as alkali, alkaline earth bromides and quaternary ammonium, especially tetraalkylammonium bromides are preferred.
  • the cation does not play an essential role in the invention, therefore other ionic metal halides can also be used, but cheap halides will advantageously be chosen.
  • examples include sodium, potassium, calcium and ammonium bromide, and di-, tri- and tetramethyl- or tetraethylammonium bromide.
  • the process according to the invention can be carried out in the industrially customary electrolysis cells. It can advantageously be carried out in an undivided flow cell, which makes it possible to keep the electrode spacing very small in order to minimize the cell voltage.
  • the preferred electrode spacing is 1 mm or less, in particular 0.25 to 0.5 mm.
  • the preferred anode material is graphite. However, other anode materials which are stable under the reaction conditions can also be used.
  • the cathode material is e.g. from metals such as lead, iron, steel, nickel or precious metals such as platinum.
  • the preferred cathode material is also graphite.
  • the composition of the electrolyte can be chosen within wide limits.
  • the electrolyte consists of 1 to 80% by weight of hydroxy aldehyde of the formula II 10 to 95 wt% R3OH 0.1 to 10 wt% halide
  • a solvent can be added to the electrolyte, for example to improve the solubility of the hydroxy aldehyde or the halide.
  • Suitable solvents are, for example, nitriles such as acetonitrile and ethers such as tetrahydrofuran.
  • the solvents are added, for example, in amounts of up to 30% by weight, based on the electrolyte.
  • the current density is not a limiting factor for the process according to the invention, it is, for example, 1 to 25 A / dm 2.
  • Electrolysis is preferably carried out at 3 to 12 A / dm 2. When the electrolysis is operated without pressure, the temperature is expediently chosen so that it is at least 5 to 10 ° C.
  • the electrolysis discharges can be worked up by methods known per se.
  • the electrolysis discharge is expediently worked up by distillation. Excess alkanol and any cosolvent used are first distilled off.
  • the halides are made in a known manner, e.g. separated by filtration or extraction, and the hydroxy carboxylic acid esters are distilled or recrystallized. Alkanol, possibly unreacted hydroxy aldehyde and cosolvents as well as halides can advantageously be recycled to the electrolysis.
  • the process according to the invention can be carried out batchwise or continuously.
  • hydroxy carboxylic acid esters produced by the process according to the invention are versatile intermediates for the synthesis of crop protection agents or polymers.
  • the electrooxidation was carried out in an undivided electrolysis cell with anodes and cathodes made of graphite at temperatures of 20 to 25 ° C.
  • the composition of the electrolyte used and the electrolysis conditions are summarized in the table.
  • the electrolyte was pumped through the cell at 200 l / h via a heat exchanger.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

  • Diese Erfindung betrifft ein neues Verfahren für die Herstellung von Hydroxicarbonsäureestern durch elektrochemische Oxidation von Hydroxialdehyden.
  • Es sind schon verschiedene Verfahren für die einstufige Überführung von Aldehyden in Carbonsäureester bekannt geworden, von denen jedoch nur wenige dafür geeignet sind, aliphatische Hydroxialdehyde unter Erhalt der primären oder sekundären Hydroxylfunktion in Gegenwart von niederen Alkoholen zu Hydroxicarbonsäureestern zu oxidieren. So ist z.B. aus Acta Chem. Scand. 27, 3009 (1973) bekannt, daß sich Glykolaldehyd mit Silbercarbonat auf Kieselgur in Methanol zu Glykolsäuremethylester oxidieren läßt. Die Verwendung des teuren Silbers als Oxidationsmittel und die zur Vermeidung von Silberverlusten aufwendige Regenerierung machen dieses Verfahren für eine industrielle Anwendung wirtschaftlich uninteressant.
  • In J. Org. Chem. 53, 218-219 (1988) wird ein Verfahren beschrieben, bei dem man 3-Hydroxi-2,2-dimethylpropanal in Methanol in Gegenwart von Kaliumjodid und einer starken Base wie Natriummethanolat elektrochemisch zu 3-Hydroxipivalinsäuremethylester oxidiert. Nachteilig bei diesem Verfahren ist, daß die Elektrolyse in einer geteilten Elektrolysezelle an Platinanoden durchgeführt wird. Das bedeutet im Vergleich zu ungeteilten Elektrolysezellen nicht nur einen höheren Investitionsaufwand, sondern auch einen höheren Energieverbrauch, da durch die geringe Leitfähigkeit des organischen Elektrolyten an dem Separator (Diaphragma) ein hoher Spannungsabfall auftritt. Weiterhin ist von Nachteil, daß sich nach dieser Methode, die die Anwesenheit von Natriummethanolat voraussetzt, nur solche aliphatische Aldehyde oxidieren lassen, die keine Aldol-Kondensation eingehen können.
  • Es wurde nun gefunden, daß man Hydroxicarbonsäureester der allgemeinen Formel
    Figure imgb0001
    in der n eine ganze Zahl von 0 bis 10 bedeutet, R¹ und R² Wasserstoffatome, Hydroxigruppen, Alkoxigruppen oder aliphatische oder olefinische, geradkettige, verzweigte oder ringförmige Kohlenwasserstoffreste bedeuten, wobei R¹ und R² auch gemeinsam für einen Alkylenrest stehen können, und die Kohlenwasserstoffreste noch durch Halogenatome, Hydroxi-, Epoxi- oder Nitrilgruppen substituiert sein können, und R³ für einen niedermolekularen Alkylrest steht, besonders vorteilhaft durch elektrochemische Oxidation von Hydroxialdehyde der allgemeinen Formel
    Figure imgb0002
    in Gegenwart von Alkoholen der Formel R³OH, wobei n, R¹, R² und R³ die oben angegebene Bedeutung haben, herstellen kann, wenn man die elektrochemische Oxidation in Gegenwart von ionogenen Bromiden oder Chloriden in einer ungeteilten Elektrolysezelle durchführt.
  • Nach dem neuen Verfahren erhält man die Hydroxicarbonsäureester mit hoher Selektivität und hohen Stromausbeuten. Dieses vorteilhafte Ergebnis ist überraschend, da in J. Electrochem. Soc. 125, 1401-1403 (1978) beschrieben ist, daß die elektrochemische Oxidation primärer Alkohole in ungeteilten Elektrolysezellen an Graphitelektroden in Gegenwart von Chlorid- und Bromidionen zu Aldehyden führt. Demnach wären als Reaktionsprodukte des erfindungsgemäßen Verfahrens ω,ω-Dialkoxicarbonsäureester oder Dicarbonsäureester zu erwarten gewesen.
  • Das Ergebnis des erfindungsgemäßen Verfahrens war weiterhin nicht naheliegend, da in J. Org. Chem. 53, 218 (1988) erwähnt ist, daß die elektrochemische Oxidation der Aldehyde nicht in Gegenwart von Kaliumbromid oder Kaliumchlorid gelingt, sondern nur mit Jodiden oder Jod in Gegenwart von Natriummethanolat in geteilten Elektrolysezellen zu zufriedenstellenden Ausbeuten führt.
  • In den Hydroxialdehyden der Formel II bedeutet n eine Zahl von 0 bis 10, vorzugsweise 0 bis 5. Die als Reste R¹ und R² genannten aliphatischen oder olefinischen geradkettigen oder verzweigten Kohlenwasserstoffreste sind z.B. Alkyl- oder Alkylengruppen mit 1 bis 10, insbesondere 1 bis 6, vorzugsweise 1 bis 4 C-Atomen, wie Methyl-, Ethyl-, n- oder iso-Propyl-, n-, iso- oder tert.Butylgruppen. Substituierte Kohlenwasserstoffreste der genannten Art sind z.B. Hydroximethyl-, Chlormethyl- oder Hydroxiethylgruppen. Ringförmige Kohlenwasserstoffe sind z.B. Cycloalkylreste mit 3 bis 8, insbesondere 5 und 6 Kohlenstoffatomen. Beide Reste R¹ und R² kommen auch zusammen für einen Alkylenrest, der z.B. aus 2 bis 5 Methylgruppen bestehen kann, stehen.
  • In den Alkoholen der Formel R³OH steht R³ für einen niedermolekularen Alkylrest, insbesondere für einen Alkylrest mit 1 bis 5 Kohlenstoffatomen, vorzugsweise für einen Methyl- oder Ethylrest. Beispielsweise können n-oder iso Propanol, n-Butanol, n-Pentanol und bevorzugt Methanol oder Ethanol verwendet werden. Als ionogene Halogenide kommen Salze der Bromwasserstoff- und Chlorwasserstoffsäure in Betracht. Bevorzugt sind Salze der Bromwasserstoffsäure, wie Alkali, Erdalkalibromide sowie quartäre Ammonium-, insbesondere Tetraalkylammoniumbromide. Das Kation spielt keine erfindungswesentliche Rolle, es können daher auch andere ionogene Metallhalogenide verwendet werden, vorteilhaft wird man jedoch billige Halogenide wählen. Beispielsweise seien Natrium-, Kalium-, Calcium- und Ammoniumbromid, sowie Di-, Tri- und Tetramethyl- oder Tetraethylammoniumbromid genannt.
  • Das erfindungsgemäße Verfahren kann in den technisch üblichen Elektrolysezellen durchgeführt werden. Vorteilhaft kann man es in einer ungeteilten Durchflußzelle durchführen, die es ermöglicht zur Minimierung der Zellspannung den Elektrodenabstand sehr gering zu halten. Die bevorzugten Elektrodenabstände liegen bei 1 mm oder darunter, insbesondere bei 0,25 bis 0,5 mm.
  • Bevorzugtes Anodenmaterial ist Graphit. Es können aber auch andere unter den Reaktionsbedingungen stabile Anodenmaterialien benutzt werden. Das Kathodenmaterial besteht z.B. aus Metallen wie Blei, Eisen, Stahl, Nickel oder Edelmetallen wie Platin. Bevorzugtes Kathodenmaterial ist ebenfalls Graphit.
  • Die Zusammensetzung des Elektrolyten kann in weiten Grenzen gewählt werden. So besteht der Elektrolyt beispielsweise aus
    1 bis 80 Gew.% Hydroxialdehyd der Formel II
    10 bis 95 Gew.% R³OH
    0,1 bis 10 Gew.% Halogenid
  • Dem Elektrolyten kann, falls gewünscht, ein Lösungsmittel, etwa zur Verbesserung der Löslichkeit des Hydroxialdehyds oder des Halogenids zugesetzt werden. Geeignete Lösungsmittel sind z.B. Nitrile, wie Acetonitril und Ether, wie Tetrahydrofuran. Man gibt die Lösungsmittel z.B. in Mengen bis zu 30 Gew.%, bezogen auf den Elektrolyten, zu. Die Stromdichte ist kein begrenzender Faktor für das erfindungsgemäße Verfahren, sie beträgt z.B. 1 bis 25 A/dm². Vorzugsweise wird mit 3 bis 12 A/dm² elektrolysiert. Die Temperatur wird bei druckloser Fahrweise der Elektrolyse zweckmäßigerweise so gewählt, daß sie zumindest 5 bis 10°C unter dem Siedepunkt des Elektrolyten liegt. Bei Verwendung von Methanol oder Ethanol wird vorzugsweise bei Temperaturen von 20 bis 30°C elektrolysiert. Es wurde überraschend festgestellt, das das erfindungsgemäße Verfahren die Möglichkeit bietet, die Hydroxialdehyde weitgehend umzusetzen, ohne daß es zu Ausbeuteverlusten an Hydroxicarbonsäureester z.B. durch Folgeoxidationen kommt. Auch die Stromausbeuten sind bei dem erfindungsgemäßen Verfahren ungewöhnlich hoch. So ist der Hydroxialdehyd bei Elektrolyse mit 2 bis 2,5 F/Mol Hydroxialdehyd bereits vollständig umgesetzt.
  • Die Aufarbeitung der Elektrolyseausträge kann man nach an sich bekannten Methoden vornehmen. Zweckmäßigerweise wird der Elektrolyseaustrag destillativ aufgearbeitet. Überschüssiges Alkanol und evtl. eingesetztes Kolösungsmittel werden zunächst abdestiliert. Die Halogenide werden in bekannter Weise, z.B. durch Filtration oder Extraktion abgetrennt, und die Hydroxicarbonsäureester werden reindestilliert bzw. umkristallisiert. Alkanol, evtl. nicht umgesetzter Hydroxialdehyd und Kolösungsmittel sowie Halogenide können vorteilhaft zur Elektrolyse zurückgeführt werden. Das erfindungsgemäße Verfahren kann sowohl diskontinuierlich als auch kontinuierlich durchgeführt werden.
  • Die nach dem erfindungsgemäßen Verfahren hergestellten Hydroxicarbonsäureester sind vielfältig einsetzbare Zwischenprodukte für die Synthese von Pflanzenschutzmitteln oder Polymeren.
  • Beispiele 1 bis 9
  • Die Elektrooxidation wurde in einer ungeteilten Elektrolysezelle mit Anoden und Kathoden aus Graphit bei Temperaturen von 20 bis 25°C durchgeführt. Die Zusammensetzung des eingesetzten Elektrolyten sowie die Elektrolysebedingungen sind in der Tabelle zusammengefaßt. Während der Elektrolyse wurde der Elektrolyt mit 200 l/h über einen Wärmetauscher durch die Zelle gepumpt.
  • Nach Beendigung der Elektrolyse wurde der Alkohol bei Normaldruck abdestilliert und der verbleibenden Rückstand bei 1 bis 40 mbar reindestilliert. Die Hydroxicarbonsäureester wurden bei einem Umsatz von > 98 % in Ausbeuten von 54 bis 81 %, bezogen auf den Ausgangsstoff (II), erhalten.
    Figure imgb0003

Claims (5)

  1. Verfahren zur Herstellung von Hydroxicarbonsäureestern der allgemeinen Formel
    Figure imgb0004
    in der n eine ganze Zahl von 0 bis 10 bedeutet, R¹ und R² Wasserstoffatome, Hydroxigruppen, Alkoxigruppen oder aliphatische oder olefinische, geradkettige, verzweigte oder ringförmige Kohlenwasserstoffreste bedeuten, wobei R¹ und R² auch gemeinsam für einen Alkylenrest stehen können, und die Kohlenwasserstoffreste noch durch Halogenatome, Hydroxi-, Epoxi- oder Nitrilgruppen substituiert sein können, und R³ für einen niedermolekularen Alkylrest steht, durch elektrochemische Oxidation von Hydroxialdehyden der allgemeinen Formel
    Figure imgb0005
    in Gegenwart von Alkoholen der Formel R³OH, wobei n, R¹, R² und R³ die oben angegebene Bedeutung haben, dadurch gekennzeichnet, daß man die elektrochemische Oxidation in Gegenwart von ionogenen Bromide oder Chloriden in einer ungeteilten Elektrolysezelle durchführt.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man als ionogenes Bromid ein Alkali- oder Erdalkalibromid oder ein quartäres Ammoniumbromid verwendet.
  3. Verfahren nach Anspruchen 1, dadurch gekennzeichnet, daß man die elektrochemische Oxidation an Graphitanoden vornimmt.
  4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man als Alkohol der Formel R³OH Methanol oder Ethanol verwendet.
  5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die elektrochemische Oxidation bei Stromdichten von 1 bis 25 A/dm² vornimmt.
EP89107289A 1988-04-29 1989-04-22 Verfahren zur Herstellung von Hydroxicarbonsäureestern Expired - Lifetime EP0339523B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3814498A DE3814498A1 (de) 1988-04-29 1988-04-29 Verfahren zur herstellung von hydroxicarbonsaeureestern
DE3814498 1988-04-29

Publications (2)

Publication Number Publication Date
EP0339523A1 EP0339523A1 (de) 1989-11-02
EP0339523B1 true EP0339523B1 (de) 1992-08-26

Family

ID=6353176

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89107289A Expired - Lifetime EP0339523B1 (de) 1988-04-29 1989-04-22 Verfahren zur Herstellung von Hydroxicarbonsäureestern

Country Status (4)

Country Link
US (1) US4990227A (de)
EP (1) EP0339523B1 (de)
JP (1) JP2799339B2 (de)
DE (2) DE3814498A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018031889A1 (en) * 2016-08-12 2018-02-15 California Institute Of Technology Hydrocarbon oxidation by water oxidation electrocatalysts in non-aqueous solvents
US10840504B2 (en) 2017-02-23 2020-11-17 California Institute Of Technology High performance inorganic complexes for next-generation redox flow batteries

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2699937B1 (fr) * 1992-12-29 1995-03-17 Ard Sa Procédé de préparation de l'acide galactarique et cellule d'électrolyse utilisée à cet effet.
US5648387A (en) * 1995-03-24 1997-07-15 Warner-Lambert Company Carboxyalkylethers, formulations, and treatment of vascular diseases
US6251256B1 (en) * 1999-02-04 2001-06-26 Celanese International Corporation Process for electrochemical oxidation of an aldehyde to an ester
EP2748353B1 (de) * 2011-08-24 2017-04-26 Basf Se Verfahren zur elektrochemischen darstellung von gamma-hydroxycarbonsäureestern und gamma-lactonen

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4402804A (en) * 1982-05-17 1983-09-06 Ppg Industries, Inc. Electrolytic synthesis of aryl alcohols, aryl aldehydes, and aryl acids
DE3443303A1 (de) * 1984-11-28 1986-06-05 Hoechst Ag, 6230 Frankfurt Verfahren zur herstellung von 3-hydroxy-3-methylglutarsaeure
DE3603376A1 (de) * 1986-02-05 1987-08-06 Basf Ag Verfahren zur herstellung von pyrazolen
DE3713732A1 (de) * 1987-04-24 1988-11-17 Basf Ag Neue benzaldehyddialkylacetale, ihre herstellung und verwendung

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018031889A1 (en) * 2016-08-12 2018-02-15 California Institute Of Technology Hydrocarbon oxidation by water oxidation electrocatalysts in non-aqueous solvents
US11352705B2 (en) 2016-08-12 2022-06-07 California Institute Of Technology Hydrocarbon oxidation by water oxidation electrocatalysts in non-aqueous solvents
US10840504B2 (en) 2017-02-23 2020-11-17 California Institute Of Technology High performance inorganic complexes for next-generation redox flow batteries

Also Published As

Publication number Publication date
JPH01312094A (ja) 1989-12-15
DE58902114D1 (de) 1992-10-01
DE3814498A1 (de) 1989-11-09
EP0339523A1 (de) 1989-11-02
US4990227A (en) 1991-02-05
JP2799339B2 (ja) 1998-09-17

Similar Documents

Publication Publication Date Title
DE2848397A1 (de) Elektrochemische herstellung von in 4-stellung substituierten benzaldehyddialkylacetalen
EP0339523B1 (de) Verfahren zur Herstellung von Hydroxicarbonsäureestern
EP1619273B1 (de) Verfahren zur Herstellung von 2-Alkin-1-acetalen
EP0129795B1 (de) Verfahren zur Herstellung von Benzaldehyddialkylacetalen
EP0212512B1 (de) Verfahren zur Herstellung von Carbamidsäureestern
EP0179289B1 (de) Verfahren zur Herstellung von aromatischen Carbonsäureestern
EP0078004B1 (de) Elektrochemisches Verfahren zur Herstellung von 2,5-Dialkoxy-2,5-dihydrofuranen
EP0326855B1 (de) Verfahren zur Herstellung von Fluormalonsäure und ihren Derivaten
EP0502372B1 (de) 4-tert-Alkyl-2-Methylbenzaldehyddialkylacetale
EP0164705B1 (de) Verfahren zur Herstellung von Phthalaldehydacetalen
EP0237762B1 (de) Verfahren zur Herstellung von Pyrazolen
EP0384315B1 (de) Verfahren zur Herstellung von Lactonen
EP0308744B1 (de) Verfahren zur Herstellung von Imidazolidinonen und Oxazolidinonen
EP0152801B1 (de) Verfahren zur Herstellung von Benzaldehyddialkylacetalen
EP0393668B1 (de) Verfahren zur Herstellung von Benzaldehyddialkylacetalen und neue Benzaldehyddialkylacetale
EP0179377B1 (de) Verfahren zur Herstellung von 1-Alkoxyisochromanen und neue 1-Alkoxy-alkylisochromane
EP0252284B1 (de) 2,6-Dimethyl-p-benzochinontetraalkylketale
EP0069918B1 (de) Verfahren zur Herstellung von Cyclopentadecanolid
DE4031093A1 (de) Verfahren zur herstellung von o-alkyloximen
EP0292889B1 (de) Neue Benzaldehydderivate, ihre Herstellung und Verwendung
EP0355754A2 (de) Neue 2-Benzyloxibenzaldehyddialkylacetale, ihre Herstellung und Verwendung
DE3045370A1 (de) Verfahren zur herstellung von ketalen des trimethyl-p-benzochinons
EP0283807A1 (de) Verfahren zur Herstellung von Methoxiacetaldehyddialkylacetalen
DE3605451A1 (de) Benzaldehyd-dialkylacetale

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE FR GB IT LI NL

17P Request for examination filed

Effective date: 19890916

17Q First examination report despatched

Effective date: 19911115

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE FR GB IT LI NL

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

REF Corresponds to:

Ref document number: 58902114

Country of ref document: DE

Date of ref document: 19921001

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20030401

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030522

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20040406

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040408

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040421

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20040611

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041103

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050422

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050430

BERE Be: lapsed

Owner name: *BASF A.G.

Effective date: 20050430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051230

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20051101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20051230

BERE Be: lapsed

Owner name: *BASF A.G.

Effective date: 20050430