EP0334008B1 - SF6-Eindruckschalter - Google Patents

SF6-Eindruckschalter Download PDF

Info

Publication number
EP0334008B1
EP0334008B1 EP89102110A EP89102110A EP0334008B1 EP 0334008 B1 EP0334008 B1 EP 0334008B1 EP 89102110 A EP89102110 A EP 89102110A EP 89102110 A EP89102110 A EP 89102110A EP 0334008 B1 EP0334008 B1 EP 0334008B1
Authority
EP
European Patent Office
Prior art keywords
opening
ventilation
pressure
gas
opens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89102110A
Other languages
English (en)
French (fr)
Other versions
EP0334008A2 (de
EP0334008A3 (de
Inventor
Herbert Dr. Karrenbauer
Andreas Dipl.-Ing. Schiemann
Hans-Gerd Dr. Thiel
Gerd Dipl.-Ing. Wachsmuth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Licentia Patent Verwaltungs GmbH
Original Assignee
Licentia Patent Verwaltungs GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Licentia Patent Verwaltungs GmbH filed Critical Licentia Patent Verwaltungs GmbH
Publication of EP0334008A2 publication Critical patent/EP0334008A2/de
Publication of EP0334008A3 publication Critical patent/EP0334008A3/de
Application granted granted Critical
Publication of EP0334008B1 publication Critical patent/EP0334008B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/88Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts
    • H01H33/90Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism
    • H01H33/901Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism making use of the energy of the arc or an auxiliary arc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/88Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts
    • H01H33/90Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism
    • H01H2033/906Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism with pressure limitation in the compression volume, e.g. by valves or bleeder openings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/88Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts
    • H01H33/90Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism
    • H01H2033/908Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism using valves for regulating communication between, e.g. arc space, hot volume, compression volume, surrounding volume

Definitions

  • the invention relates to an SF6 indentation switch with a switching chamber filled with insulating gas, at least two switching elements, at least one of which is movable by a drive rod, a compression device for the insulating gas which can be actuated by this switching movement and whose compression space is delimited by two opposite, relatively movable floors, wherein a pressure chamber is arranged between the insulating material nozzle and the floor facing it, which has an outflow opening that can be closed by a check valve and an inflow opening that can be closed in the direction of the compression device in the direction of the switching path, and a passage that is arranged parallel to the pressure chamber and that in the part facing away from the outflow opening the pressure chamber opens by means of a closable opening and starts from CH-A-568'649.
  • High-voltage switches are usually designed as auto-blow switches filled with insulating gas.
  • the contacts are separated and the arc is blown with the insulating gas, usually SF6, until it goes out.
  • the compression required for this blowing is achieved either by means of a compression device or by means of the thermal energy of the arc itself.
  • the interrupters are either surrounded by a fully insulated metal housing or by a porcelain insulator.
  • Conventional SF6 impression switches have a compression device which essentially consists of a compression space formed by a piston and cylinder. In the area of low-current arcs, such as occur under normal operating conditions, such SF6 impression switches have a very good function. These low-current arcs have such a low thermal energy that there is no appreciable gas expansion due to heating. Blowing by the compression device is neither prevented, nor is the switching movement impaired, and the switching speed is thus reduced. When switching off high-current arcs, such as occur in short-circuit cases, the function of this SF6 impression switch is not so optimal. The high thermal energy of the arc leads to a very strong gas expansion due to the heating.
  • the gas which is under very high pressure, penetrates into the compression chamber and thus slows down the switching movement, and in the case of very powerful arcs, even leads to a brief backward movement.
  • the gas that has penetrated into the compression chamber is partially lost for the extinguishing process, since the cylinder only ejects the gas that has penetrated into it when the pressure difference in the direction of the switching path permits this.
  • an SF6 impression switch of the type mentioned is known, which is intended to improve the blowing of high-current arcs, a pressure chamber being acted upon by the compression device with cold quenching gas until the pressure of the expanding gas is increased by the Compressor generated pressure exceeds. Due to these changed pressure conditions, the check valve of the outflow opening and the valve of the inflow opening of the pressure chamber close and the closable opening of a passage lying parallel to the pressure chamber opens, whereby expanding hot gas flows from the switching path through the passage into the part of the pressure chamber which faces away from the outflow opening . When the pressure of the expanding gas decreases, the check valve opens and the arc is first blown with the cold gas cushion before the hot gas underneath flows in.
  • the invention is therefore based on the object of making an SF6 impression switch with a safe arc extinguishing by a higher switching speed and better blowing with a gas that has an optimal density available.
  • the SF6 impression switch according to the invention has the advantage of blowing on weaker arcs, as is done in a conventional SF6 impression switch in an expedient and tried-and-tested manner, but fully adjusts to the significantly increased requirements in the case of high-current arcs.
  • the gas is pre-compressed by a compression device, which creates a gas cushion of cold, high-density quenching gas.
  • This gas cushion is post-compressed by the gas pressure wave, which causes the gas expansion of the high-current arc.
  • a closure member is used, the change in position of which can be controlled by the shift path covered.
  • This post-compression takes place in such a way that the hot gas is first cooled in the gas storage space and then flows into the pressure chamber in such a way that a stratification is formed in it, in which the pre-compressed, high-density gas cushion is first available for blowing.
  • the cooled gas forms a layer in the lower part of the pressure chamber because it only flows in after the cold gas has been compressed. It primarily serves to increase the pressure and is only used for post-blowing after the arc has been extinguished in order to avoid reignition.
  • the blowing begins as soon as a sufficient distance between the switch contacts to extinguish the arc is reached.
  • the invention has the advantage over the conventional SF6 impression switches that there is no reduction in the switching speed due to the penetration of gas into the compression space as a result of gas expansion by means of high-current arcs. As a result of the post-compression in the pressure chamber by means of the expanding gas, this energy is still available for blowing the high-current arcs and does not have a braking effect on the drive.
  • Fig. 1 shows an embodiment, the SF6 impression switch is shown in a partial view, in which the essential parts are shown by means of a section extending to the axis of rotation.
  • This exemplary embodiment contains the parts that are customary in an SF6 impression switch:
  • This compression device as is usual with SF6 indentation switches, consists of a compression cylinder 17 and two trays 1 and 2, which move towards one another when switched off and thus compress the insulating gas in a compression space 11.
  • the compression cylinder 17 is connected as a fixed part to the base 2 and the base 1, which is connected to the switching piece 21 and the drive rod 19, is drawn into the compression cylinder 17.
  • a pressure chamber 3 is located between the base 1 and the insulating material nozzle 12 and a gas storage space 9 is separated therefrom by a partition 25.
  • the pressure chamber 3 is provided in the direction of the switching path 4 with an outflow opening 5, in which an insulating gas heated by the arc flows in a check valve 6 is prevented.
  • the gas storage space 9 has an inlet 26 in the direction of the switching path 4 and an opening 10 which opens into the pressure chamber 3 on the side opposite the outflow opening 5.
  • the bottom 1 is provided with an inflow opening 7, which connects the compression space 11 to the pressure chamber 3.
  • a closure element 8 is arranged in the region of the opening 10 and the inflow opening 7. This closure member 8 in Fig. 1 is designed as a slidable ring with an L-shaped cross section.
  • a first position in which the axial leg of the closure element 8 is pushed in a sealing manner in front of the opening 10 and opens the inflow opening 7.
  • a second position in which the closure member 8 is located in the illustration in FIG. 1, the opening 10 is opened and the inflow opening 7 is closed by the radial leg of the closure member 8. If no pressure differences act on the closure member 8, it is held by a spring 24 in this second position shown.
  • the bottom 2 is designed as a fixed component, the drive rod 19 passing through a hole in this bottom and a seal ensuring the gas tightness of this passage.
  • a vent hole 13 is arranged, which is provided with a vent valve 14, which opens against the pressure of a spring 14 '.
  • the bottom 2 contains a ventilation hole 15 with a valve 16, which is arranged so that the compression chamber 11 is ventilated when it is switched on.
  • the SF6 impression switch shown has the following function:
  • the gas is compressed by the switching movement, mediated by the drive rod 19, between the base 1 connected to the drive rod 19 and the fixed base 2 in the compression space 11, passes through the inflow opening 7 and flows through the opening 5 to the arc 23 around it to blow at zero crossing.
  • the quenching gas opens the closure element 8 in this way, flows through the pressure chamber 3 and, after leaving the pressure chamber 3 through the outflow opening 5, finally reaches the switching path 4 in order to blow the arc 23.
  • the outflow opening 5 is not closed by the check valve 6, since in the case of low-current arcs there is no gas pressure wave so strong that a gas flow is formed which flows from the switching path in the direction of the compression device.
  • the SF6 impression switch adapts to the conditions caused by the gas expansion and uses this gas expansion to produce the required extinguishing gas pressure:
  • 11 insulating gas is compressed in the compression chamber in the manner described above through the inflow opening 7 into the pressure chamber 3, the closure member 8 being opened by the gas flow.
  • the arc 23 is drawn in the switching path 4, whereby extinguishing gas expands and, as shown by the curved arrow, flows in the direction of the compression device.
  • the outflow opening 5 is closed by the check valve 6 and the pressurized gas flows into the gas storage space 9.
  • the closed check valve 6 in the pressure chamber 3 and the compression chamber 11 produce reproducible pressure conditions, so that a certain pressure can be assigned to a certain distance between the switching contacts 21 and 22.
  • the pressure in the compression space 11 drops sharply, which has the consequence that the closure member 8 moves into the position in which it closes the inflow opening 7 with its radial leg and at the same time opens the opening 10.
  • the drive is completely relieved of the pressure force in the compression space 11 by venting it, so that there is no braking of the switching movement or even a backward movement, on the contrary - the switching movement is even accelerated by the relief.
  • the drive thus only applies the energy for the pre-compression of the gas in the pressure chamber 3.
  • the expanded gas which is stored in the gas storage space 9 and thereby cooled, flows through the opening 10 into the pressure chamber 3.
  • the cold gas pre-compressed in the pressure chamber 3 is post-compressed by the gas pressure wave coming from the gas storage space 9, which cold gas of high density lies in front of the outflow opening 5 in order to serve the blowing at the moment of zero current crossing which is decisive for the extinguishing of the arc.
  • the check valve 6 opens and the cold gas cushion flows out of the outflow opening 5 in the direction of the switching path 4 in order to blow the arc there. In this way, optimal extinguishing conditions were created while relieving the load on the drive.
  • Fig. 2 shows an embodiment in which the compression cylinder 17 is fixedly connected to the floor 1 and is pulled by the switching movement mediated by the drive rod 19 over the fixed floor 2.
  • the vent valve 14 is opened against the force of a spring 14 ⁇ by a pin 18.
  • the length of this pin 18 is dimensioned such that the vent valve 14 lifts the valve plate of the vent valve 14 from its closed position when a sufficient distance between the switching contacts 20 and 21 is reached for arc quenching.
  • the spring 14 ⁇ must have a larger spring constant than the spring 14 'described in Fig. 1'.
  • the closure member 8 is also designed as an L-shaped ring, but the axial leg is longer and opens the opening 10 in the second position through holes. The remaining parts correspond in structure and function to those already described for FIG. 1
  • Fig. 2 serves to make it clear that different configurations of the floors 1 and 2 and the cylinder 17 and the control of the closure member 8 are possible. However, further deviating configurations are also conceivable, for example an embodiment in which the drive rod is connected to the base 2 and the switching piece 20 and the other parts are fixed.
  • FIG. 3 A third embodiment is shown in FIG. 3. This has an L-shaped closure member 8, which is held by an embedded spring 24 'in the first position as the rest position.
  • the spring constant of this spring 24 ' is designed so that when the compression chamber 11 is vented, the pressure in the pressure chamber 3 presses the closure member 8 into the second position in which the inflow opening 7 is closed and the opening 10 is opened at the same time.
  • the ventilation of the compression space 11 is brought about by the fact that the floor 2 runs in the course of its switching-on movement via a recess 22 arranged on the compression cylinder 17 and / or on the drive rod 19. This recess 22 must be arranged so that the ventilation takes place when the switch contacts 20, 21 are at a sufficient distance to achieve an arc extinguishing.
  • 3 shows the position at which the ventilation of the compression space 11 begins.
  • the bottom 2 in FIG. 3 is provided with a ventilation hole 15, which is closed by a check valve 16 during the switch-off movement.
  • Check valve 16 and ventilation hole 15 serve to vent the compression chamber 11 during the switch-on movement.
  • the ventilation hole 15 with the check valve 16 can also be located at another location, e.g. be arranged on the compression cylinder 17 so that the bore 15 opens into a part of the compression space 11, which remains in the off position.
  • a check valve 27 is provided in the area of the opening 10 of the gas storage space 9, which prevents insulating gas from flowing back through the opening 10 into the gas storage space 9. This check valve is used when switching large currents to prevent a pressure loss of the pressure chamber 3 through the opening 10 into the gas storage space 9 during the second phase of the switch-off movement.
  • the check valve 6 of the outflow opening 5 has an additional valve plate 6 ', which closes the cross section of the inlet 26 between the switching path 4 and the gas storage space 9 when the check valve 6 is open.
  • This valve plate 6 ' ensures that the hot gas which has entered the gas storage space 9 as a result of strong gas expansion cannot flow back into the direction of the switching path 4 when the current approaches the zero crossing and the resulting opening of the check valve 6, which would result in a mixture with the cold gas from the pressure chamber 3 and thereby worsen the extinguishing properties of this gas.
  • Fig. 4 shows the closure member 8 'formed as at least one flap that closes the opening 10 in the first position and opens the inflow opening 7 to the pressure chamber 3 and closes the inflow opening 7 in the second position and opens the opening 10 to the pressure chamber 3.
  • the flap-shaped closure member 8 ' can be arranged, for example, with its fulcrum in the region of the drive rod 9, so that it rests in a horizontal position on the floor 1 and closes the opening 7 and at the same time opens the opening 10 to the pressure chamber 3.
  • Fig. 5 shows the formation of the closure member 8 ⁇ as a sliding ring.
  • This displaceable ring has a sliding surface on the inside to the drive rod 19, which is gas-tight.
  • the closure member 8 ⁇ is drawn in its second position, in which it rests with its outer end on the floor 1 and thereby closes the inflow opening 7.
  • the closure member 8 ⁇ is moved upward and abuts with its outer end on the partition wall 25, whereby the inflow opening 7 is connected to the pressure chamber 3 and closes the opening 10.
  • the closure member 8 ⁇ is also designed as a displaceable ring, with the difference that the displaceable ring has a more plate-like shape and the inflow opening 7 can be arranged further out as seen from the axis of symmetry.
  • the closure member 8 ⁇ is also in a position on the floor 1, close! the opening 7, and strikes in its other position on the partition 25, whereby the opening 10 is closed, the other opening being opened.
  • a spring is arranged, which causes the adjustment to take place only when the pressure P2 is corresponding to the spring strength above the pressure P3, the training of the closure member, as shown in Figs. 4 to 6 are shown, are connected to one of the aforementioned vents of the compression space 11 and this ventilation is controlled so that there is then a venting of the compression space 11 to effect the displacement of the closure member 8 ', 8 ⁇ when the switching movement has progressed so far that further compression of the gas can no longer benefit the arc quenching, since the sufficient distance for the arc quenching has been reached.

Landscapes

  • Circuit Breakers (AREA)

Description

  • Die Erfindung betrifft einen SF₆-Eindruckschalter mit einer mit Isoliergas gefüllten Schaltkammer, mindestens zwei Schaltstücken, von denen mindestens eines durch eine Antriebsstange bewegbar ist, einer durch diese Schaltbewegung betätigbaren Kompressionseinrichtung für das Isoliergas deren Kompressionsraum von zwei gegenüberliegenden, relativ zueinander bewegbaren Böden begrenzt ist, wobei zwischen der Isolierstoffdüse und dem ihr zugewandten Boden eine Druckkammer angeordnet ist, welche in Richtung der Schaltstrecke eine durch ein Rückschlagventil verschließbare Ausströmöffnung und eine in Richtung der Kompressionseinrichtung verschließbare Einströmöffnung aufweist, sowie einem parallel zur Druckkammer angeordneten Durchlaß, der in den der Ausströmöffnung abgewandten Teil der Druckkammer mittels einer verschließbaren Öffnung mündet und geht aus von der CH-A-568′649.
  • Hochspannungsschalter sind heute in der Regel als mit Isoliergas gefüllte Selbstblasschalter ausgeführt. In einer solchen mit Isoliergas gefüllten Schaltkammer werden die Kontakte getrennt und wird der Lichtbogen bis zum Erlöschen mit dem Isoliergas, meistens SF₆, beblasen. Die für diese Beblasung erforderliche Kompression wird entweder mittels einer Kompressionseinrichtung oder mittels der thermischen Energie des Lichtbogens selbst erzielt. Die Schaltkammern werden entweder von einem vollisolierten Metallgehäuse oder von einem Porzellanisolator umgeben.
  • Herkömmliche SF₆-Eindruckschalter weisen eine Kompressionseinrichtung auf, die im wesentlichen aus einem aus Kolben und Zylinder gebildeten Kompressionsraum besteht.
    Im Bereich stromschwächerer Lichtbögen, wie sie unter normalen Betriebsbedingungen auftreten, weisen solche SF₆-Eindruckschalter eine recht gute Funktion auf. Diese stromschwächeren Lichtbögen haben eine so geringe thermische Energie, daß es durch Erhitzung zu keiner nennenswerten Gasexpansion kommt. Es wird weder die Beblasung durch die Kompressionseinrichtung verhindert, noch die Schaltbewegung beeinträchtigt und damit die Schaltgeschwindigkeit vermindert.
    Bei der Abschaltung stromstarker Lichtbögen, wie sie beispielsweise in Kurzschlußfällen auftreten, ist die Funktion dieser SF₆-Eindruckschalter nicht so optimal. Durch die hohe thermische Energie des Lichtbogens kommt es zu einer sehr starken Gasexpansion infolge der Erhitzung. Das unter sehr hohem Druck stehende Gas dringt in den Kompressionsraum ein und führt dadurch zu einer Verlangsamung der Schaltbewegung, bei sehr stromstarken Lichtbögen sogar zu einer kurzzeitigen Rückwärtsbewegung. Das in den Kompressionsraum eingedrungene Gas geht teilweise für den Löschvorgang verloren, da der Zylinder das in ihn eingedrungene Gas erst dann wieder ausstößt, wenn die Druckdifferenz in Richtung Schaltstrecke dies zuläßt.
  • Ein weiterer Nachteil, insbesondere bei der Abschaltung stromstarker Lichtbögen, besteht darin, daß sich bei solchen SF₆-Eindruckschaltern das heiße und das kalte Isoliergas vermischt, wobei sich eine mittlere Temperatur einstellt. Das zur Beblasung des Lichtbogens zur Isolierstoffdüse zurückströmende Isoliergas weist daher eine dieser erhöhten Temperatur entsprechende Dichte auf, welche gegenüber der Dichte des kalten Gases reduziert ist. Isoliergas mit einer solchen verringerten Dichte weist jedoch erheblich verschlechterte Löscheigenschaften auf.
  • Zusammenfassend kann also festgestellt werden, daß bei einem solchen SF₆-Eindruckschalter bei Schaltvorgängen mit stromstarken Lichtbögen in dreierlei Hinsicht Nachteile auftreten:
    • Der Schaltvorgang wird gebremst, darum ist eine hohe Antriebsenergie notwendig.
    • Ein Teil,des expandierenden Löschgases geht für die Beblasung verloren.
    • Durch die starke Mischung von kalten Löschgas mit heißen Löschgas sind die Löscheigenschaften vermindert.
  • Aus der CH-A-568 649 ist ein SF₆-Eindruckschalter der eingangs genannten Art bekannt, der die Beblasung stromstarker Lichtbögen verbessern soll, wobei eine Druckkammer so lange durch die Kompressionseinrichtung mit kaltem Löschgas beaufschlagt wird, bis der Druck des expandierenden Gases den durch die Kompressionseinrichtung erzeugten Druck übersteigt. Durch diese veränderten Druckverhältnisse schließen das Rückschlagventil der Ausströmöffnung sowie das Ventil der Einströmöffnung der Druckkammer und die verschließbare Öffnung eines parallel zur Druckkammer liegenden Durchlasses öffnet, wodurch expandierendes heißes Gas aus der Schaltstrecke durch den Durchlaß in den Teil der Druckkammer strömt, welcher der Ausströmöffnung abgewandt ist. Bei Nachlassen des Drucks des expandierenden Gases öffnet das Rückschlagventil und der Lichtbogen wird zuerst mit den kalten Gaspolster beblasen, bevor das darunterliegende heiße Gas nachströmt.
  • Durch diesen Schalter wird die Beblasung stromstarker Lichtbögen gegenüber den herkömmlichen SF₆-Eindruckschaltern zwar verbessert, eine optimale Funktion konnte jedoch aus folgenden Gründen nicht erzielt werden:
    • 1) Das kalte Gaspolster, welches vor der Ausströmöffnung steht, hat nur eine ungenügende Dichte, da die vom Lichtbogendruck abhängige Änderung der Gaszufuhr zur Druckkammer durch Verschluß der Öffnung zur Kompressionseinrichtung und Öffnung des von der Schaltstrecke kommenden Durchlaßes zu früh erfolgt. Diese zu frühe Unterbrechung der Zufuhr kalten Gases und Beaufschlagung mit dem hohen Expansionsdruck hat auch zur Folge, daß-wenn der Strom kurz vor Erreichen der für die Lichtbogenlöschung ausreichenden Distanz der Schaltkontakte einen Nulldurchgang hat - der Druck in der Druckkammer vorzeitig eine Höhe erreicht, bei der die Rückschlagventile öffnen, obwohl die Distanz der Schaltkontakte für eine erfolgreiche Lichtbogenlöschung noch zu gering ist. Durch dieses frühzeitige Öffnen der Rückschlagventile wird das kalte Gaspolster nutzlos weggeblasen.
    • 2) Der Druckimpuls, welcher die Druckkammer mittels des durch den Durchlaß strömenden, expandierenden Gases beaufschlagt, ist zeitlich zu kurz, da es sich lediglich um einen Strömungskanal handelt, der über keine Speicherkapazität verfügt. Dieser zeitlich zu kurze Druckimpuls ermöglicht es nicht, die Druckkamer in einem Zeitpunkt mit dem Expansionsdruck des Gases zu beaufschlagen, zu dem dieser wegen Annäherung des Stromes an den Nulldurchgang in der Schaltstrecke bereits wieder nachläßt. Durch die kurze Verweilzeit und die geringe Oberfläche des Strömungskanals hat das heiße Gas kaum eine Möglichkeit abzukühlen, bevor es in die Druckkammer gelangt.
    • 3) Durch das nicht im richtigen Zeitpunkt auftretende, beziehungsweise durch nutzloses Wegblasen wieder verlorene Druckmaximum in der Druckkammer muß vor der Bewirkung der Lichtbogenlöschung oft die Kompressionseinrichtung nochmals für Löschgasnachschub sorgen, wodurch eine antriebsentlastende Belüftung der Kompressionseinrichtung zur Erhöhung der Schaltgeschwindigkeit auch gegen Ende der Schaltbewegung nicht vorgenommen werden kann, Außerdem wird zwischen dem Abströmen des zur Lichtbogenlöschung bereitstehenden Gases und dem erneuten Druckaufbau durch die Kompressionseirichtung ein zeitweiser Rückgang der Beblasungsintensität dann kritisch, wenn wie erneuter Nulldurchgang des Stromes, in dem der Lichtbogen gelöscht werden kann, in einen Zeitraum fällt, in dem dieser neue Druck noch unzureichend ist.
  • Der erfindung liegt daher die Aufgabe zugrunde, einen SF₆-Eindruckschalter mit einer sicheren Löschung des Lichtbogens durch eine höhere Schaltgeschwindigkeit und eine bessere Beblasung mit einem Gas, das eine optimale Dichte aufweist, verfügbar zu machen.
  • Diese Aufgabe wird duch einen SF₆-Eindruckschalter nach Anspruch 1 gelöst.
  • Der erfindungsgemäße SF₆-Eindruckschalter hat den Vorteil, bei stromschwächeren Lichtbögen eine Beblasung vorzunehmen, wie sie bei einem herkömmlichen SF₆-Eindruckschalter in zweckmäßiger und erprobter Weise erfolgt, sich jedoch bei stromstarken Lichtbögen voll auf die wesentlich erhöhten Anforderungen einstellt. Zur Beblasung dieser stromstarken Lichtbögen wird das Gas durch eine Kompressionseinrichtung vorkomprimiert, wodurch ein Gaspolster kalten Löschgases hoher Dichte entsteht. Dieses Gaspolster wird durch die Gasdruckwelle, welche die Gasexpansion des stromstarken Lichtbogens hervorruft, nachkomprimiert. Dazu dient ein Verschlußorgan, dessen Positionsänderung durch den zurückgelegten Schaltweg steuerbar ist. Diese Nachkomprimieren erfolgt in der Art, daß das heiße Gas zuerst im Gasspeicherraum gekühlt wird und dann in die Druckkammer so einströmt, daß in dieser eine Schichtung entsteht, bei der das vorkomprimierte kältere Gaspolster hoher Dichte als erstes zur Beblasung zur Verfügung steht. Das gekühlte Gas bildet, da es erst nach dem Komprimieren des kalten Gases einströmt, eine Schicht im unteren Teil der Druckkammer. Es dient primär der Druckerhöhung und wird erst zu einer Nachbeblasung nach Erlöschen des Lichtbogens herangezogen, um ein Wiederzünden zu vermeiden. Die Beblasung beginnt, sobald eine zur Lichtbogenlöschung ausreichende Distanz zwischen den Schaltkontakten erreicht ist.
  • Die Erfindung hat gegenüber den herkömmlichen SF₆-Eindruckschaltern den Vorteil, daß keine Verminderung der Schaltgeschwindigkeit durch Eindringen von Gas in den Kompressionsraum infolge der Gasexpansion durch stromstarke Lichtbögen mehr eintritt. Durch das Nachkomprimieren in der Druckkammer mittels des expandierenden Gases steht diese Energie zur Beblasung der stromstarken Lichtbögen weiter zur Verfügung und wirkt sich nicht bremsend auf den Antrieb aus.
  • Auf diese Weise wird es möglich, ein wesentlich größeres Ausschaltvermögen zu erzielen oder die Antriebsenergie zu verringern. Es ist auch gegenüber herkömmlichen Schaltern mit gleicher Leistung möglich, den gesamten Schalter einschließlich Kompressionseinrichtung, Düse, Antrieb usw. wesentlich kleiner zu dimensionieren und auf diese Weise Raum, Energie und Material einzusparen.
  • Weiterbildungen und zweckmäßige Ausgestaltungen der Erfindung sind den Unteransprüchen zu entnehmen, wobei sich durch die zusätzlichen Merkmale und deren Kombination weitere Vorteile ergeben.
  • Die Erfindung wird nachstehend anhand von in den Zeichnungen dargestellten Ausführungsbeispielen erläutert, wobei auf die weiteren Vorteile verwiesen wird.
  • Es zeigen
    • Fig. 1 Teile eines Ausführungsbeispiels, wobei sich die Darstellung auf einen Schnitt bis zur Mittellinie (Rotationsachse) beschränkt,
    • Fig. 2 ein weiteres Ausführungsbeispiel,
    • Fig. 3 ein drittes Ausführungsbeispiel und
    • Fig. 4, Fig. 5 und Fig. 6 Ausschnitte mit verschiedenen Ausgestaltungsmöglichkeiten des Verschlußorgans.
  • Fig. 1 zeigt ein Ausführungsbeispiel, wobei der SF₆-Eindruckschalter in einer Teilansicht dargestellt ist, bei der die wesentlichen Teile mittels eines bis zur Rotationsachse reichenden Schnitts dargestellt sind.
  • Dieses Ausführungsbeispiel enthält einmal die bei einem SF₆-Eindruckschalter üblichen Teile:
  • 2 Schaltstücke 20 und 21, welche bei der Öffnung des Schalters eine Schaltstrecke 4 bilden. Von diesen Schaltstücken ist ein Schaltstück 20 fest und das andere Schaltstück 21 mittels einer Antriebsstange 19 durch den Antrieb von der Einschalt- in eine Ausschaltstellung (sowie umgekehrt) bringbar. Der in der Schaltstrecke 4 bei der Ausschaltung entstehende Lichtbogen 23 wird mittels einer Kompressionseinrichtung beblasen. Dabei wird ein Isoliergasstrom mittels einer Isolierstoffdüse 12 gezielt auf den in der Schaltstrecke 4 brennenden Lichtbogen 23 gerichtet. Diese Kompressionseinrichtung besteht, wie bei SF₆-Eindruckschaltern üblich, aus einem Kompressionszylinder 17 und zwei Böden 1 und 2, die sich bei einer Ausschaltung aufeinanderzubewegen und so das Isoliergas in einem Kompressionsraum 11 komprimieren. beim vorliegenden Ausführungsbeispiel ist der Kompressionszylinder 17 als feststehendes Teil mit dem Boden 2 verbunden und der Boden 1, welcher mit dem Schaltstück 21 und der Antriebsstange 19 in Verbindung steht, wird in den Kompressionszylinder 17 hineingezogen.
  • Der Erzielung einer besonders wirksamen Beblasung stromstarker Lichtbögen sowie einer Verhinderung der Rückwirkung der Gasexpansion auf den Antrieb dienen folgende Teile:
  • Zwischen dem Boden 1 und der Isolierstoffdüse 12 befinden sich eine Druckkammer 3 und davon durch eine Trennwand 25 getrennt ein Gasspeicherraum 9. Die Druckkammer 3 ist in Richtung der Schaltstrecke 4 mit einer Ausströmöffnung 5 versehen, bei der ein Einströmen von durch den Lichtbogen erhitztem Isoliergas durch ein Rückschlagventil 6 verhindert wird. Der Gasspeicherraum 9 verfügt über einen Einlaß 26 in Richtung der Schaltstrecke 4 und über eine Öffnung 10, die in die Druckkammer 3 auf der der Ausströmöffnung 5 gegenüberliegenden Seite einmündet. Der Boden 1 ist mit einer Einströmöffnung 7 versehen, die den Kompressionsraum 11 mit der Druckkammer 3 verbindet. In dem Bereich der Öffnung 10 und der Einströmöffnung 7 ist ein Verschlußorgan 8 angeordnet. Dieses Verschlußorgan 8 in Fig. 1 ist als verschiebbarer Ring mit L-förmigem Querschnitt ausgebildet. Es kann zwei Positionen einnehmen: Eine erste Position, in der der axiale Schenkel des Verschlußorgans 8 dichtend vor die Öffnung 10 geschoben ist und die Einströmöffnung 7 freigibt. In einer zweiten Position, in welcher sich das Verschlußorgan 8 in der Darstellung der Fig. 1 befindet, ist die Öffnung 10 freigegeben und die Einströmöffnung 7 durch den radialen Schenkel des Verschlußorgans 8 verschlossen. Wenn keine Druckunterschiede auf das Verschlußorgan 8 einwirken, wird es von einer Feder 24 in dieser zweiten, dargestellten Position gehalten. Der Boden 2 ist als feststehendes Bauteil ausgebildet, wobei die Antriebsstange 19 durch eine Bohrung dieses Bodens hindurchtritt und eine Dichtung für die Gasdichtheit dieses Durchtritts sorgt. Im Boden 2 ist eine Entlüftungsbohrung 13 angeordnet, welche mit einem Entlüftungsventil 14 versehen ist, das gegen den Druck einer Feder 14′ öffnet. Desweiteren enthält der Boden 2 eine Belüftungsbohrung 15 mit einem Ventil 16, das so angeordnet ist, daß beim Einschaltvorgang eine Belüftung des Kompressionsraums 11 stattfindet.
  • Der dargestellte SF₆-Eindruckschalter weist folgende Funktion auf:
  • Bei der Abschaltung schwacher Ströme entspricht die Funktion der aus herkömmlichen SF₆-Eindruckschaltern bekannten:
  • Das Gas wird durch die Schaltbewegung, vermittelt durch die Antriebsstange 19, zwischen den mit der Antriebsstange 19 verbundenen Boden 1 und dem feststehenden Boden 2 im Kompressionsraum 11 komprimiert, tritt durch die Einströmöffnung 7 hindurch und strömt über die Öffnung 5 zum Lichtbogen 23, um diesen im Nulldurchgang zu beblasen.
  • Im Unterschied zu den herkömmlichen SF₆-Eindruckschaltern öffnet das Löschgas auf diesem Weg das Verschlußorgan 8, strömt durch die Druckkammer 3 hindurch und erreicht nach Verlassen der Druckkammer 3 durch die Ausströmöffnung 5 schließlich die Schaltstrecke 4, um den Lichtbogen 23 zu beblasen. Ein Verschluß der Ausströmöffnung 5 durch das Rückschlagventil 6 erfolgt nicht, da bei stromschwachen Lichtbögen keine so starke Gasdruckwelle entsteht, daß sich eine Gasströmung ausbildet, welche von der Schaltstrecke in Richtung der Kompressionseinrichtung fließt.
    Bei der Ausschaltung stromstarker Lichtbögen paßt sich der SF₆-Eindruckschalter den durch die Gasexpansion verursachten Bedingungen an und nützt diese Gasexpansion für die Herstellung des erforderlichen löschgasdrucks aus: Während der ersten Phase der Ausschaltbewegung wird in der oben beschriebenen Art und Weise im Kompressionsraum 11 Isoliergas komprimiert strömt durch die Einströmöffnung 7 in die Druckkammer 3, wobei das Verschlußorgan 8 durch die Gasströmung geöffnet wird. Während dieser ersten Phase der Ausschaltbewegung wird der Lichtbogen 23 in der Schaltstrecke 4 gezogen, wodurch Löschgas expandiert und, wie durch den gebogenen Pfeil dargestellt, in Richtung der Kompressionseinrichtung fließt. Dies hat zur Folge, daß die Ausströmöffnung 5 durch das Rückschlagventil 6 verschlossen wird und das unter Druck stehende Gas in den Gasspeicherraum 9 fließt. Während dieser Phase der Ausschaltbewegung herrschen durch das geschlossene Rückschlagventil 6 in der Druckkammer 3 und dem Kompressionsraum 11 reproduzierbare Druckbedingungen, so daß ein bestimmter Druck einer bestimmten Distanz zwischen den Schaltkontakten 21 und 22 zuzuordnen ist. Dadurch kann die Federkonstante der Feder 14′ so ausgelegt werden, daß das Entlüftungsventil 14 in der Schaltstellung öffnet, in der die Schaltkontakte 20, 21 ,die zur Lichtbogenlöschung ausreichende Distanz erreicht haben. Durch die Öffnung des Entlüftungsventils 14 sinkt der Druck im Kompressionsraum 11 stark ab, was zur Folge hat, daß das Verschlußorgan 8 sich in die Position begibt, in der es mit seinem radialen Schenkel die Einströmöffnung 7 verschließt und gleichzeitig die Öffnung 10 freigibt. Durch die Entlüftung des Kompressionsraus 11 und die Positionsänderung des Verschlußorgans 8 tritt der SF₆-Eindruckschalter in seine zweite Phase der Ausschaltung. In dieser zweiten Phase der Ausschaltung ist der Antrieb von der Druckkraft im Kompressionsraum 11 durch dessen Entlüftung völlig entlastet, so daß es zu keiner Bremsung der Schaltbewegung oder gar einer Rückwärtsbewegung kommt, im Gegenteil - es tritt sogar eine Beschleunigung der Schaltbewegung durch die Entlastung ein. Vorteilhafterweise riß der Antrieb dadurch neben der Beschleunigung der entsprechenden Schalterteile nur die Energie für die Vorkompression des Gases in der Druckkammer 3 aufbringen.
  • In der zweiten Phase der Ausschaltbewegung strömt das expandierte, im Gasspeicherraum 9 gespeicherte und dabei gekühlte Gas durch die Öffnung 10 in die Druckkammer 3. Das in der Druckkammer 3 vorkomprimierte kalte Gas wird durch die Gasdruckwelle, welche vom Gasspeicherraum 9 kommt, nachkomprimiert, wobei das kalte Gas hoher Dichte vor der Ausströmöffnung 5 liegt, um in dem für die Löschung des Lichtbogens entscheidenden Moment des Stromnulldurchgangs der Beblasung zu dienen. Bei Annäherung des Stromes des Lichtbogens an den Nulldurchgang läßt der durch den Lichtbogen 23 erzeugte Gasdruck nach, das Rückschlagventil 6 öffnet sich und das kalte Gaspolster strömt aus der Ausströmöffnung 5 aus in Richtung der Schaltstrecke 4, um dort den Lichtbogen zu beblasen. Auf diese Weise wurden bei gleichzeitiger Entlastung des Antriebs optimale Löschbedingungen geschaffen.
  • Fig. 2 zeigt ein Ausführungsbeispiel, bei dem der Kompressionszylinder 17 mit dem Boden 1 fest verbunden ist und durch die von der Antriebsstange 19 vermittelte Schaltbewegung über den feststehenden Boden 2 gezogen wird. Bei dieser Ausbildung wird das Entlüftungsventil 14 gegen die Kraft einer Feder 14˝ durch einen Stift 18 geöffnet. Die Länge dieses Stifts 18 ist so bemessen, daß das Entlüftungsventil 14 beim Erreichen einer zur Lichtbogenlöschung ausreichenden Distanz zwischen den Schaltkontakten 20 und 21 die Ventilplatte des Entlüftungsventils 14 aus ihrer Schließstellung hebt. Die Feder 14˝ muß eine größere Federkonstante aufweisen als die in Fig. 1 beschriebene Feder 14′. Das Verschlußorgan 8 ist ebenfalls als L-förmiger Ring ausgebildet, wobei jedoch der axiale Schenkel länger ist und durch Bohrungen die Öffnung 10 in der zweiten Position freigibt. Die übrigen Teile entsprechen von ihrem Aufbau und ihrer Funktion dem zu Fig. 1 bereits beschriebenen
  • Die Fig. 2 dient dazu, deutlich zu machen, daß abweichende Ausgestaltungen der Böden 1 und 2 sowie des Zylinders 17 und der Steuerung des Verschlußorgans 8 möglich sind. Es sind jedoch noch weitere abweichende Ausgestaltungen denkbar, zum Beispiel eine Ausgestaltung, bei der die Antriebsstange mit dem Boden 2 und dem Schaltstück 20 verbunden ist und die übrigen Teile feststehen.
  • Ein drittes Ausführungsbeispiel ist in Fig. 3 dargestellt. Dies weist ein L-förmiges Verschlußorgan 8 auf, welches durch eine eingelagerte Feder 24′ in der ersten Position als Ruhelage gehalten wird. Die Federkonstante dieser Feder 24′ ist so ausgelegt, daß bei einer Entlüftung des Kompressionsraums 11 der Druck in der Druckkammer 3 das Verschlußorgan 8 in die zweite Position drückt, in der die Einströmöffnung 7 verschlossen ist und die Öffnung 10 gleichzeitig geöffnet wird. Die Entlüftung des Kompressionsraums 11 wird dadurch bewirkt, daß der Boden 2 im Zuge seiner Einschaltbewegung über eine am Kompressionszylinder 17 und/oder an der Antriebsstange 19 angeordnete Aussparung 22 läuft. Diese Aussparung 22 muß so angeordnet sein, daß die Belüftung dann stattfindet, wenn die Schaltkontakte 20, 21 eine zu Erreichung einer Lichtbogenlöschung ausreichende Distanz aufweisen. In der Fig. 3 ist die Position dargestellt, bei der die Entlüftung des Kompressionsraums 11 beginnt.
  • Wie schon bei der Fig. 1 und 2 ist auch in Fig. 3 der Boden 2 mit einer belüftungsbohrung 15 versehen, die bei der Ausschaltbewegung durch ein Rückschlagventil 16 verschlossen ist. Rückschlagventil 16 und Belüftungsbohrung 15 dienen der Belüftung des Kompressionsraums 11 bei der Einschaltbewegung. Selbstverständlich kann die Belüftungsbohrung 15 mit dem Rückschlagventil 16 auch an einer anderen Stelle, z.B. am Kompressionszylinder 17 so angeordnet werden, daß die Bohrung 15 in einen Teil des Kompressionsraus 11 mündet, der auch in der Ausschaltstellung noch erhalten bleibt.
  • Beim Ausführungsbeispiel der Fig. 3 ist im Bereich der Öffnung 10 des Gasspeicherraums 9 ein Rückschlagventil 27 vorgesehen, das ein Rückströmen von Isoliergas durch die Öffnung 10 in den Gasspeicherraum 9 verhindert. Dieses Rückschlagventil dient bei der Schaltung großer Ströme dazu, während der zweiten Phase der Ausschaltbewegung einen Druckverlust der Druckkammer 3 durch die Öffnung 10 in den Gasspeicherraum 9 zu verhindern.
  • Das Rückschlagventil 6 der Ausströmöffnung 5 weist eine zusätzliche Ventilplatte 6′ auf, die bei geöffnetem Rückschlagventil 6 den Querschnitt des Einlasses 26 zwischen der Schaltstrecke 4 und dem Gasspeicherraum 9 verschließt. ,Diese Ventilplatte 6′ sorgt dafür, daß das infolge starker Gasexpansion in den Gasspeicherraum 9 eingedrungene heiße Gas bei Annäherung des Stroms an den Nulldurchgang und der dadurch bedingten Öffnung des Rückschlagventils 6 nicht in Richtung der Schaltstrecke 4 zurückfluten kann, was eine Vermischung mit dem kalten Gas aus der Druckkammer 3 zur Folge hätte und dadurch die Löscheigenschaften dieses Gases verschlechtern würde.
  • Die Fig. 4 bis 6 zeigen jeweils einen Ausschnitt des SF₆-Eindruckschalters im Bereich zwischen der Antriebsstange 19, der Zwischenwand 25 und dem Boden 1. Dargestellt ist das Verschlußorgan 8′ bzw. 8˝ in verschiedenen Ausgestaltungsmöglichkeiten.
  • Fig. 4 zeigt das Verschlußorgan 8′ als mindestens eine Klappe ausgebildet, die in der ersten Position die Öffnung 10 verschließt und die Einströmöffnung 7 zur Druckkammer 3 öffnet und in der zweiten Position die Einströmöffnung 7 verschließt und die Öffnung 10 zur Druckkammer 3 öffnet. Dazu kann das klappenförmig ausgebildete Verschlußorgan 8′ beispielsweise mit seinem Drehpunkt im Bereich der Antriebsstange 9 angeordnet werden, so daß es in einer waagerechten Stellung auf dem Boden 1 aufliegt und die Öffnung 7 verschließt und dabei gleichzeitig die Öffnung 10 zur Druckkammer 3 freigibt. In seiner angehobenen Stellung schlägt das klappenförmig ausgebildete Verschlußorgan 8′ an der Trennwand 25 an, verschließt dadurch die Öffnung 10 und gibt die Einströmöffnung 7 zur Druckkammer 3 frei.
  • Fig. 5 zeigt die Ausbildung des Verschlußorgans 8˝ als ein verschiebbarer Ring. Dieser verschiebbare Ring weist an der Innenseite zur Antriebsstange 19 eine Gleitfläche auf, die gasdicht ausgebildet ist. Das Verschlußorgan 8˝ ist in seiner zweiten Position gezeichnet, in der es mit seinem äußeren Ende auf dem Boden 1 aufliegt und dadurch die Einströmöffnung 7 verschließt. In seiner zweiten Position,wird das Verschlußorgan 8˝ nach oben verschoben und stößt mit seinem äußeren Ende an die Trennwand 25 an, wodurch die Einströmöffnung 7 mit der Druckkammer 3 verbunden ist und die Öffnung 10 verschließt.
  • Eine ähnliche Funktion weist Fig. 6 auf. Das Verschlußorgan 8˝ ist ebenfalls als verschiebbarer Ring ausgebildet, mit dem Unterschied, daß der verschiebbare Ring eine mehr plattenförmige Gestalt hat und die Einströmöffnung 7 dadurch von der Symmetrieachse gesehen weiter außen angeordnet werden kann. Das Verschlußorgan 8˝ liegt ebenfalls in einer Position auf dem Boden 1 auf, verschließ! dabei die Öffnung 7, und schlägt in seiner anderen Position an die Trennwand 25 an, wodurch die Öffnung 10 verschlossen wird, wobei jeweils die andere Öffnung geöffnet ist.
  • An dem Verschlußorgan 8′ bis 8˝ wird eine Feder angeordnet, die bewirkt, daß die Verstellung erst dann erfolgt, wenn der Druck P₂ entsprechend der Federstärke über dem Druck P₃ liegt, wobei die Ausbildungen des Verschlußorgans, wie sie in den Fig. 4 bis 6 dargestellt sind, mit einer der vorgenannten Entlüftungen des Kompressionsraums 11 verbunden sind und diese Entlüftung so gesteuert wird, daß es dann zu einer Entlüftung des Kompressionsraum 11 zur Bewirkung der Verschiebung des Verschlußorgans 8′, 8˝ kommt, wenn die Schaltbewegung so weit fortgeschritten ist, daß ein weiteres Komprimieren des Gases nicht mehr der Löschung des Lichtbogens zugute kommen kann, da die zur Lichtbogenlöschung ausreichende Distanz erreicht ist.

Claims (10)

1. SF₆-Eindruckschalter mit einer mit Isoliergas gefüllten Schalkammer, mindestens zwei Schaltkontakten (20,21)), von denen mindestens eines durch eine Antriebsstange (19) bewegbar ist, einer duch diese Schaltbewegung betätigbaren Kompressionseinrichtung (12,17) für das Isoliergas, deren Kompressionsraum (11) von zwei gegenüberliegenden, relativ zueinander bewegbaren Böden (12) begrenzt ist, wobei zwischen der Isolierstroffdüse (12) und dem ihr zugewandten Boden (1) eine Druckkammer (3) angeordnet ist, welche in Richtung der Schaltstrecke (4) eine durch ein Rückschlagventil (6) verschließbare Ausströmöffnung (5) und im Bodene ein (1) in Richtung der Kompressionseinrichtung durch ein Verschlußorgan (8, 8′, 8˝) verschließbare Einströmöffnung (7) aufweist, sowie einem parallel zur Druckkammer (3) angeordnet Durchlaß, der in den der Ausströmöffnung (5) abgewandten Teil der Druckkammer (3) mittels einer verschließbaren Öffnung (10) mündet, dadurch gekennzeichnet, daß der Durchlaß als ein mit der Schaltstrecke (4) verbundener Gasspeicherraum (9) ausgebildet ist, der sich bis zu der mittels des Verschlußorgans (8, 8′,8˝) verschließbaren Öffnung (10) erstreckt, welche in den der Ausströmöffnung (5) abgewandten Teil der Druckkammer (3) mündet, daß in einer ersten Position des Verschlußorgans (8, 8′, 8˝) die Einströmöffnung (7) geöffnet und die Öffnung (10) verschlossen ist und daß in einer zweiten Position des Verschlußorgans (8, 8′, 8˝) die Einströmöffnung (7) geschlossen und die Öffnung (10) geöffnet ist, wobei bei der Löschung stromschwacher Lichtbögen das Verschlußorgan (8, 8′, 8˝) in der ersten Position ist und bei der Löschung stromstarker Lichtbögen zunächst in der ersten Position ist und nach Erreichung einer zur Lichtbogenlöschung aussreichenden Distanz zwischen den Schaltkontakten (20, 21) sich in die zweite Position begibt.
2. SF₆-Eindruckschalter nach Anspruch 1, dadurch gekennzeichnet, daß das Verschlußorgan (8) als axial verschiebbarer Ring mit L-förmigem Querschnitt ausgebildet ist, wobei in der ersten Position des Verschlußorgans (8) der axiale Schenkel dichtend vor die Öffnung (10) geschoben und die Einströmöffnung (7) freigegeben ist und in der zweiten Position die Öffnung (10) freigegeben und die Einströmöffnung (7)durch den radialen Schenkel verschlossen ist, und daß die axiale Verschiebung des L-förmigen Rings durch eine Entlüftung des Kompressionsraums (11) bewirkt ist.
3. SF₆-Eindruckschalter nach Anspruch 1, dadurch gekennzeichnet, daß das Verschlußorgan (8′) als mindestens eine Klappe ausgebildet ist, derart, daß sie in der ersten Position die Öffnung (10) verschließt und die Einströmöffnung (7) öffnet und in der zweiten Position die Einströmöffnung (7) verschließt und die Öffnung (10) öffnet, wobei eine Feder (24′) angeordnet ist, die das Verschlußorgan (8′) bis zur Erreichung eines vorbestimmten Drucks (P₂) in seiner ersten Position hält und daß die Positionsänderung des Verschlußorgans (8′) durch eine Entlüftung des Kompressionsraums bewirkt ist.
4. SF₆-Eindruckschalter nach Anspruch 1, dadurch gekennzeichnet, daß das Verschlußorgan (8˝) als ein verschiebbarer Ring ausgebildet ist, der in der ersten Position die Öffnung (10) verschließt und die Einströmöffnung (7) öffnet und in der zweiten Position die Einströmöffnung (7) verschließt und die Öffnung (10) öffnet, wobei eine Feder (24′) angeordnet ist, die das Verschlußorgan (8˝) bis zur Erreichung eines vorbestimmten Drucks (P₂) in seiner ersten Position hält und daß die Positionsänderung des Verschlußorgans (8˝) durch eine Entlüftung des Kompressionsraums bewirkt ist
5. SF₆-Eindruckschalter nach Anpruch 2 bis 4, dadurch gekennzeichnet, daß die Entlüftung des Kompressionsraums (11) durch eine Entlüftungsbohrung (13) mit einem Entlüftungsventil (14) bewirkt ist, welches gegen die Kraft einer Feder (14′) öffnet, wobei die-Federkonstante so bestimmt ist, daß die Öffnung des Entlüftungsventils (14) bei einem Druck im Kompressionsraum (11) stattfindet, der auftritt, wenn bei geschlossenem Rückschlagventil (6) die zur Lichtbogenlöschung ausreichende Distanz zwischen den Schaltkontakten (20, 21) erreicht ist.
6. SF₆-Eindruckschalter nach Anspruch 2 bis 4, dadurch gekennzeichnet, dass die Entlüftung des Kompressionsraums (11) durch eine Entlüftungsbohrung (13) mit einem Entlüftungsventil (14) bewirkt ist, dass das Entlüftungsventil (14) gegen die Kraft einer Feder (14˝) öffnet und dass mit dem Boden (1) ein Stift (18) verbunden ist, welcher in seiner Länge so bemessen ist, dass er das Entlüftungsventil (14) beim Erreichen einer zur Lichtbogenlöschung ausreichenden Distanz zwischen den Schaltkontakten (20, 21) öffnet
7. SF₆-Eindruckschalter nach Anspruch 2 bis 4, dadurch gekennzeichnet, daß der Boden (1) beim Erreichen einer zur Lichtbogenlöschung ausreichenden Distanz zwischen den Schaltkontakten (20, 21) über eine am Kompressionszylinder (17) und/oder an der Antriebsstange (19) angeordnete Aussparung (22) läuft.
8. SF₆-Eindruckschalter nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß das Rückschlagventil (6) eine zusätzliche Ventilplatte (6′) aufweist, die bei geöffneten Rückschlagventil (6) den Querschnitt des Einlaßes (26) zwischen Schaltstrecke (4) und Gasspeicherraum (9) verschließt.
9. SF₆-Eindruckschalter nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß der Kompressionsraum (11) durch eine mit einem Rückschlagventil (16) versehene Belüftungsbohrung (15) bei der Einschlatbewegung belüftet wird.
10. SF₆-Eindruckschalter nach einem der Ansprüche 1, 2 oder 6 bis 9, dadurch gekennzeichnet, daß im Bereich der Öffnung (10) des Gasspeicherraums (9) ein Rückschlagventil (27) so angeordnet ist, daß durch die Öffnung (10) kein Isoliergas in der Gasspeicherraum (9) strömen kann.
EP89102110A 1988-03-25 1989-02-08 SF6-Eindruckschalter Expired - Lifetime EP0334008B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3810091A DE3810091A1 (de) 1988-03-25 1988-03-25 Sf(pfeil abwaerts)6(pfeil abwaerts)-eindruckschalter
DE3810091 1988-03-25

Publications (3)

Publication Number Publication Date
EP0334008A2 EP0334008A2 (de) 1989-09-27
EP0334008A3 EP0334008A3 (de) 1991-01-23
EP0334008B1 true EP0334008B1 (de) 1992-04-22

Family

ID=6350663

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89102110A Expired - Lifetime EP0334008B1 (de) 1988-03-25 1989-02-08 SF6-Eindruckschalter

Country Status (2)

Country Link
EP (1) EP0334008B1 (de)
DE (2) DE3810091A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3942489C2 (de) * 1989-12-22 1994-03-10 Licentia Gmbh Druckgasschalter
FR2704976B1 (fr) * 1993-05-07 1995-06-23 Gec Alsthom T & D Sa Disjoncteur a gaz de soufflage a haute ou moyenne tension.
DE19547522C1 (de) * 1995-12-08 1997-01-16 Siemens Ag Hochspannungs-Leistungsschalter mit einem Gasspeicherraum
DE10226044A1 (de) * 2002-06-12 2003-12-24 Alstom Druckgasschalter
CN102306590B (zh) * 2011-06-01 2013-08-28 厦门华电开关有限公司 断路器灭弧室

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH568649A5 (de) * 1974-07-29 1975-10-31 Sprecher & Schuh Ag
FR2563372B1 (fr) * 1984-04-24 1988-02-26 Alsthom Atlantique Disjoncteur haute tension a soufflage d'arc
DE3438635A1 (de) * 1984-09-26 1986-04-03 BBC Aktiengesellschaft Brown, Boveri & Cie., Baden, Aargau Druckgasschalter
FR2596575B1 (fr) * 1986-03-26 1988-05-20 Alsthom Disjoncteur a gaz dielectrique sous pression

Also Published As

Publication number Publication date
EP0334008A2 (de) 1989-09-27
DE3810091A1 (de) 1989-10-05
DE58901215D1 (de) 1992-05-27
EP0334008A3 (de) 1991-01-23

Similar Documents

Publication Publication Date Title
EP0067460B2 (de) Hochspannungsleistungsschalter
DE3438635A1 (de) Druckgasschalter
DE3247121C2 (de)
EP0766278A2 (de) Leistungsschalter
DE2812945C2 (de) Druckgasschalter
EP0296363B1 (de) Schalter mit selbsterzeugter Löschgasströmung
EP0334008B1 (de) SF6-Eindruckschalter
DE1130028B (de) Kompressionsschalter
EP0744759B1 (de) Hochspannungs-Leistungsschalter mit einem feststehenden Heizvolumen
DE4103119A1 (de) Druckgasschalter
DE643821C (de) Elektrischer Schalter
DE4015179C2 (de) Druckgasschalter
DE3930548C2 (de) Druckgasschalter
EP0374384B1 (de) SF6-Eindruckschalter
CH640977A5 (de) Stromkreisunterbrecher.
DE69106436T2 (de) Mittelspannungsschalter.
DE4025553C2 (de) Druckgasschalter
DE19939940A1 (de) Druckgasschalter
DE2759265C3 (de) Druckgasschalter
DE3843405C1 (de)
DE19524637C2 (de) Druckgasschalter
DE2629054C3 (de) Autopneumatischer Druckgasschalter
DE3843406A1 (de) Sf(pfeil abwaerts)6(pfeil abwaerts)-eindruckschalter
CH650100A5 (en) Gas-blast circuit breaker
AT398140B (de) Druckgasschalter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE FR IT LI SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE FR IT LI SE

17P Request for examination filed

Effective date: 19910129

17Q First examination report despatched

Effective date: 19910722

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR IT LI SE

REF Corresponds to:

Ref document number: 58901215

Country of ref document: DE

Date of ref document: 19920527

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: MODIANO & ASSOCIATI S.R.L.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 89102110.7

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: LICENTIA PATENT- VERWALTUNGS-GMBH TRANSFER- AEG EN

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000215

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20000218

Year of fee payment: 12

Ref country code: CH

Payment date: 20000218

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000426

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed

Ref document number: 89102110.7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011031

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050208